1843 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1843 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2015 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package core
 | |
| 
 | |
| import (
 | |
| 	"crypto/ecdsa"
 | |
| 	"fmt"
 | |
| 	"io/ioutil"
 | |
| 	"math/big"
 | |
| 	"math/rand"
 | |
| 	"os"
 | |
| 	"testing"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/core/state"
 | |
| 	"github.com/ethereum/go-ethereum/core/types"
 | |
| 	"github.com/ethereum/go-ethereum/crypto"
 | |
| 	"github.com/ethereum/go-ethereum/ethdb"
 | |
| 	"github.com/ethereum/go-ethereum/event"
 | |
| 	"github.com/ethereum/go-ethereum/params"
 | |
| )
 | |
| 
 | |
| // testTxPoolConfig is a transaction pool configuration without stateful disk
 | |
| // sideeffects used during testing.
 | |
| var testTxPoolConfig TxPoolConfig
 | |
| 
 | |
| func init() {
 | |
| 	testTxPoolConfig = DefaultTxPoolConfig
 | |
| 	testTxPoolConfig.Journal = ""
 | |
| }
 | |
| 
 | |
| type testBlockChain struct {
 | |
| 	statedb       *state.StateDB
 | |
| 	gasLimit      uint64
 | |
| 	chainHeadFeed *event.Feed
 | |
| }
 | |
| 
 | |
| func (bc *testBlockChain) CurrentBlock() *types.Block {
 | |
| 	return types.NewBlock(&types.Header{
 | |
| 		GasLimit: bc.gasLimit,
 | |
| 	}, nil, nil, nil)
 | |
| }
 | |
| 
 | |
| func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
 | |
| 	return bc.CurrentBlock()
 | |
| }
 | |
| 
 | |
| func (bc *testBlockChain) StateAt(common.Hash) (*state.StateDB, error) {
 | |
| 	return bc.statedb, nil
 | |
| }
 | |
| 
 | |
| func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
 | |
| 	return bc.chainHeadFeed.Subscribe(ch)
 | |
| }
 | |
| 
 | |
| func transaction(nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) *types.Transaction {
 | |
| 	return pricedTransaction(nonce, gaslimit, big.NewInt(1), key)
 | |
| }
 | |
| 
 | |
| func pricedTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
 | |
| 	tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
 | |
| 	return tx
 | |
| }
 | |
| 
 | |
| func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
 | |
| 	diskdb, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(diskdb))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	key, _ := crypto.GenerateKey()
 | |
| 	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
 | |
| 
 | |
| 	return pool, key
 | |
| }
 | |
| 
 | |
| // validateTxPoolInternals checks various consistency invariants within the pool.
 | |
| func validateTxPoolInternals(pool *TxPool) error {
 | |
| 	pool.mu.RLock()
 | |
| 	defer pool.mu.RUnlock()
 | |
| 
 | |
| 	// Ensure the total transaction set is consistent with pending + queued
 | |
| 	pending, queued := pool.stats()
 | |
| 	if total := len(pool.all); total != pending+queued {
 | |
| 		return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued)
 | |
| 	}
 | |
| 	if priced := pool.priced.items.Len() - pool.priced.stales; priced != pending+queued {
 | |
| 		return fmt.Errorf("total priced transaction count %d != %d pending + %d queued", priced, pending, queued)
 | |
| 	}
 | |
| 	// Ensure the next nonce to assign is the correct one
 | |
| 	for addr, txs := range pool.pending {
 | |
| 		// Find the last transaction
 | |
| 		var last uint64
 | |
| 		for nonce := range txs.txs.items {
 | |
| 			if last < nonce {
 | |
| 				last = nonce
 | |
| 			}
 | |
| 		}
 | |
| 		if nonce := pool.pendingState.GetNonce(addr); nonce != last+1 {
 | |
| 			return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1)
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // validateEvents checks that the correct number of transaction addition events
 | |
| // were fired on the pool's event feed.
 | |
| func validateEvents(events chan TxPreEvent, count int) error {
 | |
| 	for i := 0; i < count; i++ {
 | |
| 		select {
 | |
| 		case <-events:
 | |
| 		case <-time.After(time.Second):
 | |
| 			return fmt.Errorf("event #%d not fired", i)
 | |
| 		}
 | |
| 	}
 | |
| 	select {
 | |
| 	case tx := <-events:
 | |
| 		return fmt.Errorf("more than %d events fired: %v", count, tx.Tx)
 | |
| 
 | |
| 	case <-time.After(50 * time.Millisecond):
 | |
| 		// This branch should be "default", but it's a data race between goroutines,
 | |
| 		// reading the event channel and pushng into it, so better wait a bit ensuring
 | |
| 		// really nothing gets injected.
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func deriveSender(tx *types.Transaction) (common.Address, error) {
 | |
| 	return types.Sender(types.HomesteadSigner{}, tx)
 | |
| }
 | |
| 
 | |
| type testChain struct {
 | |
| 	*testBlockChain
 | |
| 	address common.Address
 | |
| 	trigger *bool
 | |
| }
 | |
| 
 | |
| // testChain.State() is used multiple times to reset the pending state.
 | |
| // when simulate is true it will create a state that indicates
 | |
| // that tx0 and tx1 are included in the chain.
 | |
| func (c *testChain) State() (*state.StateDB, error) {
 | |
| 	// delay "state change" by one. The tx pool fetches the
 | |
| 	// state multiple times and by delaying it a bit we simulate
 | |
| 	// a state change between those fetches.
 | |
| 	stdb := c.statedb
 | |
| 	if *c.trigger {
 | |
| 		db, _ := ethdb.NewMemDatabase()
 | |
| 		c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 		// simulate that the new head block included tx0 and tx1
 | |
| 		c.statedb.SetNonce(c.address, 2)
 | |
| 		c.statedb.SetBalance(c.address, new(big.Int).SetUint64(params.Ether))
 | |
| 		*c.trigger = false
 | |
| 	}
 | |
| 	return stdb, nil
 | |
| }
 | |
| 
 | |
| // This test simulates a scenario where a new block is imported during a
 | |
| // state reset and tests whether the pending state is in sync with the
 | |
| // block head event that initiated the resetState().
 | |
| func TestStateChangeDuringTransactionPoolReset(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	var (
 | |
| 		db, _      = ethdb.NewMemDatabase()
 | |
| 		key, _     = crypto.GenerateKey()
 | |
| 		address    = crypto.PubkeyToAddress(key.PublicKey)
 | |
| 		statedb, _ = state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 		trigger    = false
 | |
| 	)
 | |
| 
 | |
| 	// setup pool with 2 transaction in it
 | |
| 	statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether))
 | |
| 	blockchain := &testChain{&testBlockChain{statedb, 1000000000, new(event.Feed)}, address, &trigger}
 | |
| 
 | |
| 	tx0 := transaction(0, 100000, key)
 | |
| 	tx1 := transaction(1, 100000, key)
 | |
| 
 | |
| 	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	nonce := pool.State().GetNonce(address)
 | |
| 	if nonce != 0 {
 | |
| 		t.Fatalf("Invalid nonce, want 0, got %d", nonce)
 | |
| 	}
 | |
| 
 | |
| 	pool.AddRemotes(types.Transactions{tx0, tx1})
 | |
| 
 | |
| 	nonce = pool.State().GetNonce(address)
 | |
| 	if nonce != 2 {
 | |
| 		t.Fatalf("Invalid nonce, want 2, got %d", nonce)
 | |
| 	}
 | |
| 
 | |
| 	// trigger state change in the background
 | |
| 	trigger = true
 | |
| 
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 
 | |
| 	_, err := pool.Pending()
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("Could not fetch pending transactions: %v", err)
 | |
| 	}
 | |
| 	nonce = pool.State().GetNonce(address)
 | |
| 	if nonce != 2 {
 | |
| 		t.Fatalf("Invalid nonce, want 2, got %d", nonce)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestInvalidTransactions(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	tx := transaction(0, 100, key)
 | |
| 	from, _ := deriveSender(tx)
 | |
| 
 | |
| 	pool.currentState.AddBalance(from, big.NewInt(1))
 | |
| 	if err := pool.AddRemote(tx); err != ErrInsufficientFunds {
 | |
| 		t.Error("expected", ErrInsufficientFunds)
 | |
| 	}
 | |
| 
 | |
| 	balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice()))
 | |
| 	pool.currentState.AddBalance(from, balance)
 | |
| 	if err := pool.AddRemote(tx); err != ErrIntrinsicGas {
 | |
| 		t.Error("expected", ErrIntrinsicGas, "got", err)
 | |
| 	}
 | |
| 
 | |
| 	pool.currentState.SetNonce(from, 1)
 | |
| 	pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
 | |
| 	tx = transaction(0, 100000, key)
 | |
| 	if err := pool.AddRemote(tx); err != ErrNonceTooLow {
 | |
| 		t.Error("expected", ErrNonceTooLow)
 | |
| 	}
 | |
| 
 | |
| 	tx = transaction(1, 100000, key)
 | |
| 	pool.gasPrice = big.NewInt(1000)
 | |
| 	if err := pool.AddRemote(tx); err != ErrUnderpriced {
 | |
| 		t.Error("expected", ErrUnderpriced, "got", err)
 | |
| 	}
 | |
| 	if err := pool.AddLocal(tx); err != nil {
 | |
| 		t.Error("expected", nil, "got", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestTransactionQueue(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	tx := transaction(0, 100, key)
 | |
| 	from, _ := deriveSender(tx)
 | |
| 	pool.currentState.AddBalance(from, big.NewInt(1000))
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 	pool.enqueueTx(tx.Hash(), tx)
 | |
| 
 | |
| 	pool.promoteExecutables([]common.Address{from})
 | |
| 	if len(pool.pending) != 1 {
 | |
| 		t.Error("expected valid txs to be 1 is", len(pool.pending))
 | |
| 	}
 | |
| 
 | |
| 	tx = transaction(1, 100, key)
 | |
| 	from, _ = deriveSender(tx)
 | |
| 	pool.currentState.SetNonce(from, 2)
 | |
| 	pool.enqueueTx(tx.Hash(), tx)
 | |
| 	pool.promoteExecutables([]common.Address{from})
 | |
| 	if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
 | |
| 		t.Error("expected transaction to be in tx pool")
 | |
| 	}
 | |
| 
 | |
| 	if len(pool.queue) > 0 {
 | |
| 		t.Error("expected transaction queue to be empty. is", len(pool.queue))
 | |
| 	}
 | |
| 
 | |
| 	pool, key = setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	tx1 := transaction(0, 100, key)
 | |
| 	tx2 := transaction(10, 100, key)
 | |
| 	tx3 := transaction(11, 100, key)
 | |
| 	from, _ = deriveSender(tx1)
 | |
| 	pool.currentState.AddBalance(from, big.NewInt(1000))
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 
 | |
| 	pool.enqueueTx(tx1.Hash(), tx1)
 | |
| 	pool.enqueueTx(tx2.Hash(), tx2)
 | |
| 	pool.enqueueTx(tx3.Hash(), tx3)
 | |
| 
 | |
| 	pool.promoteExecutables([]common.Address{from})
 | |
| 
 | |
| 	if len(pool.pending) != 1 {
 | |
| 		t.Error("expected tx pool to be 1, got", len(pool.pending))
 | |
| 	}
 | |
| 	if pool.queue[from].Len() != 2 {
 | |
| 		t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestTransactionNegativeValue(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key)
 | |
| 	from, _ := deriveSender(tx)
 | |
| 	pool.currentState.AddBalance(from, big.NewInt(1))
 | |
| 	if err := pool.AddRemote(tx); err != ErrNegativeValue {
 | |
| 		t.Error("expected", ErrNegativeValue, "got", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestTransactionChainFork(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 	resetState := func() {
 | |
| 		db, _ := ethdb.NewMemDatabase()
 | |
| 		statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 		statedb.AddBalance(addr, big.NewInt(100000000000000))
 | |
| 
 | |
| 		pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 		pool.lockedReset(nil, nil)
 | |
| 	}
 | |
| 	resetState()
 | |
| 
 | |
| 	tx := transaction(0, 100000, key)
 | |
| 	if _, err := pool.add(tx, false); err != nil {
 | |
| 		t.Error("didn't expect error", err)
 | |
| 	}
 | |
| 	pool.removeTx(tx.Hash(), true)
 | |
| 
 | |
| 	// reset the pool's internal state
 | |
| 	resetState()
 | |
| 	if _, err := pool.add(tx, false); err != nil {
 | |
| 		t.Error("didn't expect error", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestTransactionDoubleNonce(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 	resetState := func() {
 | |
| 		db, _ := ethdb.NewMemDatabase()
 | |
| 		statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 		statedb.AddBalance(addr, big.NewInt(100000000000000))
 | |
| 
 | |
| 		pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 		pool.lockedReset(nil, nil)
 | |
| 	}
 | |
| 	resetState()
 | |
| 
 | |
| 	signer := types.HomesteadSigner{}
 | |
| 	tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 100000, big.NewInt(1), nil), signer, key)
 | |
| 	tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(2), nil), signer, key)
 | |
| 	tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(1), nil), signer, key)
 | |
| 
 | |
| 	// Add the first two transaction, ensure higher priced stays only
 | |
| 	if replace, err := pool.add(tx1, false); err != nil || replace {
 | |
| 		t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace)
 | |
| 	}
 | |
| 	if replace, err := pool.add(tx2, false); err != nil || !replace {
 | |
| 		t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace)
 | |
| 	}
 | |
| 	pool.promoteExecutables([]common.Address{addr})
 | |
| 	if pool.pending[addr].Len() != 1 {
 | |
| 		t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
 | |
| 	}
 | |
| 	if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
 | |
| 		t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
 | |
| 	}
 | |
| 	// Add the third transaction and ensure it's not saved (smaller price)
 | |
| 	pool.add(tx3, false)
 | |
| 	pool.promoteExecutables([]common.Address{addr})
 | |
| 	if pool.pending[addr].Len() != 1 {
 | |
| 		t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
 | |
| 	}
 | |
| 	if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
 | |
| 		t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
 | |
| 	}
 | |
| 	// Ensure the total transaction count is correct
 | |
| 	if len(pool.all) != 1 {
 | |
| 		t.Error("expected 1 total transactions, got", len(pool.all))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestTransactionMissingNonce(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 	pool.currentState.AddBalance(addr, big.NewInt(100000000000000))
 | |
| 	tx := transaction(1, 100000, key)
 | |
| 	if _, err := pool.add(tx, false); err != nil {
 | |
| 		t.Error("didn't expect error", err)
 | |
| 	}
 | |
| 	if len(pool.pending) != 0 {
 | |
| 		t.Error("expected 0 pending transactions, got", len(pool.pending))
 | |
| 	}
 | |
| 	if pool.queue[addr].Len() != 1 {
 | |
| 		t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
 | |
| 	}
 | |
| 	if len(pool.all) != 1 {
 | |
| 		t.Error("expected 1 total transactions, got", len(pool.all))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestTransactionNonceRecovery(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	const n = 10
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 	pool.currentState.SetNonce(addr, n)
 | |
| 	pool.currentState.AddBalance(addr, big.NewInt(100000000000000))
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 
 | |
| 	tx := transaction(n, 100000, key)
 | |
| 	if err := pool.AddRemote(tx); err != nil {
 | |
| 		t.Error(err)
 | |
| 	}
 | |
| 	// simulate some weird re-order of transactions and missing nonce(s)
 | |
| 	pool.currentState.SetNonce(addr, n-1)
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 	if fn := pool.pendingState.GetNonce(addr); fn != n-1 {
 | |
| 		t.Errorf("expected nonce to be %d, got %d", n-1, fn)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if an account runs out of funds, any pending and queued transactions
 | |
| // are dropped.
 | |
| func TestTransactionDropping(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create a test account and fund it
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	account, _ := deriveSender(transaction(0, 0, key))
 | |
| 	pool.currentState.AddBalance(account, big.NewInt(1000))
 | |
| 
 | |
| 	// Add some pending and some queued transactions
 | |
| 	var (
 | |
| 		tx0  = transaction(0, 100, key)
 | |
| 		tx1  = transaction(1, 200, key)
 | |
| 		tx2  = transaction(2, 300, key)
 | |
| 		tx10 = transaction(10, 100, key)
 | |
| 		tx11 = transaction(11, 200, key)
 | |
| 		tx12 = transaction(12, 300, key)
 | |
| 	)
 | |
| 	pool.promoteTx(account, tx0.Hash(), tx0)
 | |
| 	pool.promoteTx(account, tx1.Hash(), tx1)
 | |
| 	pool.promoteTx(account, tx2.Hash(), tx2)
 | |
| 	pool.enqueueTx(tx10.Hash(), tx10)
 | |
| 	pool.enqueueTx(tx11.Hash(), tx11)
 | |
| 	pool.enqueueTx(tx12.Hash(), tx12)
 | |
| 
 | |
| 	// Check that pre and post validations leave the pool as is
 | |
| 	if pool.pending[account].Len() != 3 {
 | |
| 		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
 | |
| 	}
 | |
| 	if pool.queue[account].Len() != 3 {
 | |
| 		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
 | |
| 	}
 | |
| 	if len(pool.all) != 6 {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 6)
 | |
| 	}
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 	if pool.pending[account].Len() != 3 {
 | |
| 		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
 | |
| 	}
 | |
| 	if pool.queue[account].Len() != 3 {
 | |
| 		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
 | |
| 	}
 | |
| 	if len(pool.all) != 6 {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 6)
 | |
| 	}
 | |
| 	// Reduce the balance of the account, and check that invalidated transactions are dropped
 | |
| 	pool.currentState.AddBalance(account, big.NewInt(-650))
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 
 | |
| 	if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
 | |
| 		t.Errorf("funded pending transaction missing: %v", tx0)
 | |
| 	}
 | |
| 	if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok {
 | |
| 		t.Errorf("funded pending transaction missing: %v", tx0)
 | |
| 	}
 | |
| 	if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok {
 | |
| 		t.Errorf("out-of-fund pending transaction present: %v", tx1)
 | |
| 	}
 | |
| 	if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
 | |
| 		t.Errorf("funded queued transaction missing: %v", tx10)
 | |
| 	}
 | |
| 	if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok {
 | |
| 		t.Errorf("funded queued transaction missing: %v", tx10)
 | |
| 	}
 | |
| 	if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok {
 | |
| 		t.Errorf("out-of-fund queued transaction present: %v", tx11)
 | |
| 	}
 | |
| 	if len(pool.all) != 4 {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
 | |
| 	}
 | |
| 	// Reduce the block gas limit, check that invalidated transactions are dropped
 | |
| 	pool.chain.(*testBlockChain).gasLimit = 100
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 
 | |
| 	if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
 | |
| 		t.Errorf("funded pending transaction missing: %v", tx0)
 | |
| 	}
 | |
| 	if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
 | |
| 		t.Errorf("over-gased pending transaction present: %v", tx1)
 | |
| 	}
 | |
| 	if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
 | |
| 		t.Errorf("funded queued transaction missing: %v", tx10)
 | |
| 	}
 | |
| 	if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
 | |
| 		t.Errorf("over-gased queued transaction present: %v", tx11)
 | |
| 	}
 | |
| 	if len(pool.all) != 2 {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 2)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if a transaction is dropped from the current pending pool (e.g. out
 | |
| // of fund), all consecutive (still valid, but not executable) transactions are
 | |
| // postponed back into the future queue to prevent broadcasting them.
 | |
| func TestTransactionPostponing(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the postponing with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Create two test accounts to produce different gap profiles with
 | |
| 	keys := make([]*ecdsa.PrivateKey, 2)
 | |
| 	accs := make([]common.Address, len(keys))
 | |
| 
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey)
 | |
| 
 | |
| 		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(50100))
 | |
| 	}
 | |
| 	// Add a batch consecutive pending transactions for validation
 | |
| 	txs := []*types.Transaction{}
 | |
| 	for i, key := range keys {
 | |
| 
 | |
| 		for j := 0; j < 100; j++ {
 | |
| 			var tx *types.Transaction
 | |
| 			if (i+j)%2 == 0 {
 | |
| 				tx = transaction(uint64(j), 25000, key)
 | |
| 			} else {
 | |
| 				tx = transaction(uint64(j), 50000, key)
 | |
| 			}
 | |
| 			txs = append(txs, tx)
 | |
| 		}
 | |
| 	}
 | |
| 	for i, err := range pool.AddRemotes(txs) {
 | |
| 		if err != nil {
 | |
| 			t.Fatalf("tx %d: failed to add transactions: %v", i, err)
 | |
| 		}
 | |
| 	}
 | |
| 	// Check that pre and post validations leave the pool as is
 | |
| 	if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
 | |
| 		t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
 | |
| 	}
 | |
| 	if len(pool.queue) != 0 {
 | |
| 		t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
 | |
| 	}
 | |
| 	if len(pool.all) != len(txs) {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txs))
 | |
| 	}
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 	if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
 | |
| 		t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
 | |
| 	}
 | |
| 	if len(pool.queue) != 0 {
 | |
| 		t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
 | |
| 	}
 | |
| 	if len(pool.all) != len(txs) {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txs))
 | |
| 	}
 | |
| 	// Reduce the balance of the account, and check that transactions are reorganised
 | |
| 	for _, addr := range accs {
 | |
| 		pool.currentState.AddBalance(addr, big.NewInt(-1))
 | |
| 	}
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 
 | |
| 	// The first account's first transaction remains valid, check that subsequent
 | |
| 	// ones are either filtered out, or queued up for later.
 | |
| 	if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok {
 | |
| 		t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0])
 | |
| 	}
 | |
| 	if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok {
 | |
| 		t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0])
 | |
| 	}
 | |
| 	for i, tx := range txs[1:100] {
 | |
| 		if i%2 == 1 {
 | |
| 			if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
 | |
| 				t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
 | |
| 			}
 | |
| 			if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok {
 | |
| 				t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
 | |
| 			}
 | |
| 		} else {
 | |
| 			if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
 | |
| 				t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
 | |
| 			}
 | |
| 			if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok {
 | |
| 				t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	// The second account's first transaction got invalid, check that all transactions
 | |
| 	// are either filtered out, or queued up for later.
 | |
| 	if pool.pending[accs[1]] != nil {
 | |
| 		t.Errorf("invalidated account still has pending transactions")
 | |
| 	}
 | |
| 	for i, tx := range txs[100:] {
 | |
| 		if i%2 == 1 {
 | |
| 			if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok {
 | |
| 				t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx)
 | |
| 			}
 | |
| 		} else {
 | |
| 			if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok {
 | |
| 				t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if len(pool.all) != len(txs)/2 {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txs)/2)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if the transaction pool has both executable and non-executable
 | |
| // transactions from an origin account, filling the nonce gap moves all queued
 | |
| // ones into the pending pool.
 | |
| func TestTransactionGapFilling(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create a test account and fund it
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	account, _ := deriveSender(transaction(0, 0, key))
 | |
| 	pool.currentState.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	// Keep track of transaction events to ensure all executables get announced
 | |
| 	events := make(chan TxPreEvent, testTxPoolConfig.AccountQueue+5)
 | |
| 	sub := pool.txFeed.Subscribe(events)
 | |
| 	defer sub.Unsubscribe()
 | |
| 
 | |
| 	// Create a pending and a queued transaction with a nonce-gap in between
 | |
| 	if err := pool.AddRemote(transaction(0, 100000, key)); err != nil {
 | |
| 		t.Fatalf("failed to add pending transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(transaction(2, 100000, key)); err != nil {
 | |
| 		t.Fatalf("failed to add queued transaction: %v", err)
 | |
| 	}
 | |
| 	pending, queued := pool.Stats()
 | |
| 	if pending != 1 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1)
 | |
| 	}
 | |
| 	if queued != 1 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 1); err != nil {
 | |
| 		t.Fatalf("original event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Fill the nonce gap and ensure all transactions become pending
 | |
| 	if err := pool.AddRemote(transaction(1, 100000, key)); err != nil {
 | |
| 		t.Fatalf("failed to add gapped transaction: %v", err)
 | |
| 	}
 | |
| 	pending, queued = pool.Stats()
 | |
| 	if pending != 3 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
 | |
| 	}
 | |
| 	if queued != 0 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 2); err != nil {
 | |
| 		t.Fatalf("gap-filling event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if the transaction count belonging to a single account goes above
 | |
| // some threshold, the higher transactions are dropped to prevent DOS attacks.
 | |
| func TestTransactionQueueAccountLimiting(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create a test account and fund it
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	account, _ := deriveSender(transaction(0, 0, key))
 | |
| 	pool.currentState.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	// Keep queuing up transactions and make sure all above a limit are dropped
 | |
| 	for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ {
 | |
| 		if err := pool.AddRemote(transaction(i, 100000, key)); err != nil {
 | |
| 			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
 | |
| 		}
 | |
| 		if len(pool.pending) != 0 {
 | |
| 			t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
 | |
| 		}
 | |
| 		if i <= testTxPoolConfig.AccountQueue {
 | |
| 			if pool.queue[account].Len() != int(i) {
 | |
| 				t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
 | |
| 			}
 | |
| 		} else {
 | |
| 			if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) {
 | |
| 				t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if len(pool.all) != int(testTxPoolConfig.AccountQueue) {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), testTxPoolConfig.AccountQueue)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if the transaction count belonging to multiple accounts go above
 | |
| // some threshold, the higher transactions are dropped to prevent DOS attacks.
 | |
| //
 | |
| // This logic should not hold for local transactions, unless the local tracking
 | |
| // mechanism is disabled.
 | |
| func TestTransactionQueueGlobalLimiting(t *testing.T) {
 | |
| 	testTransactionQueueGlobalLimiting(t, false)
 | |
| }
 | |
| func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) {
 | |
| 	testTransactionQueueGlobalLimiting(t, true)
 | |
| }
 | |
| 
 | |
| func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the limit enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	config := testTxPoolConfig
 | |
| 	config.NoLocals = nolocals
 | |
| 	config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible)
 | |
| 
 | |
| 	pool := NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them (last one will be the local)
 | |
| 	keys := make([]*ecdsa.PrivateKey, 5)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	local := keys[len(keys)-1]
 | |
| 
 | |
| 	// Generate and queue a batch of transactions
 | |
| 	nonces := make(map[common.Address]uint64)
 | |
| 
 | |
| 	txs := make(types.Transactions, 0, 3*config.GlobalQueue)
 | |
| 	for len(txs) < cap(txs) {
 | |
| 		key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account
 | |
| 		addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 
 | |
| 		txs = append(txs, transaction(nonces[addr]+1, 100000, key))
 | |
| 		nonces[addr]++
 | |
| 	}
 | |
| 	// Import the batch and verify that limits have been enforced
 | |
| 	pool.AddRemotes(txs)
 | |
| 
 | |
| 	queued := 0
 | |
| 	for addr, list := range pool.queue {
 | |
| 		if list.Len() > int(config.AccountQueue) {
 | |
| 			t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
 | |
| 		}
 | |
| 		queued += list.Len()
 | |
| 	}
 | |
| 	if queued > int(config.GlobalQueue) {
 | |
| 		t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
 | |
| 	}
 | |
| 	// Generate a batch of transactions from the local account and import them
 | |
| 	txs = txs[:0]
 | |
| 	for i := uint64(0); i < 3*config.GlobalQueue; i++ {
 | |
| 		txs = append(txs, transaction(i+1, 100000, local))
 | |
| 	}
 | |
| 	pool.AddLocals(txs)
 | |
| 
 | |
| 	// If locals are disabled, the previous eviction algorithm should apply here too
 | |
| 	if nolocals {
 | |
| 		queued := 0
 | |
| 		for addr, list := range pool.queue {
 | |
| 			if list.Len() > int(config.AccountQueue) {
 | |
| 				t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
 | |
| 			}
 | |
| 			queued += list.Len()
 | |
| 		}
 | |
| 		if queued > int(config.GlobalQueue) {
 | |
| 			t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
 | |
| 		}
 | |
| 	} else {
 | |
| 		// Local exemptions are enabled, make sure the local account owned the queue
 | |
| 		if len(pool.queue) != 1 {
 | |
| 			t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1)
 | |
| 		}
 | |
| 		// Also ensure no local transactions are ever dropped, even if above global limits
 | |
| 		if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue {
 | |
| 			t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if an account remains idle for a prolonged amount of time, any
 | |
| // non-executable transactions queued up are dropped to prevent wasting resources
 | |
| // on shuffling them around.
 | |
| //
 | |
| // This logic should not hold for local transactions, unless the local tracking
 | |
| // mechanism is disabled.
 | |
| func TestTransactionQueueTimeLimiting(t *testing.T)         { testTransactionQueueTimeLimiting(t, false) }
 | |
| func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) { testTransactionQueueTimeLimiting(t, true) }
 | |
| 
 | |
| func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) {
 | |
| 	// Reduce the eviction interval to a testable amount
 | |
| 	defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
 | |
| 	evictionInterval = time.Second
 | |
| 
 | |
| 	// Create the pool to test the non-expiration enforcement
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	config := testTxPoolConfig
 | |
| 	config.Lifetime = time.Second
 | |
| 	config.NoLocals = nolocals
 | |
| 
 | |
| 	pool := NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Create two test accounts to ensure remotes expire but locals do not
 | |
| 	local, _ := crypto.GenerateKey()
 | |
| 	remote, _ := crypto.GenerateKey()
 | |
| 
 | |
| 	pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000))
 | |
| 	pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000))
 | |
| 
 | |
| 	// Add the two transactions and ensure they both are queued up
 | |
| 	if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil {
 | |
| 		t.Fatalf("failed to add local transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), remote)); err != nil {
 | |
| 		t.Fatalf("failed to add remote transaction: %v", err)
 | |
| 	}
 | |
| 	pending, queued := pool.Stats()
 | |
| 	if pending != 0 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
 | |
| 	}
 | |
| 	if queued != 2 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains
 | |
| 	time.Sleep(2 * config.Lifetime)
 | |
| 
 | |
| 	pending, queued = pool.Stats()
 | |
| 	if pending != 0 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
 | |
| 	}
 | |
| 	if nolocals {
 | |
| 		if queued != 0 {
 | |
| 			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
 | |
| 		}
 | |
| 	} else {
 | |
| 		if queued != 1 {
 | |
| 			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
 | |
| 		}
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that even if the transaction count belonging to a single account goes
 | |
| // above some threshold, as long as the transactions are executable, they are
 | |
| // accepted.
 | |
| func TestTransactionPendingLimiting(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create a test account and fund it
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	account, _ := deriveSender(transaction(0, 0, key))
 | |
| 	pool.currentState.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	// Keep track of transaction events to ensure all executables get announced
 | |
| 	events := make(chan TxPreEvent, testTxPoolConfig.AccountQueue+5)
 | |
| 	sub := pool.txFeed.Subscribe(events)
 | |
| 	defer sub.Unsubscribe()
 | |
| 
 | |
| 	// Keep queuing up transactions and make sure all above a limit are dropped
 | |
| 	for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ {
 | |
| 		if err := pool.AddRemote(transaction(i, 100000, key)); err != nil {
 | |
| 			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
 | |
| 		}
 | |
| 		if pool.pending[account].Len() != int(i)+1 {
 | |
| 			t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
 | |
| 		}
 | |
| 		if len(pool.queue) != 0 {
 | |
| 			t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
 | |
| 		}
 | |
| 	}
 | |
| 	if len(pool.all) != int(testTxPoolConfig.AccountQueue+5) {
 | |
| 		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), testTxPoolConfig.AccountQueue+5)
 | |
| 	}
 | |
| 	if err := validateEvents(events, int(testTxPoolConfig.AccountQueue+5)); err != nil {
 | |
| 		t.Fatalf("event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that the transaction limits are enforced the same way irrelevant whether
 | |
| // the transactions are added one by one or in batches.
 | |
| func TestTransactionQueueLimitingEquivalency(t *testing.T)   { testTransactionLimitingEquivalency(t, 1) }
 | |
| func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) }
 | |
| 
 | |
| func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Add a batch of transactions to a pool one by one
 | |
| 	pool1, key1 := setupTxPool()
 | |
| 	defer pool1.Stop()
 | |
| 
 | |
| 	account1, _ := deriveSender(transaction(0, 0, key1))
 | |
| 	pool1.currentState.AddBalance(account1, big.NewInt(1000000))
 | |
| 
 | |
| 	for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ {
 | |
| 		if err := pool1.AddRemote(transaction(origin+i, 100000, key1)); err != nil {
 | |
| 			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
 | |
| 		}
 | |
| 	}
 | |
| 	// Add a batch of transactions to a pool in one big batch
 | |
| 	pool2, key2 := setupTxPool()
 | |
| 	defer pool2.Stop()
 | |
| 
 | |
| 	account2, _ := deriveSender(transaction(0, 0, key2))
 | |
| 	pool2.currentState.AddBalance(account2, big.NewInt(1000000))
 | |
| 
 | |
| 	txs := []*types.Transaction{}
 | |
| 	for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ {
 | |
| 		txs = append(txs, transaction(origin+i, 100000, key2))
 | |
| 	}
 | |
| 	pool2.AddRemotes(txs)
 | |
| 
 | |
| 	// Ensure the batch optimization honors the same pool mechanics
 | |
| 	if len(pool1.pending) != len(pool2.pending) {
 | |
| 		t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
 | |
| 	}
 | |
| 	if len(pool1.queue) != len(pool2.queue) {
 | |
| 		t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue))
 | |
| 	}
 | |
| 	if len(pool1.all) != len(pool2.all) {
 | |
| 		t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", len(pool1.all), len(pool2.all))
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool1); err != nil {
 | |
| 		t.Errorf("pool 1 internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool2); err != nil {
 | |
| 		t.Errorf("pool 2 internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if the transaction count belonging to multiple accounts go above
 | |
| // some hard threshold, the higher transactions are dropped to prevent DOS
 | |
| // attacks.
 | |
| func TestTransactionPendingGlobalLimiting(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the limit enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	config := testTxPoolConfig
 | |
| 	config.GlobalSlots = config.AccountSlots * 10
 | |
| 
 | |
| 	pool := NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	keys := make([]*ecdsa.PrivateKey, 5)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	// Generate and queue a batch of transactions
 | |
| 	nonces := make(map[common.Address]uint64)
 | |
| 
 | |
| 	txs := types.Transactions{}
 | |
| 	for _, key := range keys {
 | |
| 		addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 		for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ {
 | |
| 			txs = append(txs, transaction(nonces[addr], 100000, key))
 | |
| 			nonces[addr]++
 | |
| 		}
 | |
| 	}
 | |
| 	// Import the batch and verify that limits have been enforced
 | |
| 	pool.AddRemotes(txs)
 | |
| 
 | |
| 	pending := 0
 | |
| 	for _, list := range pool.pending {
 | |
| 		pending += list.Len()
 | |
| 	}
 | |
| 	if pending > int(config.GlobalSlots) {
 | |
| 		t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if transactions start being capped, transactions are also removed from 'all'
 | |
| func TestTransactionCapClearsFromAll(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the limit enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	config := testTxPoolConfig
 | |
| 	config.AccountSlots = 2
 | |
| 	config.AccountQueue = 2
 | |
| 	config.GlobalSlots = 8
 | |
| 
 | |
| 	pool := NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	key, _ := crypto.GenerateKey()
 | |
| 	addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 	pool.currentState.AddBalance(addr, big.NewInt(1000000))
 | |
| 
 | |
| 	txs := types.Transactions{}
 | |
| 	for j := 0; j < int(config.GlobalSlots)*2; j++ {
 | |
| 		txs = append(txs, transaction(uint64(j), 100000, key))
 | |
| 	}
 | |
| 	// Import the batch and verify that limits have been enforced
 | |
| 	pool.AddRemotes(txs)
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that if the transaction count belonging to multiple accounts go above
 | |
| // some hard threshold, if they are under the minimum guaranteed slot count then
 | |
| // the transactions are still kept.
 | |
| func TestTransactionPendingMinimumAllowance(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the limit enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	config := testTxPoolConfig
 | |
| 	config.GlobalSlots = 0
 | |
| 
 | |
| 	pool := NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	keys := make([]*ecdsa.PrivateKey, 5)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	// Generate and queue a batch of transactions
 | |
| 	nonces := make(map[common.Address]uint64)
 | |
| 
 | |
| 	txs := types.Transactions{}
 | |
| 	for _, key := range keys {
 | |
| 		addr := crypto.PubkeyToAddress(key.PublicKey)
 | |
| 		for j := 0; j < int(config.AccountSlots)*2; j++ {
 | |
| 			txs = append(txs, transaction(nonces[addr], 100000, key))
 | |
| 			nonces[addr]++
 | |
| 		}
 | |
| 	}
 | |
| 	// Import the batch and verify that limits have been enforced
 | |
| 	pool.AddRemotes(txs)
 | |
| 
 | |
| 	for addr, list := range pool.pending {
 | |
| 		if list.Len() != int(config.AccountSlots) {
 | |
| 			t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots)
 | |
| 		}
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that setting the transaction pool gas price to a higher value correctly
 | |
| // discards everything cheaper than that and moves any gapped transactions back
 | |
| // from the pending pool to the queue.
 | |
| //
 | |
| // Note, local transactions are never allowed to be dropped.
 | |
| func TestTransactionPoolRepricing(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the pricing enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Keep track of transaction events to ensure all executables get announced
 | |
| 	events := make(chan TxPreEvent, 32)
 | |
| 	sub := pool.txFeed.Subscribe(events)
 | |
| 	defer sub.Unsubscribe()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	keys := make([]*ecdsa.PrivateKey, 4)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	// Generate and queue a batch of transactions, both pending and queued
 | |
| 	txs := types.Transactions{}
 | |
| 
 | |
| 	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(2), keys[0]))
 | |
| 	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[0]))
 | |
| 	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[0]))
 | |
| 
 | |
| 	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1]))
 | |
| 	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[1]))
 | |
| 	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[1]))
 | |
| 
 | |
| 	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[2]))
 | |
| 	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2]))
 | |
| 	txs = append(txs, pricedTransaction(3, 100000, big.NewInt(2), keys[2]))
 | |
| 
 | |
| 	ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[3])
 | |
| 
 | |
| 	// Import the batch and that both pending and queued transactions match up
 | |
| 	pool.AddRemotes(txs)
 | |
| 	pool.AddLocal(ltx)
 | |
| 
 | |
| 	pending, queued := pool.Stats()
 | |
| 	if pending != 7 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 7)
 | |
| 	}
 | |
| 	if queued != 3 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 7); err != nil {
 | |
| 		t.Fatalf("original event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Reprice the pool and check that underpriced transactions get dropped
 | |
| 	pool.SetGasPrice(big.NewInt(2))
 | |
| 
 | |
| 	pending, queued = pool.Stats()
 | |
| 	if pending != 2 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
 | |
| 	}
 | |
| 	if queued != 5 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 5)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 0); err != nil {
 | |
| 		t.Fatalf("reprice event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Check that we can't add the old transactions back
 | |
| 	if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), keys[0])); err != ErrUnderpriced {
 | |
| 		t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced {
 | |
| 		t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), keys[2])); err != ErrUnderpriced {
 | |
| 		t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 0); err != nil {
 | |
| 		t.Fatalf("post-reprice event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// However we can add local underpriced transactions
 | |
| 	tx := pricedTransaction(1, 100000, big.NewInt(1), keys[3])
 | |
| 	if err := pool.AddLocal(tx); err != nil {
 | |
| 		t.Fatalf("failed to add underpriced local transaction: %v", err)
 | |
| 	}
 | |
| 	if pending, _ = pool.Stats(); pending != 3 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 1); err != nil {
 | |
| 		t.Fatalf("post-reprice local event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// And we can fill gaps with properly priced transactions
 | |
| 	if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(2), keys[0])); err != nil {
 | |
| 		t.Fatalf("failed to add pending transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), keys[1])); err != nil {
 | |
| 		t.Fatalf("failed to add pending transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), keys[2])); err != nil {
 | |
| 		t.Fatalf("failed to add queued transaction: %v", err)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 5); err != nil {
 | |
| 		t.Fatalf("post-reprice event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that setting the transaction pool gas price to a higher value does not
 | |
| // remove local transactions.
 | |
| func TestTransactionPoolRepricingKeepsLocals(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the pricing enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	keys := make([]*ecdsa.PrivateKey, 3)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000))
 | |
| 	}
 | |
| 	// Create transaction (both pending and queued) with a linearly growing gasprice
 | |
| 	for i := uint64(0); i < 500; i++ {
 | |
| 		// Add pending
 | |
| 		p_tx := pricedTransaction(i, 100000, big.NewInt(int64(i)), keys[2])
 | |
| 		if err := pool.AddLocal(p_tx); err != nil {
 | |
| 			t.Fatal(err)
 | |
| 		}
 | |
| 		// Add queued
 | |
| 		q_tx := pricedTransaction(i+501, 100000, big.NewInt(int64(i)), keys[2])
 | |
| 		if err := pool.AddLocal(q_tx); err != nil {
 | |
| 			t.Fatal(err)
 | |
| 		}
 | |
| 	}
 | |
| 	pending, queued := pool.Stats()
 | |
| 	expPending, expQueued := 500, 500
 | |
| 	validate := func() {
 | |
| 		pending, queued = pool.Stats()
 | |
| 		if pending != expPending {
 | |
| 			t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending)
 | |
| 		}
 | |
| 		if queued != expQueued {
 | |
| 			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued)
 | |
| 		}
 | |
| 
 | |
| 		if err := validateTxPoolInternals(pool); err != nil {
 | |
| 			t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 		}
 | |
| 	}
 | |
| 	validate()
 | |
| 
 | |
| 	// Reprice the pool and check that nothing is dropped
 | |
| 	pool.SetGasPrice(big.NewInt(2))
 | |
| 	validate()
 | |
| 
 | |
| 	pool.SetGasPrice(big.NewInt(2))
 | |
| 	pool.SetGasPrice(big.NewInt(4))
 | |
| 	pool.SetGasPrice(big.NewInt(8))
 | |
| 	pool.SetGasPrice(big.NewInt(100))
 | |
| 	validate()
 | |
| }
 | |
| 
 | |
| // Tests that when the pool reaches its global transaction limit, underpriced
 | |
| // transactions are gradually shifted out for more expensive ones and any gapped
 | |
| // pending transactions are moved into the queue.
 | |
| //
 | |
| // Note, local transactions are never allowed to be dropped.
 | |
| func TestTransactionPoolUnderpricing(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the pricing enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	config := testTxPoolConfig
 | |
| 	config.GlobalSlots = 2
 | |
| 	config.GlobalQueue = 2
 | |
| 
 | |
| 	pool := NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Keep track of transaction events to ensure all executables get announced
 | |
| 	events := make(chan TxPreEvent, 32)
 | |
| 	sub := pool.txFeed.Subscribe(events)
 | |
| 	defer sub.Unsubscribe()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	keys := make([]*ecdsa.PrivateKey, 3)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	// Generate and queue a batch of transactions, both pending and queued
 | |
| 	txs := types.Transactions{}
 | |
| 
 | |
| 	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0]))
 | |
| 	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[0]))
 | |
| 
 | |
| 	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[1]))
 | |
| 
 | |
| 	ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[2])
 | |
| 
 | |
| 	// Import the batch and that both pending and queued transactions match up
 | |
| 	pool.AddRemotes(txs)
 | |
| 	pool.AddLocal(ltx)
 | |
| 
 | |
| 	pending, queued := pool.Stats()
 | |
| 	if pending != 3 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
 | |
| 	}
 | |
| 	if queued != 1 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 3); err != nil {
 | |
| 		t.Fatalf("original event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Ensure that adding an underpriced transaction on block limit fails
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced {
 | |
| 		t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
 | |
| 	}
 | |
| 	// Ensure that adding high priced transactions drops cheap ones, but not own
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil { // +K1:0 => -K1:1 => Pend K0:0, K0:1, K1:0, K2:0; Que -
 | |
| 		t.Fatalf("failed to add well priced transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(4), keys[1])); err != nil { // +K1:2 => -K0:0 => Pend K1:0, K2:0; Que K0:1 K1:2
 | |
| 		t.Fatalf("failed to add well priced transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(3, 100000, big.NewInt(5), keys[1])); err != nil { // +K1:3 => -K0:1 => Pend K1:0, K2:0; Que K1:2 K1:3
 | |
| 		t.Fatalf("failed to add well priced transaction: %v", err)
 | |
| 	}
 | |
| 	pending, queued = pool.Stats()
 | |
| 	if pending != 2 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
 | |
| 	}
 | |
| 	if queued != 2 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 1); err != nil {
 | |
| 		t.Fatalf("additional event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Ensure that adding local transactions can push out even higher priced ones
 | |
| 	tx := pricedTransaction(1, 100000, big.NewInt(0), keys[2])
 | |
| 	if err := pool.AddLocal(tx); err != nil {
 | |
| 		t.Fatalf("failed to add underpriced local transaction: %v", err)
 | |
| 	}
 | |
| 	pending, queued = pool.Stats()
 | |
| 	if pending != 2 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
 | |
| 	}
 | |
| 	if queued != 2 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 1); err != nil {
 | |
| 		t.Fatalf("local event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that more expensive transactions push out cheap ones from the pool, but
 | |
| // without producing instability by creating gaps that start jumping transactions
 | |
| // back and forth between queued/pending.
 | |
| func TestTransactionPoolStableUnderpricing(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the pricing enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	config := testTxPoolConfig
 | |
| 	config.GlobalSlots = 128
 | |
| 	config.GlobalQueue = 0
 | |
| 
 | |
| 	pool := NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Keep track of transaction events to ensure all executables get announced
 | |
| 	events := make(chan TxPreEvent, 32)
 | |
| 	sub := pool.txFeed.Subscribe(events)
 | |
| 	defer sub.Unsubscribe()
 | |
| 
 | |
| 	// Create a number of test accounts and fund them
 | |
| 	keys := make([]*ecdsa.PrivateKey, 2)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	// Fill up the entire queue with the same transaction price points
 | |
| 	txs := types.Transactions{}
 | |
| 	for i := uint64(0); i < config.GlobalSlots; i++ {
 | |
| 		txs = append(txs, pricedTransaction(i, 100000, big.NewInt(1), keys[0]))
 | |
| 	}
 | |
| 	pool.AddRemotes(txs)
 | |
| 
 | |
| 	pending, queued := pool.Stats()
 | |
| 	if pending != int(config.GlobalSlots) {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots)
 | |
| 	}
 | |
| 	if queued != 0 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
 | |
| 	}
 | |
| 	if err := validateEvents(events, int(config.GlobalSlots)); err != nil {
 | |
| 		t.Fatalf("original event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Ensure that adding high priced transactions drops a cheap, but doesn't produce a gap
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil {
 | |
| 		t.Fatalf("failed to add well priced transaction: %v", err)
 | |
| 	}
 | |
| 	pending, queued = pool.Stats()
 | |
| 	if pending != int(config.GlobalSlots) {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots)
 | |
| 	}
 | |
| 	if queued != 0 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 1); err != nil {
 | |
| 		t.Fatalf("additional event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that the pool rejects replacement transactions that don't meet the minimum
 | |
| // price bump required.
 | |
| func TestTransactionReplacement(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the pricing enforcement with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Keep track of transaction events to ensure all executables get announced
 | |
| 	events := make(chan TxPreEvent, 32)
 | |
| 	sub := pool.txFeed.Subscribe(events)
 | |
| 	defer sub.Unsubscribe()
 | |
| 
 | |
| 	// Create a test account to add transactions with
 | |
| 	key, _ := crypto.GenerateKey()
 | |
| 	pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))
 | |
| 
 | |
| 	// Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
 | |
| 	price := int64(100)
 | |
| 	threshold := (price * (100 + int64(testTxPoolConfig.PriceBump))) / 100
 | |
| 
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), key)); err != nil {
 | |
| 		t.Fatalf("failed to add original cheap pending transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced {
 | |
| 		t.Fatalf("original cheap pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), key)); err != nil {
 | |
| 		t.Fatalf("failed to replace original cheap pending transaction: %v", err)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 2); err != nil {
 | |
| 		t.Fatalf("cheap replacement event firing failed: %v", err)
 | |
| 	}
 | |
| 
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(price), key)); err != nil {
 | |
| 		t.Fatalf("failed to add original proper pending transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced {
 | |
| 		t.Fatalf("original proper pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(threshold), key)); err != nil {
 | |
| 		t.Fatalf("failed to replace original proper pending transaction: %v", err)
 | |
| 	}
 | |
| 	if err := validateEvents(events, 2); err != nil {
 | |
| 		t.Fatalf("proper replacement event firing failed: %v", err)
 | |
| 	}
 | |
| 	// Add queued transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
 | |
| 	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), key)); err != nil {
 | |
| 		t.Fatalf("failed to add original cheap queued transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced {
 | |
| 		t.Fatalf("original cheap queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), key)); err != nil {
 | |
| 		t.Fatalf("failed to replace original cheap queued transaction: %v", err)
 | |
| 	}
 | |
| 
 | |
| 	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(price), key)); err != nil {
 | |
| 		t.Fatalf("failed to add original proper queued transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced {
 | |
| 		t.Fatalf("original proper queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(threshold), key)); err != nil {
 | |
| 		t.Fatalf("failed to replace original proper queued transaction: %v", err)
 | |
| 	}
 | |
| 
 | |
| 	if err := validateEvents(events, 0); err != nil {
 | |
| 		t.Fatalf("queued replacement event firing failed: %v", err)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tests that local transactions are journaled to disk, but remote transactions
 | |
| // get discarded between restarts.
 | |
| func TestTransactionJournaling(t *testing.T)         { testTransactionJournaling(t, false) }
 | |
| func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) }
 | |
| 
 | |
| func testTransactionJournaling(t *testing.T, nolocals bool) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create a temporary file for the journal
 | |
| 	file, err := ioutil.TempFile("", "")
 | |
| 	if err != nil {
 | |
| 		t.Fatalf("failed to create temporary journal: %v", err)
 | |
| 	}
 | |
| 	journal := file.Name()
 | |
| 	defer os.Remove(journal)
 | |
| 
 | |
| 	// Clean up the temporary file, we only need the path for now
 | |
| 	file.Close()
 | |
| 	os.Remove(journal)
 | |
| 
 | |
| 	// Create the original pool to inject transaction into the journal
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	config := testTxPoolConfig
 | |
| 	config.NoLocals = nolocals
 | |
| 	config.Journal = journal
 | |
| 	config.Rejournal = time.Second
 | |
| 
 | |
| 	pool := NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 
 | |
| 	// Create two test accounts to ensure remotes expire but locals do not
 | |
| 	local, _ := crypto.GenerateKey()
 | |
| 	remote, _ := crypto.GenerateKey()
 | |
| 
 | |
| 	pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000))
 | |
| 	pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000))
 | |
| 
 | |
| 	// Add three local and a remote transactions and ensure they are queued up
 | |
| 	if err := pool.AddLocal(pricedTransaction(0, 100000, big.NewInt(1), local)); err != nil {
 | |
| 		t.Fatalf("failed to add local transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil {
 | |
| 		t.Fatalf("failed to add local transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddLocal(pricedTransaction(2, 100000, big.NewInt(1), local)); err != nil {
 | |
| 		t.Fatalf("failed to add local transaction: %v", err)
 | |
| 	}
 | |
| 	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), remote)); err != nil {
 | |
| 		t.Fatalf("failed to add remote transaction: %v", err)
 | |
| 	}
 | |
| 	pending, queued := pool.Stats()
 | |
| 	if pending != 4 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4)
 | |
| 	}
 | |
| 	if queued != 0 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive
 | |
| 	pool.Stop()
 | |
| 	statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
 | |
| 	blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	pool = NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 
 | |
| 	pending, queued = pool.Stats()
 | |
| 	if queued != 0 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
 | |
| 	}
 | |
| 	if nolocals {
 | |
| 		if pending != 0 {
 | |
| 			t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
 | |
| 		}
 | |
| 	} else {
 | |
| 		if pending != 2 {
 | |
| 			t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
 | |
| 		}
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Bump the nonce temporarily and ensure the newly invalidated transaction is removed
 | |
| 	statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2)
 | |
| 	pool.lockedReset(nil, nil)
 | |
| 	time.Sleep(2 * config.Rejournal)
 | |
| 	pool.Stop()
 | |
| 
 | |
| 	statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
 | |
| 	blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 	pool = NewTxPool(config, params.TestChainConfig, blockchain)
 | |
| 
 | |
| 	pending, queued = pool.Stats()
 | |
| 	if pending != 0 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
 | |
| 	}
 | |
| 	if nolocals {
 | |
| 		if queued != 0 {
 | |
| 			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
 | |
| 		}
 | |
| 	} else {
 | |
| 		if queued != 1 {
 | |
| 			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
 | |
| 		}
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	pool.Stop()
 | |
| }
 | |
| 
 | |
| // TestTransactionStatusCheck tests that the pool can correctly retrieve the
 | |
| // pending status of individual transactions.
 | |
| func TestTransactionStatusCheck(t *testing.T) {
 | |
| 	t.Parallel()
 | |
| 
 | |
| 	// Create the pool to test the status retrievals with
 | |
| 	db, _ := ethdb.NewMemDatabase()
 | |
| 	statedb, _ := state.New(common.Hash{}, state.NewDatabase(db))
 | |
| 	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
 | |
| 
 | |
| 	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	// Create the test accounts to check various transaction statuses with
 | |
| 	keys := make([]*ecdsa.PrivateKey, 3)
 | |
| 	for i := 0; i < len(keys); i++ {
 | |
| 		keys[i], _ = crypto.GenerateKey()
 | |
| 		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
 | |
| 	}
 | |
| 	// Generate and queue a batch of transactions, both pending and queued
 | |
| 	txs := types.Transactions{}
 | |
| 
 | |
| 	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0])) // Pending only
 | |
| 	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1])) // Pending and queued
 | |
| 	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[1]))
 | |
| 	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2])) // Queued only
 | |
| 
 | |
| 	// Import the transaction and ensure they are correctly added
 | |
| 	pool.AddRemotes(txs)
 | |
| 
 | |
| 	pending, queued := pool.Stats()
 | |
| 	if pending != 2 {
 | |
| 		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
 | |
| 	}
 | |
| 	if queued != 2 {
 | |
| 		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
 | |
| 	}
 | |
| 	if err := validateTxPoolInternals(pool); err != nil {
 | |
| 		t.Fatalf("pool internal state corrupted: %v", err)
 | |
| 	}
 | |
| 	// Retrieve the status of each transaction and validate them
 | |
| 	hashes := make([]common.Hash, len(txs))
 | |
| 	for i, tx := range txs {
 | |
| 		hashes[i] = tx.Hash()
 | |
| 	}
 | |
| 	hashes = append(hashes, common.Hash{})
 | |
| 
 | |
| 	statuses := pool.Status(hashes)
 | |
| 	expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown}
 | |
| 
 | |
| 	for i := 0; i < len(statuses); i++ {
 | |
| 		if statuses[i] != expect[i] {
 | |
| 			t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i])
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmarks the speed of validating the contents of the pending queue of the
 | |
| // transaction pool.
 | |
| func BenchmarkPendingDemotion100(b *testing.B)   { benchmarkPendingDemotion(b, 100) }
 | |
| func BenchmarkPendingDemotion1000(b *testing.B)  { benchmarkPendingDemotion(b, 1000) }
 | |
| func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
 | |
| 
 | |
| func benchmarkPendingDemotion(b *testing.B, size int) {
 | |
| 	// Add a batch of transactions to a pool one by one
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	account, _ := deriveSender(transaction(0, 0, key))
 | |
| 	pool.currentState.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	for i := 0; i < size; i++ {
 | |
| 		tx := transaction(uint64(i), 100000, key)
 | |
| 		pool.promoteTx(account, tx.Hash(), tx)
 | |
| 	}
 | |
| 	// Benchmark the speed of pool validation
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		pool.demoteUnexecutables()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmarks the speed of scheduling the contents of the future queue of the
 | |
| // transaction pool.
 | |
| func BenchmarkFuturePromotion100(b *testing.B)   { benchmarkFuturePromotion(b, 100) }
 | |
| func BenchmarkFuturePromotion1000(b *testing.B)  { benchmarkFuturePromotion(b, 1000) }
 | |
| func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
 | |
| 
 | |
| func benchmarkFuturePromotion(b *testing.B, size int) {
 | |
| 	// Add a batch of transactions to a pool one by one
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	account, _ := deriveSender(transaction(0, 0, key))
 | |
| 	pool.currentState.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	for i := 0; i < size; i++ {
 | |
| 		tx := transaction(uint64(1+i), 100000, key)
 | |
| 		pool.enqueueTx(tx.Hash(), tx)
 | |
| 	}
 | |
| 	// Benchmark the speed of pool validation
 | |
| 	b.ResetTimer()
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		pool.promoteExecutables(nil)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmarks the speed of iterative transaction insertion.
 | |
| func BenchmarkPoolInsert(b *testing.B) {
 | |
| 	// Generate a batch of transactions to enqueue into the pool
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	account, _ := deriveSender(transaction(0, 0, key))
 | |
| 	pool.currentState.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	txs := make(types.Transactions, b.N)
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		txs[i] = transaction(uint64(i), 100000, key)
 | |
| 	}
 | |
| 	// Benchmark importing the transactions into the queue
 | |
| 	b.ResetTimer()
 | |
| 	for _, tx := range txs {
 | |
| 		pool.AddRemote(tx)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmarks the speed of batched transaction insertion.
 | |
| func BenchmarkPoolBatchInsert100(b *testing.B)   { benchmarkPoolBatchInsert(b, 100) }
 | |
| func BenchmarkPoolBatchInsert1000(b *testing.B)  { benchmarkPoolBatchInsert(b, 1000) }
 | |
| func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) }
 | |
| 
 | |
| func benchmarkPoolBatchInsert(b *testing.B, size int) {
 | |
| 	// Generate a batch of transactions to enqueue into the pool
 | |
| 	pool, key := setupTxPool()
 | |
| 	defer pool.Stop()
 | |
| 
 | |
| 	account, _ := deriveSender(transaction(0, 0, key))
 | |
| 	pool.currentState.AddBalance(account, big.NewInt(1000000))
 | |
| 
 | |
| 	batches := make([]types.Transactions, b.N)
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		batches[i] = make(types.Transactions, size)
 | |
| 		for j := 0; j < size; j++ {
 | |
| 			batches[i][j] = transaction(uint64(size*i+j), 100000, key)
 | |
| 		}
 | |
| 	}
 | |
| 	// Benchmark importing the transactions into the queue
 | |
| 	b.ResetTimer()
 | |
| 	for _, batch := range batches {
 | |
| 		pool.AddRemotes(batch)
 | |
| 	}
 | |
| }
 |