* core/vm, crypto/bn256: switch over to cloudflare library * crypto/bn256: unmarshal constraint + start pure go impl * crypto/bn256: combo cloudflare and google lib * travis: drop 386 test job
		
			
				
	
	
		
			398 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			398 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2012 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package bn256
 | |
| 
 | |
| func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
 | |
| 	// See the mixed addition algorithm from "Faster Computation of the
 | |
| 	// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
 | |
| 
 | |
| 	B := newGFp2(pool).Mul(p.x, r.t, pool)
 | |
| 
 | |
| 	D := newGFp2(pool).Add(p.y, r.z)
 | |
| 	D.Square(D, pool)
 | |
| 	D.Sub(D, r2)
 | |
| 	D.Sub(D, r.t)
 | |
| 	D.Mul(D, r.t, pool)
 | |
| 
 | |
| 	H := newGFp2(pool).Sub(B, r.x)
 | |
| 	I := newGFp2(pool).Square(H, pool)
 | |
| 
 | |
| 	E := newGFp2(pool).Add(I, I)
 | |
| 	E.Add(E, E)
 | |
| 
 | |
| 	J := newGFp2(pool).Mul(H, E, pool)
 | |
| 
 | |
| 	L1 := newGFp2(pool).Sub(D, r.y)
 | |
| 	L1.Sub(L1, r.y)
 | |
| 
 | |
| 	V := newGFp2(pool).Mul(r.x, E, pool)
 | |
| 
 | |
| 	rOut = newTwistPoint(pool)
 | |
| 	rOut.x.Square(L1, pool)
 | |
| 	rOut.x.Sub(rOut.x, J)
 | |
| 	rOut.x.Sub(rOut.x, V)
 | |
| 	rOut.x.Sub(rOut.x, V)
 | |
| 
 | |
| 	rOut.z.Add(r.z, H)
 | |
| 	rOut.z.Square(rOut.z, pool)
 | |
| 	rOut.z.Sub(rOut.z, r.t)
 | |
| 	rOut.z.Sub(rOut.z, I)
 | |
| 
 | |
| 	t := newGFp2(pool).Sub(V, rOut.x)
 | |
| 	t.Mul(t, L1, pool)
 | |
| 	t2 := newGFp2(pool).Mul(r.y, J, pool)
 | |
| 	t2.Add(t2, t2)
 | |
| 	rOut.y.Sub(t, t2)
 | |
| 
 | |
| 	rOut.t.Square(rOut.z, pool)
 | |
| 
 | |
| 	t.Add(p.y, rOut.z)
 | |
| 	t.Square(t, pool)
 | |
| 	t.Sub(t, r2)
 | |
| 	t.Sub(t, rOut.t)
 | |
| 
 | |
| 	t2.Mul(L1, p.x, pool)
 | |
| 	t2.Add(t2, t2)
 | |
| 	a = newGFp2(pool)
 | |
| 	a.Sub(t2, t)
 | |
| 
 | |
| 	c = newGFp2(pool)
 | |
| 	c.MulScalar(rOut.z, q.y)
 | |
| 	c.Add(c, c)
 | |
| 
 | |
| 	b = newGFp2(pool)
 | |
| 	b.SetZero()
 | |
| 	b.Sub(b, L1)
 | |
| 	b.MulScalar(b, q.x)
 | |
| 	b.Add(b, b)
 | |
| 
 | |
| 	B.Put(pool)
 | |
| 	D.Put(pool)
 | |
| 	H.Put(pool)
 | |
| 	I.Put(pool)
 | |
| 	E.Put(pool)
 | |
| 	J.Put(pool)
 | |
| 	L1.Put(pool)
 | |
| 	V.Put(pool)
 | |
| 	t.Put(pool)
 | |
| 	t2.Put(pool)
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
 | |
| 	// See the doubling algorithm for a=0 from "Faster Computation of the
 | |
| 	// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
 | |
| 
 | |
| 	A := newGFp2(pool).Square(r.x, pool)
 | |
| 	B := newGFp2(pool).Square(r.y, pool)
 | |
| 	C_ := newGFp2(pool).Square(B, pool)
 | |
| 
 | |
| 	D := newGFp2(pool).Add(r.x, B)
 | |
| 	D.Square(D, pool)
 | |
| 	D.Sub(D, A)
 | |
| 	D.Sub(D, C_)
 | |
| 	D.Add(D, D)
 | |
| 
 | |
| 	E := newGFp2(pool).Add(A, A)
 | |
| 	E.Add(E, A)
 | |
| 
 | |
| 	G := newGFp2(pool).Square(E, pool)
 | |
| 
 | |
| 	rOut = newTwistPoint(pool)
 | |
| 	rOut.x.Sub(G, D)
 | |
| 	rOut.x.Sub(rOut.x, D)
 | |
| 
 | |
| 	rOut.z.Add(r.y, r.z)
 | |
| 	rOut.z.Square(rOut.z, pool)
 | |
| 	rOut.z.Sub(rOut.z, B)
 | |
| 	rOut.z.Sub(rOut.z, r.t)
 | |
| 
 | |
| 	rOut.y.Sub(D, rOut.x)
 | |
| 	rOut.y.Mul(rOut.y, E, pool)
 | |
| 	t := newGFp2(pool).Add(C_, C_)
 | |
| 	t.Add(t, t)
 | |
| 	t.Add(t, t)
 | |
| 	rOut.y.Sub(rOut.y, t)
 | |
| 
 | |
| 	rOut.t.Square(rOut.z, pool)
 | |
| 
 | |
| 	t.Mul(E, r.t, pool)
 | |
| 	t.Add(t, t)
 | |
| 	b = newGFp2(pool)
 | |
| 	b.SetZero()
 | |
| 	b.Sub(b, t)
 | |
| 	b.MulScalar(b, q.x)
 | |
| 
 | |
| 	a = newGFp2(pool)
 | |
| 	a.Add(r.x, E)
 | |
| 	a.Square(a, pool)
 | |
| 	a.Sub(a, A)
 | |
| 	a.Sub(a, G)
 | |
| 	t.Add(B, B)
 | |
| 	t.Add(t, t)
 | |
| 	a.Sub(a, t)
 | |
| 
 | |
| 	c = newGFp2(pool)
 | |
| 	c.Mul(rOut.z, r.t, pool)
 | |
| 	c.Add(c, c)
 | |
| 	c.MulScalar(c, q.y)
 | |
| 
 | |
| 	A.Put(pool)
 | |
| 	B.Put(pool)
 | |
| 	C_.Put(pool)
 | |
| 	D.Put(pool)
 | |
| 	E.Put(pool)
 | |
| 	G.Put(pool)
 | |
| 	t.Put(pool)
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
 | |
| 	a2 := newGFp6(pool)
 | |
| 	a2.x.SetZero()
 | |
| 	a2.y.Set(a)
 | |
| 	a2.z.Set(b)
 | |
| 	a2.Mul(a2, ret.x, pool)
 | |
| 	t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
 | |
| 
 | |
| 	t := newGFp2(pool)
 | |
| 	t.Add(b, c)
 | |
| 	t2 := newGFp6(pool)
 | |
| 	t2.x.SetZero()
 | |
| 	t2.y.Set(a)
 | |
| 	t2.z.Set(t)
 | |
| 	ret.x.Add(ret.x, ret.y)
 | |
| 
 | |
| 	ret.y.Set(t3)
 | |
| 
 | |
| 	ret.x.Mul(ret.x, t2, pool)
 | |
| 	ret.x.Sub(ret.x, a2)
 | |
| 	ret.x.Sub(ret.x, ret.y)
 | |
| 	a2.MulTau(a2, pool)
 | |
| 	ret.y.Add(ret.y, a2)
 | |
| 
 | |
| 	a2.Put(pool)
 | |
| 	t3.Put(pool)
 | |
| 	t2.Put(pool)
 | |
| 	t.Put(pool)
 | |
| }
 | |
| 
 | |
| // sixuPlus2NAF is 6u+2 in non-adjacent form.
 | |
| var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
 | |
| 	0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
 | |
| 	1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
 | |
| 	1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
 | |
| 
 | |
| // miller implements the Miller loop for calculating the Optimal Ate pairing.
 | |
| // See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
 | |
| func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
 | |
| 	ret := newGFp12(pool)
 | |
| 	ret.SetOne()
 | |
| 
 | |
| 	aAffine := newTwistPoint(pool)
 | |
| 	aAffine.Set(q)
 | |
| 	aAffine.MakeAffine(pool)
 | |
| 
 | |
| 	bAffine := newCurvePoint(pool)
 | |
| 	bAffine.Set(p)
 | |
| 	bAffine.MakeAffine(pool)
 | |
| 
 | |
| 	minusA := newTwistPoint(pool)
 | |
| 	minusA.Negative(aAffine, pool)
 | |
| 
 | |
| 	r := newTwistPoint(pool)
 | |
| 	r.Set(aAffine)
 | |
| 
 | |
| 	r2 := newGFp2(pool)
 | |
| 	r2.Square(aAffine.y, pool)
 | |
| 
 | |
| 	for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
 | |
| 		a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
 | |
| 		if i != len(sixuPlus2NAF)-1 {
 | |
| 			ret.Square(ret, pool)
 | |
| 		}
 | |
| 
 | |
| 		mulLine(ret, a, b, c, pool)
 | |
| 		a.Put(pool)
 | |
| 		b.Put(pool)
 | |
| 		c.Put(pool)
 | |
| 		r.Put(pool)
 | |
| 		r = newR
 | |
| 
 | |
| 		switch sixuPlus2NAF[i-1] {
 | |
| 		case 1:
 | |
| 			a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
 | |
| 		case -1:
 | |
| 			a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
 | |
| 		default:
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		mulLine(ret, a, b, c, pool)
 | |
| 		a.Put(pool)
 | |
| 		b.Put(pool)
 | |
| 		c.Put(pool)
 | |
| 		r.Put(pool)
 | |
| 		r = newR
 | |
| 	}
 | |
| 
 | |
| 	// In order to calculate Q1 we have to convert q from the sextic twist
 | |
| 	// to the full GF(p^12) group, apply the Frobenius there, and convert
 | |
| 	// back.
 | |
| 	//
 | |
| 	// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
 | |
| 	// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
 | |
| 	// where x̄ is the conjugate of x. If we are going to apply the inverse
 | |
| 	// isomorphism we need a value with a single coefficient of ω² so we
 | |
| 	// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
 | |
| 	// p, 2p-2 is a multiple of six. Therefore we can rewrite as
 | |
| 	// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
 | |
| 	// ω².
 | |
| 	//
 | |
| 	// A similar argument can be made for the y value.
 | |
| 
 | |
| 	q1 := newTwistPoint(pool)
 | |
| 	q1.x.Conjugate(aAffine.x)
 | |
| 	q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
 | |
| 	q1.y.Conjugate(aAffine.y)
 | |
| 	q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
 | |
| 	q1.z.SetOne()
 | |
| 	q1.t.SetOne()
 | |
| 
 | |
| 	// For Q2 we are applying the p² Frobenius. The two conjugations cancel
 | |
| 	// out and we are left only with the factors from the isomorphism. In
 | |
| 	// the case of x, we end up with a pure number which is why
 | |
| 	// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
 | |
| 	// ignore this to end up with -Q2.
 | |
| 
 | |
| 	minusQ2 := newTwistPoint(pool)
 | |
| 	minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
 | |
| 	minusQ2.y.Set(aAffine.y)
 | |
| 	minusQ2.z.SetOne()
 | |
| 	minusQ2.t.SetOne()
 | |
| 
 | |
| 	r2.Square(q1.y, pool)
 | |
| 	a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
 | |
| 	mulLine(ret, a, b, c, pool)
 | |
| 	a.Put(pool)
 | |
| 	b.Put(pool)
 | |
| 	c.Put(pool)
 | |
| 	r.Put(pool)
 | |
| 	r = newR
 | |
| 
 | |
| 	r2.Square(minusQ2.y, pool)
 | |
| 	a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
 | |
| 	mulLine(ret, a, b, c, pool)
 | |
| 	a.Put(pool)
 | |
| 	b.Put(pool)
 | |
| 	c.Put(pool)
 | |
| 	r.Put(pool)
 | |
| 	r = newR
 | |
| 
 | |
| 	aAffine.Put(pool)
 | |
| 	bAffine.Put(pool)
 | |
| 	minusA.Put(pool)
 | |
| 	r.Put(pool)
 | |
| 	r2.Put(pool)
 | |
| 
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // finalExponentiation computes the (p¹²-1)/Order-th power of an element of
 | |
| // GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
 | |
| // http://cryptojedi.org/papers/dclxvi-20100714.pdf)
 | |
| func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
 | |
| 	t1 := newGFp12(pool)
 | |
| 
 | |
| 	// This is the p^6-Frobenius
 | |
| 	t1.x.Negative(in.x)
 | |
| 	t1.y.Set(in.y)
 | |
| 
 | |
| 	inv := newGFp12(pool)
 | |
| 	inv.Invert(in, pool)
 | |
| 	t1.Mul(t1, inv, pool)
 | |
| 
 | |
| 	t2 := newGFp12(pool).FrobeniusP2(t1, pool)
 | |
| 	t1.Mul(t1, t2, pool)
 | |
| 
 | |
| 	fp := newGFp12(pool).Frobenius(t1, pool)
 | |
| 	fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
 | |
| 	fp3 := newGFp12(pool).Frobenius(fp2, pool)
 | |
| 
 | |
| 	fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
 | |
| 	fu.Exp(t1, u, pool)
 | |
| 	fu2.Exp(fu, u, pool)
 | |
| 	fu3.Exp(fu2, u, pool)
 | |
| 
 | |
| 	y3 := newGFp12(pool).Frobenius(fu, pool)
 | |
| 	fu2p := newGFp12(pool).Frobenius(fu2, pool)
 | |
| 	fu3p := newGFp12(pool).Frobenius(fu3, pool)
 | |
| 	y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
 | |
| 
 | |
| 	y0 := newGFp12(pool)
 | |
| 	y0.Mul(fp, fp2, pool)
 | |
| 	y0.Mul(y0, fp3, pool)
 | |
| 
 | |
| 	y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
 | |
| 	y1.Conjugate(t1)
 | |
| 	y5.Conjugate(fu2)
 | |
| 	y3.Conjugate(y3)
 | |
| 	y4.Mul(fu, fu2p, pool)
 | |
| 	y4.Conjugate(y4)
 | |
| 
 | |
| 	y6 := newGFp12(pool)
 | |
| 	y6.Mul(fu3, fu3p, pool)
 | |
| 	y6.Conjugate(y6)
 | |
| 
 | |
| 	t0 := newGFp12(pool)
 | |
| 	t0.Square(y6, pool)
 | |
| 	t0.Mul(t0, y4, pool)
 | |
| 	t0.Mul(t0, y5, pool)
 | |
| 	t1.Mul(y3, y5, pool)
 | |
| 	t1.Mul(t1, t0, pool)
 | |
| 	t0.Mul(t0, y2, pool)
 | |
| 	t1.Square(t1, pool)
 | |
| 	t1.Mul(t1, t0, pool)
 | |
| 	t1.Square(t1, pool)
 | |
| 	t0.Mul(t1, y1, pool)
 | |
| 	t1.Mul(t1, y0, pool)
 | |
| 	t0.Square(t0, pool)
 | |
| 	t0.Mul(t0, t1, pool)
 | |
| 
 | |
| 	inv.Put(pool)
 | |
| 	t1.Put(pool)
 | |
| 	t2.Put(pool)
 | |
| 	fp.Put(pool)
 | |
| 	fp2.Put(pool)
 | |
| 	fp3.Put(pool)
 | |
| 	fu.Put(pool)
 | |
| 	fu2.Put(pool)
 | |
| 	fu3.Put(pool)
 | |
| 	fu2p.Put(pool)
 | |
| 	fu3p.Put(pool)
 | |
| 	y0.Put(pool)
 | |
| 	y1.Put(pool)
 | |
| 	y2.Put(pool)
 | |
| 	y3.Put(pool)
 | |
| 	y4.Put(pool)
 | |
| 	y5.Put(pool)
 | |
| 	y6.Put(pool)
 | |
| 
 | |
| 	return t0
 | |
| }
 | |
| 
 | |
| func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
 | |
| 	e := miller(a, b, pool)
 | |
| 	ret := finalExponentiation(e, pool)
 | |
| 	e.Put(pool)
 | |
| 
 | |
| 	if a.IsInfinity() || b.IsInfinity() {
 | |
| 		ret.SetOne()
 | |
| 	}
 | |
| 	return ret
 | |
| }
 |