496 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			496 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Package bn256 implements a particular bilinear group at the 128-bit security
 | |
| // level.
 | |
| //
 | |
| // Bilinear groups are the basis of many of the new cryptographic protocols that
 | |
| // have been proposed over the past decade. They consist of a triplet of groups
 | |
| // (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ
 | |
| // is a generator of the respective group). That function is called a pairing
 | |
| // function.
 | |
| //
 | |
| // This package specifically implements the Optimal Ate pairing over a 256-bit
 | |
| // Barreto-Naehrig curve as described in
 | |
| // http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is not
 | |
| // compatible with the implementation described in that paper, as different
 | |
| // parameters are chosen.
 | |
| //
 | |
| // (This package previously claimed to operate at a 128-bit security level.
 | |
| // However, recent improvements in attacks mean that is no longer true. See
 | |
| // https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
 | |
| package bn256
 | |
| 
 | |
| import (
 | |
| 	"crypto/rand"
 | |
| 	"errors"
 | |
| 	"io"
 | |
| 	"math/big"
 | |
| )
 | |
| 
 | |
| func randomK(r io.Reader) (k *big.Int, err error) {
 | |
| 	for {
 | |
| 		k, err = rand.Int(r, Order)
 | |
| 		if err != nil || k.Sign() > 0 {
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // G1 is an abstract cyclic group. The zero value is suitable for use as the
 | |
| // output of an operation, but cannot be used as an input.
 | |
| type G1 struct {
 | |
| 	p *curvePoint
 | |
| }
 | |
| 
 | |
| // RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
 | |
| func RandomG1(r io.Reader) (*big.Int, *G1, error) {
 | |
| 	k, err := randomK(r)
 | |
| 	if err != nil {
 | |
| 		return nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	return k, new(G1).ScalarBaseMult(k), nil
 | |
| }
 | |
| 
 | |
| func (g *G1) String() string {
 | |
| 	return "bn256.G1" + g.p.String()
 | |
| }
 | |
| 
 | |
| // ScalarBaseMult sets e to g*k where g is the generator of the group and then
 | |
| // returns e.
 | |
| func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &curvePoint{}
 | |
| 	}
 | |
| 	e.p.Mul(curveGen, k)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // ScalarMult sets e to a*k and then returns e.
 | |
| func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &curvePoint{}
 | |
| 	}
 | |
| 	e.p.Mul(a.p, k)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Add sets e to a+b and then returns e.
 | |
| func (e *G1) Add(a, b *G1) *G1 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &curvePoint{}
 | |
| 	}
 | |
| 	e.p.Add(a.p, b.p)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Neg sets e to -a and then returns e.
 | |
| func (e *G1) Neg(a *G1) *G1 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &curvePoint{}
 | |
| 	}
 | |
| 	e.p.Neg(a.p)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Set sets e to a and then returns e.
 | |
| func (e *G1) Set(a *G1) *G1 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &curvePoint{}
 | |
| 	}
 | |
| 	e.p.Set(a.p)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Marshal converts e to a byte slice.
 | |
| func (e *G1) Marshal() []byte {
 | |
| 	// Each value is a 256-bit number.
 | |
| 	const numBytes = 256 / 8
 | |
| 
 | |
| 	if e.p == nil {
 | |
| 		e.p = &curvePoint{}
 | |
| 	}
 | |
| 
 | |
| 	e.p.MakeAffine()
 | |
| 	ret := make([]byte, numBytes*2)
 | |
| 	if e.p.IsInfinity() {
 | |
| 		return ret
 | |
| 	}
 | |
| 	temp := &gfP{}
 | |
| 
 | |
| 	montDecode(temp, &e.p.x)
 | |
| 	temp.Marshal(ret)
 | |
| 	montDecode(temp, &e.p.y)
 | |
| 	temp.Marshal(ret[numBytes:])
 | |
| 
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // Unmarshal sets e to the result of converting the output of Marshal back into
 | |
| // a group element and then returns e.
 | |
| func (e *G1) Unmarshal(m []byte) ([]byte, error) {
 | |
| 	// Each value is a 256-bit number.
 | |
| 	const numBytes = 256 / 8
 | |
| 	if len(m) < 2*numBytes {
 | |
| 		return nil, errors.New("bn256: not enough data")
 | |
| 	}
 | |
| 	// Unmarshal the points and check their caps
 | |
| 	if e.p == nil {
 | |
| 		e.p = &curvePoint{}
 | |
| 	} else {
 | |
| 		e.p.x, e.p.y = gfP{0}, gfP{0}
 | |
| 	}
 | |
| 	var err error
 | |
| 	if err = e.p.x.Unmarshal(m); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.y.Unmarshal(m[numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	// Encode into Montgomery form and ensure it's on the curve
 | |
| 	montEncode(&e.p.x, &e.p.x)
 | |
| 	montEncode(&e.p.y, &e.p.y)
 | |
| 
 | |
| 	zero := gfP{0}
 | |
| 	if e.p.x == zero && e.p.y == zero {
 | |
| 		// This is the point at infinity.
 | |
| 		e.p.y = *newGFp(1)
 | |
| 		e.p.z = gfP{0}
 | |
| 		e.p.t = gfP{0}
 | |
| 	} else {
 | |
| 		e.p.z = *newGFp(1)
 | |
| 		e.p.t = *newGFp(1)
 | |
| 
 | |
| 		if !e.p.IsOnCurve() {
 | |
| 			return nil, errors.New("bn256: malformed point")
 | |
| 		}
 | |
| 	}
 | |
| 	return m[2*numBytes:], nil
 | |
| }
 | |
| 
 | |
| // G2 is an abstract cyclic group. The zero value is suitable for use as the
 | |
| // output of an operation, but cannot be used as an input.
 | |
| type G2 struct {
 | |
| 	p *twistPoint
 | |
| }
 | |
| 
 | |
| // RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
 | |
| func RandomG2(r io.Reader) (*big.Int, *G2, error) {
 | |
| 	k, err := randomK(r)
 | |
| 	if err != nil {
 | |
| 		return nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	return k, new(G2).ScalarBaseMult(k), nil
 | |
| }
 | |
| 
 | |
| func (e *G2) String() string {
 | |
| 	return "bn256.G2" + e.p.String()
 | |
| }
 | |
| 
 | |
| // ScalarBaseMult sets e to g*k where g is the generator of the group and then
 | |
| // returns out.
 | |
| func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &twistPoint{}
 | |
| 	}
 | |
| 	e.p.Mul(twistGen, k)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // ScalarMult sets e to a*k and then returns e.
 | |
| func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &twistPoint{}
 | |
| 	}
 | |
| 	e.p.Mul(a.p, k)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Add sets e to a+b and then returns e.
 | |
| func (e *G2) Add(a, b *G2) *G2 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &twistPoint{}
 | |
| 	}
 | |
| 	e.p.Add(a.p, b.p)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Neg sets e to -a and then returns e.
 | |
| func (e *G2) Neg(a *G2) *G2 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &twistPoint{}
 | |
| 	}
 | |
| 	e.p.Neg(a.p)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Set sets e to a and then returns e.
 | |
| func (e *G2) Set(a *G2) *G2 {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &twistPoint{}
 | |
| 	}
 | |
| 	e.p.Set(a.p)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Marshal converts e into a byte slice.
 | |
| func (e *G2) Marshal() []byte {
 | |
| 	// Each value is a 256-bit number.
 | |
| 	const numBytes = 256 / 8
 | |
| 
 | |
| 	if e.p == nil {
 | |
| 		e.p = &twistPoint{}
 | |
| 	}
 | |
| 
 | |
| 	e.p.MakeAffine()
 | |
| 	ret := make([]byte, numBytes*4)
 | |
| 	if e.p.IsInfinity() {
 | |
| 		return ret
 | |
| 	}
 | |
| 	temp := &gfP{}
 | |
| 
 | |
| 	montDecode(temp, &e.p.x.x)
 | |
| 	temp.Marshal(ret)
 | |
| 	montDecode(temp, &e.p.x.y)
 | |
| 	temp.Marshal(ret[numBytes:])
 | |
| 	montDecode(temp, &e.p.y.x)
 | |
| 	temp.Marshal(ret[2*numBytes:])
 | |
| 	montDecode(temp, &e.p.y.y)
 | |
| 	temp.Marshal(ret[3*numBytes:])
 | |
| 
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // Unmarshal sets e to the result of converting the output of Marshal back into
 | |
| // a group element and then returns e.
 | |
| func (e *G2) Unmarshal(m []byte) ([]byte, error) {
 | |
| 	// Each value is a 256-bit number.
 | |
| 	const numBytes = 256 / 8
 | |
| 	if len(m) < 4*numBytes {
 | |
| 		return nil, errors.New("bn256: not enough data")
 | |
| 	}
 | |
| 	// Unmarshal the points and check their caps
 | |
| 	if e.p == nil {
 | |
| 		e.p = &twistPoint{}
 | |
| 	}
 | |
| 	var err error
 | |
| 	if err = e.p.x.x.Unmarshal(m); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	// Encode into Montgomery form and ensure it's on the curve
 | |
| 	montEncode(&e.p.x.x, &e.p.x.x)
 | |
| 	montEncode(&e.p.x.y, &e.p.x.y)
 | |
| 	montEncode(&e.p.y.x, &e.p.y.x)
 | |
| 	montEncode(&e.p.y.y, &e.p.y.y)
 | |
| 
 | |
| 	if e.p.x.IsZero() && e.p.y.IsZero() {
 | |
| 		// This is the point at infinity.
 | |
| 		e.p.y.SetOne()
 | |
| 		e.p.z.SetZero()
 | |
| 		e.p.t.SetZero()
 | |
| 	} else {
 | |
| 		e.p.z.SetOne()
 | |
| 		e.p.t.SetOne()
 | |
| 
 | |
| 		if !e.p.IsOnCurve() {
 | |
| 			return nil, errors.New("bn256: malformed point")
 | |
| 		}
 | |
| 	}
 | |
| 	return m[4*numBytes:], nil
 | |
| }
 | |
| 
 | |
| // GT is an abstract cyclic group. The zero value is suitable for use as the
 | |
| // output of an operation, but cannot be used as an input.
 | |
| type GT struct {
 | |
| 	p *gfP12
 | |
| }
 | |
| 
 | |
| // Pair calculates an Optimal Ate pairing.
 | |
| func Pair(g1 *G1, g2 *G2) *GT {
 | |
| 	return >{optimalAte(g2.p, g1.p)}
 | |
| }
 | |
| 
 | |
| // PairingCheck calculates the Optimal Ate pairing for a set of points.
 | |
| func PairingCheck(a []*G1, b []*G2) bool {
 | |
| 	acc := new(gfP12)
 | |
| 	acc.SetOne()
 | |
| 
 | |
| 	for i := 0; i < len(a); i++ {
 | |
| 		if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
 | |
| 			continue
 | |
| 		}
 | |
| 		acc.Mul(acc, miller(b[i].p, a[i].p))
 | |
| 	}
 | |
| 	return finalExponentiation(acc).IsOne()
 | |
| }
 | |
| 
 | |
| // Miller applies Miller's algorithm, which is a bilinear function from the
 | |
| // source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1,
 | |
| // g2).
 | |
| func Miller(g1 *G1, g2 *G2) *GT {
 | |
| 	return >{miller(g2.p, g1.p)}
 | |
| }
 | |
| 
 | |
| func (g *GT) String() string {
 | |
| 	return "bn256.GT" + g.p.String()
 | |
| }
 | |
| 
 | |
| // ScalarMult sets e to a*k and then returns e.
 | |
| func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &gfP12{}
 | |
| 	}
 | |
| 	e.p.Exp(a.p, k)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Add sets e to a+b and then returns e.
 | |
| func (e *GT) Add(a, b *GT) *GT {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &gfP12{}
 | |
| 	}
 | |
| 	e.p.Mul(a.p, b.p)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Neg sets e to -a and then returns e.
 | |
| func (e *GT) Neg(a *GT) *GT {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &gfP12{}
 | |
| 	}
 | |
| 	e.p.Conjugate(a.p)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Set sets e to a and then returns e.
 | |
| func (e *GT) Set(a *GT) *GT {
 | |
| 	if e.p == nil {
 | |
| 		e.p = &gfP12{}
 | |
| 	}
 | |
| 	e.p.Set(a.p)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Finalize is a linear function from F_p^12 to GT.
 | |
| func (e *GT) Finalize() *GT {
 | |
| 	ret := finalExponentiation(e.p)
 | |
| 	e.p.Set(ret)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Marshal converts e into a byte slice.
 | |
| func (e *GT) Marshal() []byte {
 | |
| 	// Each value is a 256-bit number.
 | |
| 	const numBytes = 256 / 8
 | |
| 
 | |
| 	if e.p == nil {
 | |
| 		e.p = &gfP12{}
 | |
| 		e.p.SetOne()
 | |
| 	}
 | |
| 
 | |
| 	ret := make([]byte, numBytes*12)
 | |
| 	temp := &gfP{}
 | |
| 
 | |
| 	montDecode(temp, &e.p.x.x.x)
 | |
| 	temp.Marshal(ret)
 | |
| 	montDecode(temp, &e.p.x.x.y)
 | |
| 	temp.Marshal(ret[numBytes:])
 | |
| 	montDecode(temp, &e.p.x.y.x)
 | |
| 	temp.Marshal(ret[2*numBytes:])
 | |
| 	montDecode(temp, &e.p.x.y.y)
 | |
| 	temp.Marshal(ret[3*numBytes:])
 | |
| 	montDecode(temp, &e.p.x.z.x)
 | |
| 	temp.Marshal(ret[4*numBytes:])
 | |
| 	montDecode(temp, &e.p.x.z.y)
 | |
| 	temp.Marshal(ret[5*numBytes:])
 | |
| 	montDecode(temp, &e.p.y.x.x)
 | |
| 	temp.Marshal(ret[6*numBytes:])
 | |
| 	montDecode(temp, &e.p.y.x.y)
 | |
| 	temp.Marshal(ret[7*numBytes:])
 | |
| 	montDecode(temp, &e.p.y.y.x)
 | |
| 	temp.Marshal(ret[8*numBytes:])
 | |
| 	montDecode(temp, &e.p.y.y.y)
 | |
| 	temp.Marshal(ret[9*numBytes:])
 | |
| 	montDecode(temp, &e.p.y.z.x)
 | |
| 	temp.Marshal(ret[10*numBytes:])
 | |
| 	montDecode(temp, &e.p.y.z.y)
 | |
| 	temp.Marshal(ret[11*numBytes:])
 | |
| 
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // Unmarshal sets e to the result of converting the output of Marshal back into
 | |
| // a group element and then returns e.
 | |
| func (e *GT) Unmarshal(m []byte) ([]byte, error) {
 | |
| 	// Each value is a 256-bit number.
 | |
| 	const numBytes = 256 / 8
 | |
| 
 | |
| 	if len(m) < 12*numBytes {
 | |
| 		return nil, errors.New("bn256: not enough data")
 | |
| 	}
 | |
| 
 | |
| 	if e.p == nil {
 | |
| 		e.p = &gfP12{}
 | |
| 	}
 | |
| 
 | |
| 	var err error
 | |
| 	if err = e.p.x.x.x.Unmarshal(m); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	montEncode(&e.p.x.x.x, &e.p.x.x.x)
 | |
| 	montEncode(&e.p.x.x.y, &e.p.x.x.y)
 | |
| 	montEncode(&e.p.x.y.x, &e.p.x.y.x)
 | |
| 	montEncode(&e.p.x.y.y, &e.p.x.y.y)
 | |
| 	montEncode(&e.p.x.z.x, &e.p.x.z.x)
 | |
| 	montEncode(&e.p.x.z.y, &e.p.x.z.y)
 | |
| 	montEncode(&e.p.y.x.x, &e.p.y.x.x)
 | |
| 	montEncode(&e.p.y.x.y, &e.p.y.x.y)
 | |
| 	montEncode(&e.p.y.y.x, &e.p.y.y.x)
 | |
| 	montEncode(&e.p.y.y.y, &e.p.y.y.y)
 | |
| 	montEncode(&e.p.y.z.x, &e.p.y.z.x)
 | |
| 	montEncode(&e.p.y.z.y, &e.p.y.z.y)
 | |
| 
 | |
| 	return m[12*numBytes:], nil
 | |
| }
 |