403 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			403 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Package discover implements the Node Discovery Protocol.
 | |
| //
 | |
| // The Node Discovery protocol provides a way to find RLPx nodes that
 | |
| // can be connected to. It uses a Kademlia-like protocol to maintain a
 | |
| // distributed database of the IDs and endpoints of all listening
 | |
| // nodes.
 | |
| package discover
 | |
| 
 | |
| import (
 | |
| 	"net"
 | |
| 	"sort"
 | |
| 	"sync"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/logger"
 | |
| 	"github.com/ethereum/go-ethereum/logger/glog"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	alpha               = 3              // Kademlia concurrency factor
 | |
| 	bucketSize          = 16             // Kademlia bucket size
 | |
| 	nBuckets            = nodeIDBits + 1 // Number of buckets
 | |
| 	maxBondingPingPongs = 10
 | |
| )
 | |
| 
 | |
| type Table struct {
 | |
| 	mutex   sync.Mutex        // protects buckets, their content, and nursery
 | |
| 	buckets [nBuckets]*bucket // index of known nodes by distance
 | |
| 	nursery []*Node           // bootstrap nodes
 | |
| 	db      *nodeDB           // database of known nodes
 | |
| 
 | |
| 	bondmu    sync.Mutex
 | |
| 	bonding   map[NodeID]*bondproc
 | |
| 	bondslots chan struct{} // limits total number of active bonding processes
 | |
| 
 | |
| 	net  transport
 | |
| 	self *Node // metadata of the local node
 | |
| }
 | |
| 
 | |
| type bondproc struct {
 | |
| 	err  error
 | |
| 	n    *Node
 | |
| 	done chan struct{}
 | |
| }
 | |
| 
 | |
| // transport is implemented by the UDP transport.
 | |
| // it is an interface so we can test without opening lots of UDP
 | |
| // sockets and without generating a private key.
 | |
| type transport interface {
 | |
| 	ping(NodeID, *net.UDPAddr) error
 | |
| 	waitping(NodeID) error
 | |
| 	findnode(toid NodeID, addr *net.UDPAddr, target NodeID) ([]*Node, error)
 | |
| 	close()
 | |
| }
 | |
| 
 | |
| // bucket contains nodes, ordered by their last activity.
 | |
| // the entry that was most recently active is the last element
 | |
| // in entries.
 | |
| type bucket struct {
 | |
| 	lastLookup time.Time
 | |
| 	entries    []*Node
 | |
| }
 | |
| 
 | |
| func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr, nodeDBPath string) *Table {
 | |
| 	// If no node database was given, use an in-memory one
 | |
| 	db, err := newNodeDB(nodeDBPath, Version)
 | |
| 	if err != nil {
 | |
| 		glog.V(logger.Warn).Infoln("Failed to open node database:", err)
 | |
| 		db, _ = newNodeDB("", Version)
 | |
| 	}
 | |
| 	tab := &Table{
 | |
| 		net:       t,
 | |
| 		db:        db,
 | |
| 		self:      newNode(ourID, ourAddr),
 | |
| 		bonding:   make(map[NodeID]*bondproc),
 | |
| 		bondslots: make(chan struct{}, maxBondingPingPongs),
 | |
| 	}
 | |
| 	for i := 0; i < cap(tab.bondslots); i++ {
 | |
| 		tab.bondslots <- struct{}{}
 | |
| 	}
 | |
| 	for i := range tab.buckets {
 | |
| 		tab.buckets[i] = new(bucket)
 | |
| 	}
 | |
| 	return tab
 | |
| }
 | |
| 
 | |
| // Self returns the local node.
 | |
| func (tab *Table) Self() *Node {
 | |
| 	return tab.self
 | |
| }
 | |
| 
 | |
| // Close terminates the network listener and flushes the node database.
 | |
| func (tab *Table) Close() {
 | |
| 	tab.net.close()
 | |
| 	tab.db.close()
 | |
| }
 | |
| 
 | |
| // Bootstrap sets the bootstrap nodes. These nodes are used to connect
 | |
| // to the network if the table is empty. Bootstrap will also attempt to
 | |
| // fill the table by performing random lookup operations on the
 | |
| // network.
 | |
| func (tab *Table) Bootstrap(nodes []*Node) {
 | |
| 	tab.mutex.Lock()
 | |
| 	// TODO: maybe filter nodes with bad fields (nil, etc.) to avoid strange crashes
 | |
| 	tab.nursery = make([]*Node, 0, len(nodes))
 | |
| 	for _, n := range nodes {
 | |
| 		cpy := *n
 | |
| 		tab.nursery = append(tab.nursery, &cpy)
 | |
| 	}
 | |
| 	tab.mutex.Unlock()
 | |
| 	tab.refresh()
 | |
| }
 | |
| 
 | |
| // Lookup performs a network search for nodes close
 | |
| // to the given target. It approaches the target by querying
 | |
| // nodes that are closer to it on each iteration.
 | |
| func (tab *Table) Lookup(target NodeID) []*Node {
 | |
| 	var (
 | |
| 		asked          = make(map[NodeID]bool)
 | |
| 		seen           = make(map[NodeID]bool)
 | |
| 		reply          = make(chan []*Node, alpha)
 | |
| 		pendingQueries = 0
 | |
| 	)
 | |
| 	// don't query further if we hit the target or ourself.
 | |
| 	// unlikely to happen often in practice.
 | |
| 	asked[target] = true
 | |
| 	asked[tab.self.ID] = true
 | |
| 
 | |
| 	tab.mutex.Lock()
 | |
| 	// update last lookup stamp (for refresh logic)
 | |
| 	tab.buckets[logdist(tab.self.ID, target)].lastLookup = time.Now()
 | |
| 	// generate initial result set
 | |
| 	result := tab.closest(target, bucketSize)
 | |
| 	tab.mutex.Unlock()
 | |
| 
 | |
| 	for {
 | |
| 		// ask the alpha closest nodes that we haven't asked yet
 | |
| 		for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
 | |
| 			n := result.entries[i]
 | |
| 			if !asked[n.ID] {
 | |
| 				asked[n.ID] = true
 | |
| 				pendingQueries++
 | |
| 				go func() {
 | |
| 					r, _ := tab.net.findnode(n.ID, n.addr(), target)
 | |
| 					reply <- tab.bondall(r)
 | |
| 				}()
 | |
| 			}
 | |
| 		}
 | |
| 		if pendingQueries == 0 {
 | |
| 			// we have asked all closest nodes, stop the search
 | |
| 			break
 | |
| 		}
 | |
| 		// wait for the next reply
 | |
| 		for _, n := range <-reply {
 | |
| 			if n != nil && !seen[n.ID] {
 | |
| 				seen[n.ID] = true
 | |
| 				result.push(n, bucketSize)
 | |
| 			}
 | |
| 		}
 | |
| 		pendingQueries--
 | |
| 	}
 | |
| 	return result.entries
 | |
| }
 | |
| 
 | |
| // refresh performs a lookup for a random target to keep buckets full.
 | |
| func (tab *Table) refresh() {
 | |
| 	ld := -1 // logdist of chosen bucket
 | |
| 	tab.mutex.Lock()
 | |
| 	for i, b := range tab.buckets {
 | |
| 		if i > 0 && b.lastLookup.Before(time.Now().Add(-1*time.Hour)) {
 | |
| 			ld = i
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	tab.mutex.Unlock()
 | |
| 
 | |
| 	result := tab.Lookup(randomID(tab.self.ID, ld))
 | |
| 	if len(result) == 0 {
 | |
| 		// Pick a batch of previously know seeds to lookup with
 | |
| 		seeds := tab.db.querySeeds(10)
 | |
| 		for _, seed := range seeds {
 | |
| 			glog.V(logger.Debug).Infoln("Seeding network with", seed)
 | |
| 		}
 | |
| 		// Bootstrap the table with a self lookup
 | |
| 		all := tab.bondall(append(tab.nursery, seeds...))
 | |
| 		tab.mutex.Lock()
 | |
| 		tab.add(all)
 | |
| 		tab.mutex.Unlock()
 | |
| 		tab.Lookup(tab.self.ID)
 | |
| 		// TODO: the Kademlia paper says that we're supposed to perform
 | |
| 		// random lookups in all buckets further away than our closest neighbor.
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // closest returns the n nodes in the table that are closest to the
 | |
| // given id. The caller must hold tab.mutex.
 | |
| func (tab *Table) closest(target NodeID, nresults int) *nodesByDistance {
 | |
| 	// This is a very wasteful way to find the closest nodes but
 | |
| 	// obviously correct. I believe that tree-based buckets would make
 | |
| 	// this easier to implement efficiently.
 | |
| 	close := &nodesByDistance{target: target}
 | |
| 	for _, b := range tab.buckets {
 | |
| 		for _, n := range b.entries {
 | |
| 			close.push(n, nresults)
 | |
| 		}
 | |
| 	}
 | |
| 	return close
 | |
| }
 | |
| 
 | |
| func (tab *Table) len() (n int) {
 | |
| 	for _, b := range tab.buckets {
 | |
| 		n += len(b.entries)
 | |
| 	}
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // bondall bonds with all given nodes concurrently and returns
 | |
| // those nodes for which bonding has probably succeeded.
 | |
| func (tab *Table) bondall(nodes []*Node) (result []*Node) {
 | |
| 	rc := make(chan *Node, len(nodes))
 | |
| 	for i := range nodes {
 | |
| 		go func(n *Node) {
 | |
| 			nn, _ := tab.bond(false, n.ID, n.addr(), uint16(n.TCPPort))
 | |
| 			rc <- nn
 | |
| 		}(nodes[i])
 | |
| 	}
 | |
| 	for _ = range nodes {
 | |
| 		if n := <-rc; n != nil {
 | |
| 			result = append(result, n)
 | |
| 		}
 | |
| 	}
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // bond ensures the local node has a bond with the given remote node.
 | |
| // It also attempts to insert the node into the table if bonding succeeds.
 | |
| // The caller must not hold tab.mutex.
 | |
| //
 | |
| // A bond is must be established before sending findnode requests.
 | |
| // Both sides must have completed a ping/pong exchange for a bond to
 | |
| // exist. The total number of active bonding processes is limited in
 | |
| // order to restrain network use.
 | |
| //
 | |
| // bond is meant to operate idempotently in that bonding with a remote
 | |
| // node which still remembers a previously established bond will work.
 | |
| // The remote node will simply not send a ping back, causing waitping
 | |
| // to time out.
 | |
| //
 | |
| // If pinged is true, the remote node has just pinged us and one half
 | |
| // of the process can be skipped.
 | |
| func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) (*Node, error) {
 | |
| 	var n *Node
 | |
| 	if n = tab.db.node(id); n == nil {
 | |
| 		tab.bondmu.Lock()
 | |
| 		w := tab.bonding[id]
 | |
| 		if w != nil {
 | |
| 			// Wait for an existing bonding process to complete.
 | |
| 			tab.bondmu.Unlock()
 | |
| 			<-w.done
 | |
| 		} else {
 | |
| 			// Register a new bonding process.
 | |
| 			w = &bondproc{done: make(chan struct{})}
 | |
| 			tab.bonding[id] = w
 | |
| 			tab.bondmu.Unlock()
 | |
| 			// Do the ping/pong. The result goes into w.
 | |
| 			tab.pingpong(w, pinged, id, addr, tcpPort)
 | |
| 			// Unregister the process after it's done.
 | |
| 			tab.bondmu.Lock()
 | |
| 			delete(tab.bonding, id)
 | |
| 			tab.bondmu.Unlock()
 | |
| 		}
 | |
| 		n = w.n
 | |
| 		if w.err != nil {
 | |
| 			return nil, w.err
 | |
| 		}
 | |
| 	}
 | |
| 	tab.mutex.Lock()
 | |
| 	defer tab.mutex.Unlock()
 | |
| 	if b := tab.buckets[logdist(tab.self.ID, n.ID)]; !b.bump(n) {
 | |
| 		tab.pingreplace(n, b)
 | |
| 	}
 | |
| 	return n, nil
 | |
| }
 | |
| 
 | |
| func (tab *Table) pingpong(w *bondproc, pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) {
 | |
| 	// Request a bonding slot to limit network usage
 | |
| 	<-tab.bondslots
 | |
| 	defer func() { tab.bondslots <- struct{}{} }()
 | |
| 
 | |
| 	// Ping the remote side and wait for a pong
 | |
| 	if w.err = tab.ping(id, addr); w.err != nil {
 | |
| 		close(w.done)
 | |
| 		return
 | |
| 	}
 | |
| 	if !pinged {
 | |
| 		// Give the remote node a chance to ping us before we start
 | |
| 		// sending findnode requests. If they still remember us,
 | |
| 		// waitping will simply time out.
 | |
| 		tab.net.waitping(id)
 | |
| 	}
 | |
| 	// Bonding succeeded, update the node database
 | |
| 	w.n = &Node{
 | |
| 		ID:       id,
 | |
| 		IP:       addr.IP,
 | |
| 		DiscPort: addr.Port,
 | |
| 		TCPPort:  int(tcpPort),
 | |
| 	}
 | |
| 	tab.db.updateNode(w.n)
 | |
| 	close(w.done)
 | |
| }
 | |
| 
 | |
| func (tab *Table) pingreplace(new *Node, b *bucket) {
 | |
| 	if len(b.entries) == bucketSize {
 | |
| 		oldest := b.entries[bucketSize-1]
 | |
| 		if err := tab.ping(oldest.ID, oldest.addr()); err == nil {
 | |
| 			// The node responded, we don't need to replace it.
 | |
| 			return
 | |
| 		}
 | |
| 	} else {
 | |
| 		// Add a slot at the end so the last entry doesn't
 | |
| 		// fall off when adding the new node.
 | |
| 		b.entries = append(b.entries, nil)
 | |
| 	}
 | |
| 	copy(b.entries[1:], b.entries)
 | |
| 	b.entries[0] = new
 | |
| }
 | |
| 
 | |
| // ping a remote endpoint and wait for a reply, also updating the node database
 | |
| // accordingly.
 | |
| func (tab *Table) ping(id NodeID, addr *net.UDPAddr) error {
 | |
| 	// Update the last ping and send the message
 | |
| 	tab.db.updateLastPing(id, time.Now())
 | |
| 	if err := tab.net.ping(id, addr); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	// Pong received, update the database and return
 | |
| 	tab.db.updateLastPong(id, time.Now())
 | |
| 	tab.db.ensureExpirer()
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // add puts the entries into the table if their corresponding
 | |
| // bucket is not full. The caller must hold tab.mutex.
 | |
| func (tab *Table) add(entries []*Node) {
 | |
| outer:
 | |
| 	for _, n := range entries {
 | |
| 		if n == nil || n.ID == tab.self.ID {
 | |
| 			// skip bad entries. The RLP decoder returns nil for empty
 | |
| 			// input lists.
 | |
| 			continue
 | |
| 		}
 | |
| 		bucket := tab.buckets[logdist(tab.self.ID, n.ID)]
 | |
| 		for i := range bucket.entries {
 | |
| 			if bucket.entries[i].ID == n.ID {
 | |
| 				// already in bucket
 | |
| 				continue outer
 | |
| 			}
 | |
| 		}
 | |
| 		if len(bucket.entries) < bucketSize {
 | |
| 			bucket.entries = append(bucket.entries, n)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (b *bucket) bump(n *Node) bool {
 | |
| 	for i := range b.entries {
 | |
| 		if b.entries[i].ID == n.ID {
 | |
| 			// move it to the front
 | |
| 			copy(b.entries[1:], b.entries[:i])
 | |
| 			b.entries[0] = n
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // nodesByDistance is a list of nodes, ordered by
 | |
| // distance to target.
 | |
| type nodesByDistance struct {
 | |
| 	entries []*Node
 | |
| 	target  NodeID
 | |
| }
 | |
| 
 | |
| // push adds the given node to the list, keeping the total size below maxElems.
 | |
| func (h *nodesByDistance) push(n *Node, maxElems int) {
 | |
| 	ix := sort.Search(len(h.entries), func(i int) bool {
 | |
| 		return distcmp(h.target, h.entries[i].ID, n.ID) > 0
 | |
| 	})
 | |
| 	if len(h.entries) < maxElems {
 | |
| 		h.entries = append(h.entries, n)
 | |
| 	}
 | |
| 	if ix == len(h.entries) {
 | |
| 		// farther away than all nodes we already have.
 | |
| 		// if there was room for it, the node is now the last element.
 | |
| 	} else {
 | |
| 		// slide existing entries down to make room
 | |
| 		// this will overwrite the entry we just appended.
 | |
| 		copy(h.entries[ix+1:], h.entries[ix:])
 | |
| 		h.entries[ix] = n
 | |
| 	}
 | |
| }
 |