636 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			636 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2015 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package p2p
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"crypto/aes"
 | |
| 	"crypto/cipher"
 | |
| 	"crypto/ecdsa"
 | |
| 	"crypto/elliptic"
 | |
| 	"crypto/hmac"
 | |
| 	"crypto/rand"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"hash"
 | |
| 	"io"
 | |
| 	"net"
 | |
| 	"sync"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/crypto"
 | |
| 	"github.com/ethereum/go-ethereum/crypto/ecies"
 | |
| 	"github.com/ethereum/go-ethereum/crypto/secp256k1"
 | |
| 	"github.com/ethereum/go-ethereum/crypto/sha3"
 | |
| 	"github.com/ethereum/go-ethereum/p2p/discover"
 | |
| 	"github.com/ethereum/go-ethereum/rlp"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	maxUint24 = ^uint32(0) >> 8
 | |
| 
 | |
| 	sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
 | |
| 	sigLen = 65 // elliptic S256
 | |
| 	pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
 | |
| 	shaLen = 32 // hash length (for nonce etc)
 | |
| 
 | |
| 	authMsgLen  = sigLen + shaLen + pubLen + shaLen + 1
 | |
| 	authRespLen = pubLen + shaLen + 1
 | |
| 
 | |
| 	eciesBytes     = 65 + 16 + 32
 | |
| 	encAuthMsgLen  = authMsgLen + eciesBytes  // size of the final ECIES payload sent as initiator's handshake
 | |
| 	encAuthRespLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
 | |
| 
 | |
| 	// total timeout for encryption handshake and protocol
 | |
| 	// handshake in both directions.
 | |
| 	handshakeTimeout = 5 * time.Second
 | |
| 
 | |
| 	// This is the timeout for sending the disconnect reason.
 | |
| 	// This is shorter than the usual timeout because we don't want
 | |
| 	// to wait if the connection is known to be bad anyway.
 | |
| 	discWriteTimeout = 1 * time.Second
 | |
| )
 | |
| 
 | |
| // rlpx is the transport protocol used by actual (non-test) connections.
 | |
| // It wraps the frame encoder with locks and read/write deadlines.
 | |
| type rlpx struct {
 | |
| 	fd net.Conn
 | |
| 
 | |
| 	rmu, wmu sync.Mutex
 | |
| 	rw       *rlpxFrameRW
 | |
| }
 | |
| 
 | |
| func newRLPX(fd net.Conn) transport {
 | |
| 	fd.SetDeadline(time.Now().Add(handshakeTimeout))
 | |
| 	return &rlpx{fd: fd}
 | |
| }
 | |
| 
 | |
| func (t *rlpx) ReadMsg() (Msg, error) {
 | |
| 	t.rmu.Lock()
 | |
| 	defer t.rmu.Unlock()
 | |
| 	t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout))
 | |
| 	return t.rw.ReadMsg()
 | |
| }
 | |
| 
 | |
| func (t *rlpx) WriteMsg(msg Msg) error {
 | |
| 	t.wmu.Lock()
 | |
| 	defer t.wmu.Unlock()
 | |
| 	t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout))
 | |
| 	return t.rw.WriteMsg(msg)
 | |
| }
 | |
| 
 | |
| func (t *rlpx) close(err error) {
 | |
| 	t.wmu.Lock()
 | |
| 	defer t.wmu.Unlock()
 | |
| 	// Tell the remote end why we're disconnecting if possible.
 | |
| 	if t.rw != nil {
 | |
| 		if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
 | |
| 			t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout))
 | |
| 			SendItems(t.rw, discMsg, r)
 | |
| 		}
 | |
| 	}
 | |
| 	t.fd.Close()
 | |
| }
 | |
| 
 | |
| // doEncHandshake runs the protocol handshake using authenticated
 | |
| // messages. the protocol handshake is the first authenticated message
 | |
| // and also verifies whether the encryption handshake 'worked' and the
 | |
| // remote side actually provided the right public key.
 | |
| func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) {
 | |
| 	// Writing our handshake happens concurrently, we prefer
 | |
| 	// returning the handshake read error. If the remote side
 | |
| 	// disconnects us early with a valid reason, we should return it
 | |
| 	// as the error so it can be tracked elsewhere.
 | |
| 	werr := make(chan error, 1)
 | |
| 	go func() { werr <- Send(t.rw, handshakeMsg, our) }()
 | |
| 	if their, err = readProtocolHandshake(t.rw, our); err != nil {
 | |
| 		<-werr // make sure the write terminates too
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if err := <-werr; err != nil {
 | |
| 		return nil, fmt.Errorf("write error: %v", err)
 | |
| 	}
 | |
| 	return their, nil
 | |
| }
 | |
| 
 | |
| func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) {
 | |
| 	msg, err := rw.ReadMsg()
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	if msg.Size > baseProtocolMaxMsgSize {
 | |
| 		return nil, fmt.Errorf("message too big")
 | |
| 	}
 | |
| 	if msg.Code == discMsg {
 | |
| 		// Disconnect before protocol handshake is valid according to the
 | |
| 		// spec and we send it ourself if the posthanshake checks fail.
 | |
| 		// We can't return the reason directly, though, because it is echoed
 | |
| 		// back otherwise. Wrap it in a string instead.
 | |
| 		var reason [1]DiscReason
 | |
| 		rlp.Decode(msg.Payload, &reason)
 | |
| 		return nil, reason[0]
 | |
| 	}
 | |
| 	if msg.Code != handshakeMsg {
 | |
| 		return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
 | |
| 	}
 | |
| 	var hs protoHandshake
 | |
| 	if err := msg.Decode(&hs); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	// validate handshake info
 | |
| 	if hs.Version != our.Version {
 | |
| 		return nil, DiscIncompatibleVersion
 | |
| 	}
 | |
| 	if (hs.ID == discover.NodeID{}) {
 | |
| 		return nil, DiscInvalidIdentity
 | |
| 	}
 | |
| 	return &hs, nil
 | |
| }
 | |
| 
 | |
| func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) {
 | |
| 	var (
 | |
| 		sec secrets
 | |
| 		err error
 | |
| 	)
 | |
| 	if dial == nil {
 | |
| 		sec, err = receiverEncHandshake(t.fd, prv, nil)
 | |
| 	} else {
 | |
| 		sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil)
 | |
| 	}
 | |
| 	if err != nil {
 | |
| 		return discover.NodeID{}, err
 | |
| 	}
 | |
| 	t.wmu.Lock()
 | |
| 	t.rw = newRLPXFrameRW(t.fd, sec)
 | |
| 	t.wmu.Unlock()
 | |
| 	return sec.RemoteID, nil
 | |
| }
 | |
| 
 | |
| // encHandshake contains the state of the encryption handshake.
 | |
| type encHandshake struct {
 | |
| 	initiator bool
 | |
| 	remoteID  discover.NodeID
 | |
| 
 | |
| 	remotePub            *ecies.PublicKey  // remote-pubk
 | |
| 	initNonce, respNonce []byte            // nonce
 | |
| 	randomPrivKey        *ecies.PrivateKey // ecdhe-random
 | |
| 	remoteRandomPub      *ecies.PublicKey  // ecdhe-random-pubk
 | |
| }
 | |
| 
 | |
| // secrets represents the connection secrets
 | |
| // which are negotiated during the encryption handshake.
 | |
| type secrets struct {
 | |
| 	RemoteID              discover.NodeID
 | |
| 	AES, MAC              []byte
 | |
| 	EgressMAC, IngressMAC hash.Hash
 | |
| 	Token                 []byte
 | |
| }
 | |
| 
 | |
| // secrets is called after the handshake is completed.
 | |
| // It extracts the connection secrets from the handshake values.
 | |
| func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
 | |
| 	ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
 | |
| 	if err != nil {
 | |
| 		return secrets{}, err
 | |
| 	}
 | |
| 
 | |
| 	// derive base secrets from ephemeral key agreement
 | |
| 	sharedSecret := crypto.Sha3(ecdheSecret, crypto.Sha3(h.respNonce, h.initNonce))
 | |
| 	aesSecret := crypto.Sha3(ecdheSecret, sharedSecret)
 | |
| 	s := secrets{
 | |
| 		RemoteID: h.remoteID,
 | |
| 		AES:      aesSecret,
 | |
| 		MAC:      crypto.Sha3(ecdheSecret, aesSecret),
 | |
| 		Token:    crypto.Sha3(sharedSecret),
 | |
| 	}
 | |
| 
 | |
| 	// setup sha3 instances for the MACs
 | |
| 	mac1 := sha3.NewKeccak256()
 | |
| 	mac1.Write(xor(s.MAC, h.respNonce))
 | |
| 	mac1.Write(auth)
 | |
| 	mac2 := sha3.NewKeccak256()
 | |
| 	mac2.Write(xor(s.MAC, h.initNonce))
 | |
| 	mac2.Write(authResp)
 | |
| 	if h.initiator {
 | |
| 		s.EgressMAC, s.IngressMAC = mac1, mac2
 | |
| 	} else {
 | |
| 		s.EgressMAC, s.IngressMAC = mac2, mac1
 | |
| 	}
 | |
| 
 | |
| 	return s, nil
 | |
| }
 | |
| 
 | |
| func (h *encHandshake) ecdhShared(prv *ecdsa.PrivateKey) ([]byte, error) {
 | |
| 	return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
 | |
| }
 | |
| 
 | |
| // initiatorEncHandshake negotiates a session token on conn.
 | |
| // it should be called on the dialing side of the connection.
 | |
| //
 | |
| // prv is the local client's private key.
 | |
| // token is the token from a previous session with this node.
 | |
| func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
 | |
| 	h, err := newInitiatorHandshake(remoteID)
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	auth, err := h.authMsg(prv, token)
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	if _, err = conn.Write(auth); err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 
 | |
| 	response := make([]byte, encAuthRespLen)
 | |
| 	if _, err = io.ReadFull(conn, response); err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	if err := h.decodeAuthResp(response, prv); err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	return h.secrets(auth, response)
 | |
| }
 | |
| 
 | |
| func newInitiatorHandshake(remoteID discover.NodeID) (*encHandshake, error) {
 | |
| 	rpub, err := remoteID.Pubkey()
 | |
| 	if err != nil {
 | |
| 		return nil, fmt.Errorf("bad remoteID: %v", err)
 | |
| 	}
 | |
| 	// generate random initiator nonce
 | |
| 	n := make([]byte, shaLen)
 | |
| 	if _, err := rand.Read(n); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	// generate random keypair to use for signing
 | |
| 	randpriv, err := ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	h := &encHandshake{
 | |
| 		initiator:     true,
 | |
| 		remoteID:      remoteID,
 | |
| 		remotePub:     ecies.ImportECDSAPublic(rpub),
 | |
| 		initNonce:     n,
 | |
| 		randomPrivKey: randpriv,
 | |
| 	}
 | |
| 	return h, nil
 | |
| }
 | |
| 
 | |
| // authMsg creates an encrypted initiator handshake message.
 | |
| func (h *encHandshake) authMsg(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
 | |
| 	var tokenFlag byte
 | |
| 	if token == nil {
 | |
| 		// no session token found means we need to generate shared secret.
 | |
| 		// ecies shared secret is used as initial session token for new peers
 | |
| 		// generate shared key from prv and remote pubkey
 | |
| 		var err error
 | |
| 		if token, err = h.ecdhShared(prv); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 	} else {
 | |
| 		// for known peers, we use stored token from the previous session
 | |
| 		tokenFlag = 0x01
 | |
| 	}
 | |
| 
 | |
| 	// sign known message:
 | |
| 	//   ecdh-shared-secret^nonce for new peers
 | |
| 	//   token^nonce for old peers
 | |
| 	signed := xor(token, h.initNonce)
 | |
| 	signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	// encode auth message
 | |
| 	// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
 | |
| 	msg := make([]byte, authMsgLen)
 | |
| 	n := copy(msg, signature)
 | |
| 	n += copy(msg[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey)))
 | |
| 	n += copy(msg[n:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
 | |
| 	n += copy(msg[n:], h.initNonce)
 | |
| 	msg[n] = tokenFlag
 | |
| 
 | |
| 	// encrypt auth message using remote-pubk
 | |
| 	return ecies.Encrypt(rand.Reader, h.remotePub, msg, nil, nil)
 | |
| }
 | |
| 
 | |
| // decodeAuthResp decode an encrypted authentication response message.
 | |
| func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error {
 | |
| 	msg, err := crypto.Decrypt(prv, auth)
 | |
| 	if err != nil {
 | |
| 		return fmt.Errorf("could not decrypt auth response (%v)", err)
 | |
| 	}
 | |
| 	h.respNonce = msg[pubLen : pubLen+shaLen]
 | |
| 	h.remoteRandomPub, err = importPublicKey(msg[:pubLen])
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	// ignore token flag for now
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // receiverEncHandshake negotiates a session token on conn.
 | |
| // it should be called on the listening side of the connection.
 | |
| //
 | |
| // prv is the local client's private key.
 | |
| // token is the token from a previous session with this node.
 | |
| func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
 | |
| 	// read remote auth sent by initiator.
 | |
| 	auth := make([]byte, encAuthMsgLen)
 | |
| 	if _, err := io.ReadFull(conn, auth); err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	h, err := decodeAuthMsg(prv, token, auth)
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 
 | |
| 	// send auth response
 | |
| 	resp, err := h.authResp(prv, token)
 | |
| 	if err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 	if _, err = conn.Write(resp); err != nil {
 | |
| 		return s, err
 | |
| 	}
 | |
| 
 | |
| 	return h.secrets(auth, resp)
 | |
| }
 | |
| 
 | |
| func decodeAuthMsg(prv *ecdsa.PrivateKey, token []byte, auth []byte) (*encHandshake, error) {
 | |
| 	var err error
 | |
| 	h := new(encHandshake)
 | |
| 	// generate random keypair for session
 | |
| 	h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	// generate random nonce
 | |
| 	h.respNonce = make([]byte, shaLen)
 | |
| 	if _, err = rand.Read(h.respNonce); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	msg, err := crypto.Decrypt(prv, auth)
 | |
| 	if err != nil {
 | |
| 		return nil, fmt.Errorf("could not decrypt auth message (%v)", err)
 | |
| 	}
 | |
| 
 | |
| 	// decode message parameters
 | |
| 	// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
 | |
| 	h.initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
 | |
| 	copy(h.remoteID[:], msg[sigLen+shaLen:sigLen+shaLen+pubLen])
 | |
| 	rpub, err := h.remoteID.Pubkey()
 | |
| 	if err != nil {
 | |
| 		return nil, fmt.Errorf("bad remoteID: %#v", err)
 | |
| 	}
 | |
| 	h.remotePub = ecies.ImportECDSAPublic(rpub)
 | |
| 
 | |
| 	// recover remote random pubkey from signed message.
 | |
| 	if token == nil {
 | |
| 		// TODO: it is an error if the initiator has a token and we don't. check that.
 | |
| 
 | |
| 		// no session token means we need to generate shared secret.
 | |
| 		// ecies shared secret is used as initial session token for new peers.
 | |
| 		// generate shared key from prv and remote pubkey.
 | |
| 		if token, err = h.ecdhShared(prv); err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 	}
 | |
| 	signedMsg := xor(token, h.initNonce)
 | |
| 	remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg[:sigLen])
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	// validate the sha3 of recovered pubkey
 | |
| 	remoteRandomPubMAC := msg[sigLen : sigLen+shaLen]
 | |
| 	shaRemoteRandomPub := crypto.Sha3(remoteRandomPub[1:])
 | |
| 	if !bytes.Equal(remoteRandomPubMAC, shaRemoteRandomPub) {
 | |
| 		return nil, fmt.Errorf("sha3 of recovered ephemeral pubkey does not match checksum in auth message")
 | |
| 	}
 | |
| 
 | |
| 	h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
 | |
| 	return h, nil
 | |
| }
 | |
| 
 | |
| // authResp generates the encrypted authentication response message.
 | |
| func (h *encHandshake) authResp(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
 | |
| 	// responder auth message
 | |
| 	// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
 | |
| 	resp := make([]byte, authRespLen)
 | |
| 	n := copy(resp, exportPubkey(&h.randomPrivKey.PublicKey))
 | |
| 	n += copy(resp[n:], h.respNonce)
 | |
| 	if token == nil {
 | |
| 		resp[n] = 0
 | |
| 	} else {
 | |
| 		resp[n] = 1
 | |
| 	}
 | |
| 	// encrypt using remote-pubk
 | |
| 	return ecies.Encrypt(rand.Reader, h.remotePub, resp, nil, nil)
 | |
| }
 | |
| 
 | |
| // importPublicKey unmarshals 512 bit public keys.
 | |
| func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
 | |
| 	var pubKey65 []byte
 | |
| 	switch len(pubKey) {
 | |
| 	case 64:
 | |
| 		// add 'uncompressed key' flag
 | |
| 		pubKey65 = append([]byte{0x04}, pubKey...)
 | |
| 	case 65:
 | |
| 		pubKey65 = pubKey
 | |
| 	default:
 | |
| 		return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
 | |
| 	}
 | |
| 	// TODO: fewer pointless conversions
 | |
| 	return ecies.ImportECDSAPublic(crypto.ToECDSAPub(pubKey65)), nil
 | |
| }
 | |
| 
 | |
| func exportPubkey(pub *ecies.PublicKey) []byte {
 | |
| 	if pub == nil {
 | |
| 		panic("nil pubkey")
 | |
| 	}
 | |
| 	return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
 | |
| }
 | |
| 
 | |
| func xor(one, other []byte) (xor []byte) {
 | |
| 	xor = make([]byte, len(one))
 | |
| 	for i := 0; i < len(one); i++ {
 | |
| 		xor[i] = one[i] ^ other[i]
 | |
| 	}
 | |
| 	return xor
 | |
| }
 | |
| 
 | |
| var (
 | |
| 	// this is used in place of actual frame header data.
 | |
| 	// TODO: replace this when Msg contains the protocol type code.
 | |
| 	zeroHeader = []byte{0xC2, 0x80, 0x80}
 | |
| 	// sixteen zero bytes
 | |
| 	zero16 = make([]byte, 16)
 | |
| )
 | |
| 
 | |
| // rlpxFrameRW implements a simplified version of RLPx framing.
 | |
| // chunked messages are not supported and all headers are equal to
 | |
| // zeroHeader.
 | |
| //
 | |
| // rlpxFrameRW is not safe for concurrent use from multiple goroutines.
 | |
| type rlpxFrameRW struct {
 | |
| 	conn io.ReadWriter
 | |
| 	enc  cipher.Stream
 | |
| 	dec  cipher.Stream
 | |
| 
 | |
| 	macCipher  cipher.Block
 | |
| 	egressMAC  hash.Hash
 | |
| 	ingressMAC hash.Hash
 | |
| }
 | |
| 
 | |
| func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
 | |
| 	macc, err := aes.NewCipher(s.MAC)
 | |
| 	if err != nil {
 | |
| 		panic("invalid MAC secret: " + err.Error())
 | |
| 	}
 | |
| 	encc, err := aes.NewCipher(s.AES)
 | |
| 	if err != nil {
 | |
| 		panic("invalid AES secret: " + err.Error())
 | |
| 	}
 | |
| 	// we use an all-zeroes IV for AES because the key used
 | |
| 	// for encryption is ephemeral.
 | |
| 	iv := make([]byte, encc.BlockSize())
 | |
| 	return &rlpxFrameRW{
 | |
| 		conn:       conn,
 | |
| 		enc:        cipher.NewCTR(encc, iv),
 | |
| 		dec:        cipher.NewCTR(encc, iv),
 | |
| 		macCipher:  macc,
 | |
| 		egressMAC:  s.EgressMAC,
 | |
| 		ingressMAC: s.IngressMAC,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
 | |
| 	ptype, _ := rlp.EncodeToBytes(msg.Code)
 | |
| 
 | |
| 	// write header
 | |
| 	headbuf := make([]byte, 32)
 | |
| 	fsize := uint32(len(ptype)) + msg.Size
 | |
| 	if fsize > maxUint24 {
 | |
| 		return errors.New("message size overflows uint24")
 | |
| 	}
 | |
| 	putInt24(fsize, headbuf) // TODO: check overflow
 | |
| 	copy(headbuf[3:], zeroHeader)
 | |
| 	rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
 | |
| 
 | |
| 	// write header MAC
 | |
| 	copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
 | |
| 	if _, err := rw.conn.Write(headbuf); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	// write encrypted frame, updating the egress MAC hash with
 | |
| 	// the data written to conn.
 | |
| 	tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
 | |
| 	if _, err := tee.Write(ptype); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	if _, err := io.Copy(tee, msg.Payload); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	if padding := fsize % 16; padding > 0 {
 | |
| 		if _, err := tee.Write(zero16[:16-padding]); err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// write frame MAC. egress MAC hash is up to date because
 | |
| 	// frame content was written to it as well.
 | |
| 	fmacseed := rw.egressMAC.Sum(nil)
 | |
| 	mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed)
 | |
| 	_, err := rw.conn.Write(mac)
 | |
| 	return err
 | |
| }
 | |
| 
 | |
| func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
 | |
| 	// read the header
 | |
| 	headbuf := make([]byte, 32)
 | |
| 	if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
 | |
| 		return msg, err
 | |
| 	}
 | |
| 	// verify header mac
 | |
| 	shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
 | |
| 	if !hmac.Equal(shouldMAC, headbuf[16:]) {
 | |
| 		return msg, errors.New("bad header MAC")
 | |
| 	}
 | |
| 	rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
 | |
| 	fsize := readInt24(headbuf)
 | |
| 	// ignore protocol type for now
 | |
| 
 | |
| 	// read the frame content
 | |
| 	var rsize = fsize // frame size rounded up to 16 byte boundary
 | |
| 	if padding := fsize % 16; padding > 0 {
 | |
| 		rsize += 16 - padding
 | |
| 	}
 | |
| 	framebuf := make([]byte, rsize)
 | |
| 	if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
 | |
| 		return msg, err
 | |
| 	}
 | |
| 
 | |
| 	// read and validate frame MAC. we can re-use headbuf for that.
 | |
| 	rw.ingressMAC.Write(framebuf)
 | |
| 	fmacseed := rw.ingressMAC.Sum(nil)
 | |
| 	if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil {
 | |
| 		return msg, err
 | |
| 	}
 | |
| 	shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed)
 | |
| 	if !hmac.Equal(shouldMAC, headbuf[:16]) {
 | |
| 		return msg, errors.New("bad frame MAC")
 | |
| 	}
 | |
| 
 | |
| 	// decrypt frame content
 | |
| 	rw.dec.XORKeyStream(framebuf, framebuf)
 | |
| 
 | |
| 	// decode message code
 | |
| 	content := bytes.NewReader(framebuf[:fsize])
 | |
| 	if err := rlp.Decode(content, &msg.Code); err != nil {
 | |
| 		return msg, err
 | |
| 	}
 | |
| 	msg.Size = uint32(content.Len())
 | |
| 	msg.Payload = content
 | |
| 	return msg, nil
 | |
| }
 | |
| 
 | |
| // updateMAC reseeds the given hash with encrypted seed.
 | |
| // it returns the first 16 bytes of the hash sum after seeding.
 | |
| func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
 | |
| 	aesbuf := make([]byte, aes.BlockSize)
 | |
| 	block.Encrypt(aesbuf, mac.Sum(nil))
 | |
| 	for i := range aesbuf {
 | |
| 		aesbuf[i] ^= seed[i]
 | |
| 	}
 | |
| 	mac.Write(aesbuf)
 | |
| 	return mac.Sum(nil)[:16]
 | |
| }
 | |
| 
 | |
| func readInt24(b []byte) uint32 {
 | |
| 	return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
 | |
| }
 | |
| 
 | |
| func putInt24(v uint32, b []byte) {
 | |
| 	b[0] = byte(v >> 16)
 | |
| 	b[1] = byte(v >> 8)
 | |
| 	b[2] = byte(v)
 | |
| }
 |