This PR implements the first one of the "lespay" UDP queries which is already useful in itself: the capacity query. The server pool is making use of this query by doing a cheap UDP query to determine whether it is worth starting the more expensive TCP connection process.
		
			
				
	
	
		
			125 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			125 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2019 The go-ethereum Authors
 | 
						|
// This file is part of the go-ethereum library.
 | 
						|
//
 | 
						|
// The go-ethereum library is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU Lesser General Public License as published by
 | 
						|
// the Free Software Foundation, either version 3 of the License, or
 | 
						|
// (at your option) any later version.
 | 
						|
//
 | 
						|
// The go-ethereum library is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | 
						|
// GNU Lesser General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Lesser General Public License
 | 
						|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
package prque
 | 
						|
 | 
						|
import (
 | 
						|
	"math/rand"
 | 
						|
	"sync"
 | 
						|
	"testing"
 | 
						|
	"time"
 | 
						|
 | 
						|
	"github.com/ethereum/go-ethereum/common/mclock"
 | 
						|
)
 | 
						|
 | 
						|
const (
 | 
						|
	testItems        = 1000
 | 
						|
	testPriorityStep = 100
 | 
						|
	testSteps        = 1000000
 | 
						|
	testStepPeriod   = time.Millisecond
 | 
						|
	testQueueRefresh = time.Second
 | 
						|
	testAvgRate      = float64(testPriorityStep) / float64(testItems) / float64(testStepPeriod)
 | 
						|
)
 | 
						|
 | 
						|
type lazyItem struct {
 | 
						|
	p, maxp int64
 | 
						|
	last    mclock.AbsTime
 | 
						|
	index   int
 | 
						|
}
 | 
						|
 | 
						|
func testPriority(a interface{}) int64 {
 | 
						|
	return a.(*lazyItem).p
 | 
						|
}
 | 
						|
 | 
						|
func testMaxPriority(a interface{}, until mclock.AbsTime) int64 {
 | 
						|
	i := a.(*lazyItem)
 | 
						|
	dt := until - i.last
 | 
						|
	i.maxp = i.p + int64(float64(dt)*testAvgRate)
 | 
						|
	return i.maxp
 | 
						|
}
 | 
						|
 | 
						|
func testSetIndex(a interface{}, i int) {
 | 
						|
	a.(*lazyItem).index = i
 | 
						|
}
 | 
						|
 | 
						|
func TestLazyQueue(t *testing.T) {
 | 
						|
	rand.Seed(time.Now().UnixNano())
 | 
						|
	clock := &mclock.Simulated{}
 | 
						|
	q := NewLazyQueue(testSetIndex, testPriority, testMaxPriority, clock, testQueueRefresh)
 | 
						|
 | 
						|
	var (
 | 
						|
		items  [testItems]lazyItem
 | 
						|
		maxPri int64
 | 
						|
	)
 | 
						|
 | 
						|
	for i := range items[:] {
 | 
						|
		items[i].p = rand.Int63n(testPriorityStep * 10)
 | 
						|
		if items[i].p > maxPri {
 | 
						|
			maxPri = items[i].p
 | 
						|
		}
 | 
						|
		items[i].index = -1
 | 
						|
		q.Push(&items[i])
 | 
						|
	}
 | 
						|
 | 
						|
	var (
 | 
						|
		lock   sync.Mutex
 | 
						|
		wg     sync.WaitGroup
 | 
						|
		stopCh = make(chan chan struct{})
 | 
						|
	)
 | 
						|
	defer wg.Wait()
 | 
						|
	wg.Add(1)
 | 
						|
	go func() {
 | 
						|
		defer wg.Done()
 | 
						|
		for {
 | 
						|
			select {
 | 
						|
			case <-clock.After(testQueueRefresh):
 | 
						|
				lock.Lock()
 | 
						|
				q.Refresh()
 | 
						|
				lock.Unlock()
 | 
						|
			case <-stopCh:
 | 
						|
				return
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}()
 | 
						|
 | 
						|
	for c := 0; c < testSteps; c++ {
 | 
						|
		i := rand.Intn(testItems)
 | 
						|
		lock.Lock()
 | 
						|
		items[i].p += rand.Int63n(testPriorityStep*2-1) + 1
 | 
						|
		if items[i].p > maxPri {
 | 
						|
			maxPri = items[i].p
 | 
						|
		}
 | 
						|
		items[i].last = clock.Now()
 | 
						|
		if items[i].p > items[i].maxp {
 | 
						|
			q.Update(items[i].index)
 | 
						|
		}
 | 
						|
		if rand.Intn(100) == 0 {
 | 
						|
			p := q.PopItem().(*lazyItem)
 | 
						|
			if p.p != maxPri {
 | 
						|
				lock.Unlock()
 | 
						|
				close(stopCh)
 | 
						|
				t.Fatalf("incorrect item (best known priority %d, popped %d)", maxPri, p.p)
 | 
						|
			}
 | 
						|
			q.Push(p)
 | 
						|
		}
 | 
						|
		lock.Unlock()
 | 
						|
		clock.Run(testStepPeriod)
 | 
						|
		clock.WaitForTimers(1)
 | 
						|
	}
 | 
						|
 | 
						|
	close(stopCh)
 | 
						|
}
 |