264 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2012 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package bn256
 | |
| 
 | |
| import (
 | |
| 	"math/big"
 | |
| )
 | |
| 
 | |
| // twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
 | |
| // kept in Jacobian form and t=z² when valid. The group G₂ is the set of
 | |
| // n-torsion points of this curve over GF(p²) (where n = Order)
 | |
| type twistPoint struct {
 | |
| 	x, y, z, t *gfP2
 | |
| }
 | |
| 
 | |
| var twistB = &gfP2{
 | |
| 	bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"),
 | |
| 	bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"),
 | |
| }
 | |
| 
 | |
| // twistGen is the generator of group G₂.
 | |
| var twistGen = &twistPoint{
 | |
| 	&gfP2{
 | |
| 		bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"),
 | |
| 		bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"),
 | |
| 	},
 | |
| 	&gfP2{
 | |
| 		bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"),
 | |
| 		bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"),
 | |
| 	},
 | |
| 	&gfP2{
 | |
| 		bigFromBase10("0"),
 | |
| 		bigFromBase10("1"),
 | |
| 	},
 | |
| 	&gfP2{
 | |
| 		bigFromBase10("0"),
 | |
| 		bigFromBase10("1"),
 | |
| 	},
 | |
| }
 | |
| 
 | |
| func newTwistPoint(pool *bnPool) *twistPoint {
 | |
| 	return &twistPoint{
 | |
| 		newGFp2(pool),
 | |
| 		newGFp2(pool),
 | |
| 		newGFp2(pool),
 | |
| 		newGFp2(pool),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) String() string {
 | |
| 	return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Put(pool *bnPool) {
 | |
| 	c.x.Put(pool)
 | |
| 	c.y.Put(pool)
 | |
| 	c.z.Put(pool)
 | |
| 	c.t.Put(pool)
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Set(a *twistPoint) {
 | |
| 	c.x.Set(a.x)
 | |
| 	c.y.Set(a.y)
 | |
| 	c.z.Set(a.z)
 | |
| 	c.t.Set(a.t)
 | |
| }
 | |
| 
 | |
| // IsOnCurve returns true iff c is on the curve where c must be in affine form.
 | |
| func (c *twistPoint) IsOnCurve() bool {
 | |
| 	pool := new(bnPool)
 | |
| 	yy := newGFp2(pool).Square(c.y, pool)
 | |
| 	xxx := newGFp2(pool).Square(c.x, pool)
 | |
| 	xxx.Mul(xxx, c.x, pool)
 | |
| 	yy.Sub(yy, xxx)
 | |
| 	yy.Sub(yy, twistB)
 | |
| 	yy.Minimal()
 | |
| 
 | |
| 	if yy.x.Sign() != 0 || yy.y.Sign() != 0 {
 | |
| 		return false
 | |
| 	}
 | |
| 	cneg := newTwistPoint(pool)
 | |
| 	cneg.Mul(c, Order, pool)
 | |
| 	return cneg.z.IsZero()
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) SetInfinity() {
 | |
| 	c.z.SetZero()
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) IsInfinity() bool {
 | |
| 	return c.z.IsZero()
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
 | |
| 	// For additional comments, see the same function in curve.go.
 | |
| 
 | |
| 	if a.IsInfinity() {
 | |
| 		c.Set(b)
 | |
| 		return
 | |
| 	}
 | |
| 	if b.IsInfinity() {
 | |
| 		c.Set(a)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
 | |
| 	z1z1 := newGFp2(pool).Square(a.z, pool)
 | |
| 	z2z2 := newGFp2(pool).Square(b.z, pool)
 | |
| 	u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
 | |
| 	u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
 | |
| 
 | |
| 	t := newGFp2(pool).Mul(b.z, z2z2, pool)
 | |
| 	s1 := newGFp2(pool).Mul(a.y, t, pool)
 | |
| 
 | |
| 	t.Mul(a.z, z1z1, pool)
 | |
| 	s2 := newGFp2(pool).Mul(b.y, t, pool)
 | |
| 
 | |
| 	h := newGFp2(pool).Sub(u2, u1)
 | |
| 	xEqual := h.IsZero()
 | |
| 
 | |
| 	t.Add(h, h)
 | |
| 	i := newGFp2(pool).Square(t, pool)
 | |
| 	j := newGFp2(pool).Mul(h, i, pool)
 | |
| 
 | |
| 	t.Sub(s2, s1)
 | |
| 	yEqual := t.IsZero()
 | |
| 	if xEqual && yEqual {
 | |
| 		c.Double(a, pool)
 | |
| 		return
 | |
| 	}
 | |
| 	r := newGFp2(pool).Add(t, t)
 | |
| 
 | |
| 	v := newGFp2(pool).Mul(u1, i, pool)
 | |
| 
 | |
| 	t4 := newGFp2(pool).Square(r, pool)
 | |
| 	t.Add(v, v)
 | |
| 	t6 := newGFp2(pool).Sub(t4, j)
 | |
| 	c.x.Sub(t6, t)
 | |
| 
 | |
| 	t.Sub(v, c.x)       // t7
 | |
| 	t4.Mul(s1, j, pool) // t8
 | |
| 	t6.Add(t4, t4)      // t9
 | |
| 	t4.Mul(r, t, pool)  // t10
 | |
| 	c.y.Sub(t4, t6)
 | |
| 
 | |
| 	t.Add(a.z, b.z)    // t11
 | |
| 	t4.Square(t, pool) // t12
 | |
| 	t.Sub(t4, z1z1)    // t13
 | |
| 	t4.Sub(t, z2z2)    // t14
 | |
| 	c.z.Mul(t4, h, pool)
 | |
| 
 | |
| 	z1z1.Put(pool)
 | |
| 	z2z2.Put(pool)
 | |
| 	u1.Put(pool)
 | |
| 	u2.Put(pool)
 | |
| 	t.Put(pool)
 | |
| 	s1.Put(pool)
 | |
| 	s2.Put(pool)
 | |
| 	h.Put(pool)
 | |
| 	i.Put(pool)
 | |
| 	j.Put(pool)
 | |
| 	r.Put(pool)
 | |
| 	v.Put(pool)
 | |
| 	t4.Put(pool)
 | |
| 	t6.Put(pool)
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
 | |
| 	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
 | |
| 	A := newGFp2(pool).Square(a.x, pool)
 | |
| 	B := newGFp2(pool).Square(a.y, pool)
 | |
| 	C_ := newGFp2(pool).Square(B, pool)
 | |
| 
 | |
| 	t := newGFp2(pool).Add(a.x, B)
 | |
| 	t2 := newGFp2(pool).Square(t, pool)
 | |
| 	t.Sub(t2, A)
 | |
| 	t2.Sub(t, C_)
 | |
| 	d := newGFp2(pool).Add(t2, t2)
 | |
| 	t.Add(A, A)
 | |
| 	e := newGFp2(pool).Add(t, A)
 | |
| 	f := newGFp2(pool).Square(e, pool)
 | |
| 
 | |
| 	t.Add(d, d)
 | |
| 	c.x.Sub(f, t)
 | |
| 
 | |
| 	t.Add(C_, C_)
 | |
| 	t2.Add(t, t)
 | |
| 	t.Add(t2, t2)
 | |
| 	c.y.Sub(d, c.x)
 | |
| 	t2.Mul(e, c.y, pool)
 | |
| 	c.y.Sub(t2, t)
 | |
| 
 | |
| 	t.Mul(a.y, a.z, pool)
 | |
| 	c.z.Add(t, t)
 | |
| 
 | |
| 	A.Put(pool)
 | |
| 	B.Put(pool)
 | |
| 	C_.Put(pool)
 | |
| 	t.Put(pool)
 | |
| 	t2.Put(pool)
 | |
| 	d.Put(pool)
 | |
| 	e.Put(pool)
 | |
| 	f.Put(pool)
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
 | |
| 	sum := newTwistPoint(pool)
 | |
| 	sum.SetInfinity()
 | |
| 	t := newTwistPoint(pool)
 | |
| 
 | |
| 	for i := scalar.BitLen(); i >= 0; i-- {
 | |
| 		t.Double(sum, pool)
 | |
| 		if scalar.Bit(i) != 0 {
 | |
| 			sum.Add(t, a, pool)
 | |
| 		} else {
 | |
| 			sum.Set(t)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	c.Set(sum)
 | |
| 	sum.Put(pool)
 | |
| 	t.Put(pool)
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| // MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
 | |
| // c to 0 : 1 : 0.
 | |
| func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
 | |
| 	if c.z.IsOne() {
 | |
| 		return c
 | |
| 	}
 | |
| 	if c.IsInfinity() {
 | |
| 		c.x.SetZero()
 | |
| 		c.y.SetOne()
 | |
| 		c.z.SetZero()
 | |
| 		c.t.SetZero()
 | |
| 		return c
 | |
| 	}
 | |
| 	zInv := newGFp2(pool).Invert(c.z, pool)
 | |
| 	t := newGFp2(pool).Mul(c.y, zInv, pool)
 | |
| 	zInv2 := newGFp2(pool).Square(zInv, pool)
 | |
| 	c.y.Mul(t, zInv2, pool)
 | |
| 	t.Mul(c.x, zInv2, pool)
 | |
| 	c.x.Set(t)
 | |
| 	c.z.SetOne()
 | |
| 	c.t.SetOne()
 | |
| 
 | |
| 	zInv.Put(pool)
 | |
| 	t.Put(pool)
 | |
| 	zInv2.Put(pool)
 | |
| 
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
 | |
| 	c.x.Set(a.x)
 | |
| 	c.y.SetZero()
 | |
| 	c.y.Sub(c.y, a.y)
 | |
| 	c.z.Set(a.z)
 | |
| 	c.t.SetZero()
 | |
| }
 |