326 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2010 The Go Authors. All rights reserved.
 | |
| // Copyright 2011 ThePiachu. All rights reserved.
 | |
| // Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| // * Redistributions of source code must retain the above copyright
 | |
| //   notice, this list of conditions and the following disclaimer.
 | |
| // * Redistributions in binary form must reproduce the above
 | |
| //   copyright notice, this list of conditions and the following disclaimer
 | |
| //   in the documentation and/or other materials provided with the
 | |
| //   distribution.
 | |
| // * Neither the name of Google Inc. nor the names of its
 | |
| //   contributors may be used to endorse or promote products derived from
 | |
| //   this software without specific prior written permission.
 | |
| // * The name of ThePiachu may not be used to endorse or promote products
 | |
| //   derived from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| package secp256k1
 | |
| 
 | |
| import (
 | |
| 	"crypto/elliptic"
 | |
| 	"math/big"
 | |
| 	"unsafe"
 | |
| )
 | |
| 
 | |
| /*
 | |
| #include "libsecp256k1/include/secp256k1.h"
 | |
| extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
 | |
| */
 | |
| import "C"
 | |
| 
 | |
| const (
 | |
| 	// number of bits in a big.Word
 | |
| 	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
 | |
| 	// number of bytes in a big.Word
 | |
| 	wordBytes = wordBits / 8
 | |
| )
 | |
| 
 | |
| // readBits encodes the absolute value of bigint as big-endian bytes. Callers
 | |
| // must ensure that buf has enough space. If buf is too short the result will
 | |
| // be incomplete.
 | |
| func readBits(bigint *big.Int, buf []byte) {
 | |
| 	i := len(buf)
 | |
| 	for _, d := range bigint.Bits() {
 | |
| 		for j := 0; j < wordBytes && i > 0; j++ {
 | |
| 			i--
 | |
| 			buf[i] = byte(d)
 | |
| 			d >>= 8
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // This code is from https://github.com/ThePiachu/GoBit and implements
 | |
| // several Koblitz elliptic curves over prime fields.
 | |
| //
 | |
| // The curve methods, internally, on Jacobian coordinates. For a given
 | |
| // (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
 | |
| // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
 | |
| // when the whole calculation can be performed within the transform
 | |
| // (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
 | |
| // it's faster to apply and reverse the transform than to operate in
 | |
| // affine coordinates.
 | |
| 
 | |
| // A BitCurve represents a Koblitz Curve with a=0.
 | |
| // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
 | |
| type BitCurve struct {
 | |
| 	P       *big.Int // the order of the underlying field
 | |
| 	N       *big.Int // the order of the base point
 | |
| 	B       *big.Int // the constant of the BitCurve equation
 | |
| 	Gx, Gy  *big.Int // (x,y) of the base point
 | |
| 	BitSize int      // the size of the underlying field
 | |
| }
 | |
| 
 | |
| func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
 | |
| 	return &elliptic.CurveParams{
 | |
| 		P:       BitCurve.P,
 | |
| 		N:       BitCurve.N,
 | |
| 		B:       BitCurve.B,
 | |
| 		Gx:      BitCurve.Gx,
 | |
| 		Gy:      BitCurve.Gy,
 | |
| 		BitSize: BitCurve.BitSize,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // IsOnCurve returns true if the given (x,y) lies on the BitCurve.
 | |
| func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
 | |
| 	// y² = x³ + b
 | |
| 	y2 := new(big.Int).Mul(y, y) //y²
 | |
| 	y2.Mod(y2, BitCurve.P)       //y²%P
 | |
| 
 | |
| 	x3 := new(big.Int).Mul(x, x) //x²
 | |
| 	x3.Mul(x3, x)                //x³
 | |
| 
 | |
| 	x3.Add(x3, BitCurve.B) //x³+B
 | |
| 	x3.Mod(x3, BitCurve.P) //(x³+B)%P
 | |
| 
 | |
| 	return x3.Cmp(y2) == 0
 | |
| }
 | |
| 
 | |
| //TODO: double check if the function is okay
 | |
| // affineFromJacobian reverses the Jacobian transform. See the comment at the
 | |
| // top of the file.
 | |
| func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
 | |
| 	zinv := new(big.Int).ModInverse(z, BitCurve.P)
 | |
| 	zinvsq := new(big.Int).Mul(zinv, zinv)
 | |
| 
 | |
| 	xOut = new(big.Int).Mul(x, zinvsq)
 | |
| 	xOut.Mod(xOut, BitCurve.P)
 | |
| 	zinvsq.Mul(zinvsq, zinv)
 | |
| 	yOut = new(big.Int).Mul(y, zinvsq)
 | |
| 	yOut.Mod(yOut, BitCurve.P)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // Add returns the sum of (x1,y1) and (x2,y2)
 | |
| func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
 | |
| 	z := new(big.Int).SetInt64(1)
 | |
| 	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
 | |
| }
 | |
| 
 | |
| // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
 | |
| // (x2, y2, z2) and returns their sum, also in Jacobian form.
 | |
| func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
 | |
| 	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
 | |
| 	z1z1 := new(big.Int).Mul(z1, z1)
 | |
| 	z1z1.Mod(z1z1, BitCurve.P)
 | |
| 	z2z2 := new(big.Int).Mul(z2, z2)
 | |
| 	z2z2.Mod(z2z2, BitCurve.P)
 | |
| 
 | |
| 	u1 := new(big.Int).Mul(x1, z2z2)
 | |
| 	u1.Mod(u1, BitCurve.P)
 | |
| 	u2 := new(big.Int).Mul(x2, z1z1)
 | |
| 	u2.Mod(u2, BitCurve.P)
 | |
| 	h := new(big.Int).Sub(u2, u1)
 | |
| 	if h.Sign() == -1 {
 | |
| 		h.Add(h, BitCurve.P)
 | |
| 	}
 | |
| 	i := new(big.Int).Lsh(h, 1)
 | |
| 	i.Mul(i, i)
 | |
| 	j := new(big.Int).Mul(h, i)
 | |
| 
 | |
| 	s1 := new(big.Int).Mul(y1, z2)
 | |
| 	s1.Mul(s1, z2z2)
 | |
| 	s1.Mod(s1, BitCurve.P)
 | |
| 	s2 := new(big.Int).Mul(y2, z1)
 | |
| 	s2.Mul(s2, z1z1)
 | |
| 	s2.Mod(s2, BitCurve.P)
 | |
| 	r := new(big.Int).Sub(s2, s1)
 | |
| 	if r.Sign() == -1 {
 | |
| 		r.Add(r, BitCurve.P)
 | |
| 	}
 | |
| 	r.Lsh(r, 1)
 | |
| 	v := new(big.Int).Mul(u1, i)
 | |
| 
 | |
| 	x3 := new(big.Int).Set(r)
 | |
| 	x3.Mul(x3, x3)
 | |
| 	x3.Sub(x3, j)
 | |
| 	x3.Sub(x3, v)
 | |
| 	x3.Sub(x3, v)
 | |
| 	x3.Mod(x3, BitCurve.P)
 | |
| 
 | |
| 	y3 := new(big.Int).Set(r)
 | |
| 	v.Sub(v, x3)
 | |
| 	y3.Mul(y3, v)
 | |
| 	s1.Mul(s1, j)
 | |
| 	s1.Lsh(s1, 1)
 | |
| 	y3.Sub(y3, s1)
 | |
| 	y3.Mod(y3, BitCurve.P)
 | |
| 
 | |
| 	z3 := new(big.Int).Add(z1, z2)
 | |
| 	z3.Mul(z3, z3)
 | |
| 	z3.Sub(z3, z1z1)
 | |
| 	if z3.Sign() == -1 {
 | |
| 		z3.Add(z3, BitCurve.P)
 | |
| 	}
 | |
| 	z3.Sub(z3, z2z2)
 | |
| 	if z3.Sign() == -1 {
 | |
| 		z3.Add(z3, BitCurve.P)
 | |
| 	}
 | |
| 	z3.Mul(z3, h)
 | |
| 	z3.Mod(z3, BitCurve.P)
 | |
| 
 | |
| 	return x3, y3, z3
 | |
| }
 | |
| 
 | |
| // Double returns 2*(x,y)
 | |
| func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
 | |
| 	z1 := new(big.Int).SetInt64(1)
 | |
| 	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
 | |
| }
 | |
| 
 | |
| // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
 | |
| // returns its double, also in Jacobian form.
 | |
| func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
 | |
| 	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
 | |
| 
 | |
| 	a := new(big.Int).Mul(x, x) //X1²
 | |
| 	b := new(big.Int).Mul(y, y) //Y1²
 | |
| 	c := new(big.Int).Mul(b, b) //B²
 | |
| 
 | |
| 	d := new(big.Int).Add(x, b) //X1+B
 | |
| 	d.Mul(d, d)                 //(X1+B)²
 | |
| 	d.Sub(d, a)                 //(X1+B)²-A
 | |
| 	d.Sub(d, c)                 //(X1+B)²-A-C
 | |
| 	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)
 | |
| 
 | |
| 	e := new(big.Int).Mul(big.NewInt(3), a) //3*A
 | |
| 	f := new(big.Int).Mul(e, e)             //E²
 | |
| 
 | |
| 	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
 | |
| 	x3.Sub(f, x3)                            //F-2*D
 | |
| 	x3.Mod(x3, BitCurve.P)
 | |
| 
 | |
| 	y3 := new(big.Int).Sub(d, x3)                  //D-X3
 | |
| 	y3.Mul(e, y3)                                  //E*(D-X3)
 | |
| 	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
 | |
| 	y3.Mod(y3, BitCurve.P)
 | |
| 
 | |
| 	z3 := new(big.Int).Mul(y, z) //Y1*Z1
 | |
| 	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
 | |
| 	z3.Mod(z3, BitCurve.P)
 | |
| 
 | |
| 	return x3, y3, z3
 | |
| }
 | |
| 
 | |
| func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
 | |
| 	// Ensure scalar is exactly 32 bytes. We pad always, even if
 | |
| 	// scalar is 32 bytes long, to avoid a timing side channel.
 | |
| 	if len(scalar) > 32 {
 | |
| 		panic("can't handle scalars > 256 bits")
 | |
| 	}
 | |
| 	// NOTE: potential timing issue
 | |
| 	padded := make([]byte, 32)
 | |
| 	copy(padded[32-len(scalar):], scalar)
 | |
| 	scalar = padded
 | |
| 
 | |
| 	// Do the multiplication in C, updating point.
 | |
| 	point := make([]byte, 64)
 | |
| 	readBits(Bx, point[:32])
 | |
| 	readBits(By, point[32:])
 | |
| 
 | |
| 	pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
 | |
| 	scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
 | |
| 	res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
 | |
| 
 | |
| 	// Unpack the result and clear temporaries.
 | |
| 	x := new(big.Int).SetBytes(point[:32])
 | |
| 	y := new(big.Int).SetBytes(point[32:])
 | |
| 	for i := range point {
 | |
| 		point[i] = 0
 | |
| 	}
 | |
| 	for i := range padded {
 | |
| 		scalar[i] = 0
 | |
| 	}
 | |
| 	if res != 1 {
 | |
| 		return nil, nil
 | |
| 	}
 | |
| 	return x, y
 | |
| }
 | |
| 
 | |
| // ScalarBaseMult returns k*G, where G is the base point of the group and k is
 | |
| // an integer in big-endian form.
 | |
| func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
 | |
| 	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
 | |
| }
 | |
| 
 | |
| // Marshal converts a point into the form specified in section 4.3.6 of ANSI
 | |
| // X9.62.
 | |
| func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
 | |
| 	byteLen := (BitCurve.BitSize + 7) >> 3
 | |
| 	ret := make([]byte, 1+2*byteLen)
 | |
| 	ret[0] = 4 // uncompressed point flag
 | |
| 	readBits(x, ret[1:1+byteLen])
 | |
| 	readBits(y, ret[1+byteLen:])
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
 | |
| // error, x = nil.
 | |
| func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
 | |
| 	byteLen := (BitCurve.BitSize + 7) >> 3
 | |
| 	if len(data) != 1+2*byteLen {
 | |
| 		return
 | |
| 	}
 | |
| 	if data[0] != 4 { // uncompressed form
 | |
| 		return
 | |
| 	}
 | |
| 	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
 | |
| 	y = new(big.Int).SetBytes(data[1+byteLen:])
 | |
| 	return
 | |
| }
 | |
| 
 | |
| var theCurve = new(BitCurve)
 | |
| 
 | |
| func init() {
 | |
| 	// See SEC 2 section 2.7.1
 | |
| 	// curve parameters taken from:
 | |
| 	// http://www.secg.org/sec2-v2.pdf
 | |
| 	theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
 | |
| 	theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
 | |
| 	theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
 | |
| 	theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
 | |
| 	theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
 | |
| 	theCurve.BitSize = 256
 | |
| }
 | |
| 
 | |
| // S256 returns a BitCurve which implements secp256k1.
 | |
| func S256() *BitCurve {
 | |
| 	return theCurve
 | |
| }
 |