239 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			239 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| package bn256
 | |
| 
 | |
| import (
 | |
| 	"math/big"
 | |
| )
 | |
| 
 | |
| // curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian
 | |
| // form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
 | |
| type curvePoint struct {
 | |
| 	x, y, z, t gfP
 | |
| }
 | |
| 
 | |
| var curveB = newGFp(3)
 | |
| 
 | |
| // curveGen is the generator of G₁.
 | |
| var curveGen = &curvePoint{
 | |
| 	x: *newGFp(1),
 | |
| 	y: *newGFp(2),
 | |
| 	z: *newGFp(1),
 | |
| 	t: *newGFp(1),
 | |
| }
 | |
| 
 | |
| func (c *curvePoint) String() string {
 | |
| 	c.MakeAffine()
 | |
| 	x, y := &gfP{}, &gfP{}
 | |
| 	montDecode(x, &c.x)
 | |
| 	montDecode(y, &c.y)
 | |
| 	return "(" + x.String() + ", " + y.String() + ")"
 | |
| }
 | |
| 
 | |
| func (c *curvePoint) Set(a *curvePoint) {
 | |
| 	c.x.Set(&a.x)
 | |
| 	c.y.Set(&a.y)
 | |
| 	c.z.Set(&a.z)
 | |
| 	c.t.Set(&a.t)
 | |
| }
 | |
| 
 | |
| // IsOnCurve returns true iff c is on the curve.
 | |
| func (c *curvePoint) IsOnCurve() bool {
 | |
| 	c.MakeAffine()
 | |
| 	if c.IsInfinity() {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	y2, x3 := &gfP{}, &gfP{}
 | |
| 	gfpMul(y2, &c.y, &c.y)
 | |
| 	gfpMul(x3, &c.x, &c.x)
 | |
| 	gfpMul(x3, x3, &c.x)
 | |
| 	gfpAdd(x3, x3, curveB)
 | |
| 
 | |
| 	return *y2 == *x3
 | |
| }
 | |
| 
 | |
| func (c *curvePoint) SetInfinity() {
 | |
| 	c.x = gfP{0}
 | |
| 	c.y = *newGFp(1)
 | |
| 	c.z = gfP{0}
 | |
| 	c.t = gfP{0}
 | |
| }
 | |
| 
 | |
| func (c *curvePoint) IsInfinity() bool {
 | |
| 	return c.z == gfP{0}
 | |
| }
 | |
| 
 | |
| func (c *curvePoint) Add(a, b *curvePoint) {
 | |
| 	if a.IsInfinity() {
 | |
| 		c.Set(b)
 | |
| 		return
 | |
| 	}
 | |
| 	if b.IsInfinity() {
 | |
| 		c.Set(a)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
 | |
| 
 | |
| 	// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
 | |
| 	// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
 | |
| 	// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
 | |
| 	z12, z22 := &gfP{}, &gfP{}
 | |
| 	gfpMul(z12, &a.z, &a.z)
 | |
| 	gfpMul(z22, &b.z, &b.z)
 | |
| 
 | |
| 	u1, u2 := &gfP{}, &gfP{}
 | |
| 	gfpMul(u1, &a.x, z22)
 | |
| 	gfpMul(u2, &b.x, z12)
 | |
| 
 | |
| 	t, s1 := &gfP{}, &gfP{}
 | |
| 	gfpMul(t, &b.z, z22)
 | |
| 	gfpMul(s1, &a.y, t)
 | |
| 
 | |
| 	s2 := &gfP{}
 | |
| 	gfpMul(t, &a.z, z12)
 | |
| 	gfpMul(s2, &b.y, t)
 | |
| 
 | |
| 	// Compute x = (2h)²(s²-u1-u2)
 | |
| 	// where s = (s2-s1)/(u2-u1) is the slope of the line through
 | |
| 	// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
 | |
| 	// This is also:
 | |
| 	// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
 | |
| 	//                        = r² - j - 2v
 | |
| 	// with the notations below.
 | |
| 	h := &gfP{}
 | |
| 	gfpSub(h, u2, u1)
 | |
| 	xEqual := *h == gfP{0}
 | |
| 
 | |
| 	gfpAdd(t, h, h)
 | |
| 	// i = 4h²
 | |
| 	i := &gfP{}
 | |
| 	gfpMul(i, t, t)
 | |
| 	// j = 4h³
 | |
| 	j := &gfP{}
 | |
| 	gfpMul(j, h, i)
 | |
| 
 | |
| 	gfpSub(t, s2, s1)
 | |
| 	yEqual := *t == gfP{0}
 | |
| 	if xEqual && yEqual {
 | |
| 		c.Double(a)
 | |
| 		return
 | |
| 	}
 | |
| 	r := &gfP{}
 | |
| 	gfpAdd(r, t, t)
 | |
| 
 | |
| 	v := &gfP{}
 | |
| 	gfpMul(v, u1, i)
 | |
| 
 | |
| 	// t4 = 4(s2-s1)²
 | |
| 	t4, t6 := &gfP{}, &gfP{}
 | |
| 	gfpMul(t4, r, r)
 | |
| 	gfpAdd(t, v, v)
 | |
| 	gfpSub(t6, t4, j)
 | |
| 
 | |
| 	gfpSub(&c.x, t6, t)
 | |
| 
 | |
| 	// Set y = -(2h)³(s1 + s*(x/4h²-u1))
 | |
| 	// This is also
 | |
| 	// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
 | |
| 	gfpSub(t, v, &c.x) // t7
 | |
| 	gfpMul(t4, s1, j)  // t8
 | |
| 	gfpAdd(t6, t4, t4) // t9
 | |
| 	gfpMul(t4, r, t)   // t10
 | |
| 	gfpSub(&c.y, t4, t6)
 | |
| 
 | |
| 	// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
 | |
| 	gfpAdd(t, &a.z, &b.z) // t11
 | |
| 	gfpMul(t4, t, t)      // t12
 | |
| 	gfpSub(t, t4, z12)    // t13
 | |
| 	gfpSub(t4, t, z22)    // t14
 | |
| 	gfpMul(&c.z, t4, h)
 | |
| }
 | |
| 
 | |
| func (c *curvePoint) Double(a *curvePoint) {
 | |
| 	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
 | |
| 	A, B, C := &gfP{}, &gfP{}, &gfP{}
 | |
| 	gfpMul(A, &a.x, &a.x)
 | |
| 	gfpMul(B, &a.y, &a.y)
 | |
| 	gfpMul(C, B, B)
 | |
| 
 | |
| 	t, t2 := &gfP{}, &gfP{}
 | |
| 	gfpAdd(t, &a.x, B)
 | |
| 	gfpMul(t2, t, t)
 | |
| 	gfpSub(t, t2, A)
 | |
| 	gfpSub(t2, t, C)
 | |
| 
 | |
| 	d, e, f := &gfP{}, &gfP{}, &gfP{}
 | |
| 	gfpAdd(d, t2, t2)
 | |
| 	gfpAdd(t, A, A)
 | |
| 	gfpAdd(e, t, A)
 | |
| 	gfpMul(f, e, e)
 | |
| 
 | |
| 	gfpAdd(t, d, d)
 | |
| 	gfpSub(&c.x, f, t)
 | |
| 
 | |
| 	gfpMul(&c.z, &a.y, &a.z)
 | |
| 	gfpAdd(&c.z, &c.z, &c.z)
 | |
| 
 | |
| 	gfpAdd(t, C, C)
 | |
| 	gfpAdd(t2, t, t)
 | |
| 	gfpAdd(t, t2, t2)
 | |
| 	gfpSub(&c.y, d, &c.x)
 | |
| 	gfpMul(t2, e, &c.y)
 | |
| 	gfpSub(&c.y, t2, t)
 | |
| }
 | |
| 
 | |
| func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
 | |
| 	precomp := [1 << 2]*curvePoint{nil, {}, {}, {}}
 | |
| 	precomp[1].Set(a)
 | |
| 	precomp[2].Set(a)
 | |
| 	gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3)
 | |
| 	precomp[3].Add(precomp[1], precomp[2])
 | |
| 
 | |
| 	multiScalar := curveLattice.Multi(scalar)
 | |
| 
 | |
| 	sum := &curvePoint{}
 | |
| 	sum.SetInfinity()
 | |
| 	t := &curvePoint{}
 | |
| 
 | |
| 	for i := len(multiScalar) - 1; i >= 0; i-- {
 | |
| 		t.Double(sum)
 | |
| 		if multiScalar[i] == 0 {
 | |
| 			sum.Set(t)
 | |
| 		} else {
 | |
| 			sum.Add(t, precomp[multiScalar[i]])
 | |
| 		}
 | |
| 	}
 | |
| 	c.Set(sum)
 | |
| }
 | |
| 
 | |
| func (c *curvePoint) MakeAffine() {
 | |
| 	if c.z == *newGFp(1) {
 | |
| 		return
 | |
| 	} else if c.z == *newGFp(0) {
 | |
| 		c.x = gfP{0}
 | |
| 		c.y = *newGFp(1)
 | |
| 		c.t = gfP{0}
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	zInv := &gfP{}
 | |
| 	zInv.Invert(&c.z)
 | |
| 
 | |
| 	t, zInv2 := &gfP{}, &gfP{}
 | |
| 	gfpMul(t, &c.y, zInv)
 | |
| 	gfpMul(zInv2, zInv, zInv)
 | |
| 
 | |
| 	gfpMul(&c.x, &c.x, zInv2)
 | |
| 	gfpMul(&c.y, t, zInv2)
 | |
| 
 | |
| 	c.z = *newGFp(1)
 | |
| 	c.t = *newGFp(1)
 | |
| }
 | |
| 
 | |
| func (c *curvePoint) Neg(a *curvePoint) {
 | |
| 	c.x.Set(&a.x)
 | |
| 	gfpNeg(&c.y, &a.y)
 | |
| 	c.z.Set(&a.z)
 | |
| 	c.t = gfP{0}
 | |
| }
 |