go-ethereum/core/state/snapshot/iterator_fast.go
Dan Laine 154b016b6c
core: use slices package for sorting (#27489)
Co-authored-by: Felix Lange <fjl@twurst.com>
2023-06-20 11:58:47 +02:00

341 lines
11 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"fmt"
"sort"
"github.com/ethereum/go-ethereum/common"
"golang.org/x/exp/slices"
)
// weightedIterator is a iterator with an assigned weight. It is used to prioritise
// which account or storage slot is the correct one if multiple iterators find the
// same one (modified in multiple consecutive blocks).
type weightedIterator struct {
it Iterator
priority int
}
func (it *weightedIterator) Less(other *weightedIterator) bool {
// Order the iterators primarily by the account hashes
hashI := it.it.Hash()
hashJ := other.it.Hash()
switch bytes.Compare(hashI[:], hashJ[:]) {
case -1:
return true
case 1:
return false
}
// Same account/storage-slot in multiple layers, split by priority
return it.priority < other.priority
}
// fastIterator is a more optimized multi-layer iterator which maintains a
// direct mapping of all iterators leading down to the bottom layer.
type fastIterator struct {
tree *Tree // Snapshot tree to reinitialize stale sub-iterators with
root common.Hash // Root hash to reinitialize stale sub-iterators through
curAccount []byte
curSlot []byte
iterators []*weightedIterator
initiated bool
account bool
fail error
}
// newFastIterator creates a new hierarchical account or storage iterator with one
// element per diff layer. The returned combo iterator can be used to walk over
// the entire snapshot diff stack simultaneously.
func newFastIterator(tree *Tree, root common.Hash, account common.Hash, seek common.Hash, accountIterator bool) (*fastIterator, error) {
snap := tree.Snapshot(root)
if snap == nil {
return nil, fmt.Errorf("unknown snapshot: %x", root)
}
fi := &fastIterator{
tree: tree,
root: root,
account: accountIterator,
}
current := snap.(snapshot)
for depth := 0; current != nil; depth++ {
if accountIterator {
fi.iterators = append(fi.iterators, &weightedIterator{
it: current.AccountIterator(seek),
priority: depth,
})
} else {
// If the whole storage is destructed in this layer, don't
// bother deeper layer anymore. But we should still keep
// the iterator for this layer, since the iterator can contain
// some valid slots which belongs to the re-created account.
it, destructed := current.StorageIterator(account, seek)
fi.iterators = append(fi.iterators, &weightedIterator{
it: it,
priority: depth,
})
if destructed {
break
}
}
current = current.Parent()
}
fi.init()
return fi, nil
}
// init walks over all the iterators and resolves any clashes between them, after
// which it prepares the stack for step-by-step iteration.
func (fi *fastIterator) init() {
// Track which account hashes are iterators positioned on
var positioned = make(map[common.Hash]int)
// Position all iterators and track how many remain live
for i := 0; i < len(fi.iterators); i++ {
// Retrieve the first element and if it clashes with a previous iterator,
// advance either the current one or the old one. Repeat until nothing is
// clashing any more.
it := fi.iterators[i]
for {
// If the iterator is exhausted, drop it off the end
if !it.it.Next() {
it.it.Release()
last := len(fi.iterators) - 1
fi.iterators[i] = fi.iterators[last]
fi.iterators[last] = nil
fi.iterators = fi.iterators[:last]
i--
break
}
// The iterator is still alive, check for collisions with previous ones
hash := it.it.Hash()
if other, exist := positioned[hash]; !exist {
positioned[hash] = i
break
} else {
// Iterators collide, one needs to be progressed, use priority to
// determine which.
//
// This whole else-block can be avoided, if we instead
// do an initial priority-sort of the iterators. If we do that,
// then we'll only wind up here if a lower-priority (preferred) iterator
// has the same value, and then we will always just continue.
// However, it costs an extra sort, so it's probably not better
if fi.iterators[other].priority < it.priority {
// The 'it' should be progressed
continue
} else {
// The 'other' should be progressed, swap them
it = fi.iterators[other]
fi.iterators[other], fi.iterators[i] = fi.iterators[i], fi.iterators[other]
continue
}
}
}
}
// Re-sort the entire list
slices.SortFunc(fi.iterators, func(a, b *weightedIterator) bool {
return a.Less(b)
})
fi.initiated = false
}
// Next steps the iterator forward one element, returning false if exhausted.
func (fi *fastIterator) Next() bool {
if len(fi.iterators) == 0 {
return false
}
if !fi.initiated {
// Don't forward first time -- we had to 'Next' once in order to
// do the sorting already
fi.initiated = true
if fi.account {
fi.curAccount = fi.iterators[0].it.(AccountIterator).Account()
} else {
fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot()
}
if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
fi.fail = innerErr
return false
}
if fi.curAccount != nil || fi.curSlot != nil {
return true
}
// Implicit else: we've hit a nil-account or nil-slot, and need to
// fall through to the loop below to land on something non-nil
}
// If an account or a slot is deleted in one of the layers, the key will
// still be there, but the actual value will be nil. However, the iterator
// should not export nil-values (but instead simply omit the key), so we
// need to loop here until we either
// - get a non-nil value,
// - hit an error,
// - or exhaust the iterator
for {
if !fi.next(0) {
return false // exhausted
}
if fi.account {
fi.curAccount = fi.iterators[0].it.(AccountIterator).Account()
} else {
fi.curSlot = fi.iterators[0].it.(StorageIterator).Slot()
}
if innerErr := fi.iterators[0].it.Error(); innerErr != nil {
fi.fail = innerErr
return false // error
}
if fi.curAccount != nil || fi.curSlot != nil {
break // non-nil value found
}
}
return true
}
// next handles the next operation internally and should be invoked when we know
// that two elements in the list may have the same value.
//
// For example, if the iterated hashes become [2,3,5,5,8,9,10], then we should
// invoke next(3), which will call Next on elem 3 (the second '5') and will
// cascade along the list, applying the same operation if needed.
func (fi *fastIterator) next(idx int) bool {
// If this particular iterator got exhausted, remove it and return true (the
// next one is surely not exhausted yet, otherwise it would have been removed
// already).
if it := fi.iterators[idx].it; !it.Next() {
it.Release()
fi.iterators = append(fi.iterators[:idx], fi.iterators[idx+1:]...)
return len(fi.iterators) > 0
}
// If there's no one left to cascade into, return
if idx == len(fi.iterators)-1 {
return true
}
// We next-ed the iterator at 'idx', now we may have to re-sort that element
var (
cur, next = fi.iterators[idx], fi.iterators[idx+1]
curHash, nextHash = cur.it.Hash(), next.it.Hash()
)
if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
// It is still in correct place
return true
} else if diff == 0 && cur.priority < next.priority {
// So still in correct place, but we need to iterate on the next
fi.next(idx + 1)
return true
}
// At this point, the iterator is in the wrong location, but the remaining
// list is sorted. Find out where to move the item.
clash := -1
index := sort.Search(len(fi.iterators), func(n int) bool {
// The iterator always advances forward, so anything before the old slot
// is known to be behind us, so just skip them altogether. This actually
// is an important clause since the sort order got invalidated.
if n < idx {
return false
}
if n == len(fi.iterators)-1 {
// Can always place an elem last
return true
}
nextHash := fi.iterators[n+1].it.Hash()
if diff := bytes.Compare(curHash[:], nextHash[:]); diff < 0 {
return true
} else if diff > 0 {
return false
}
// The elem we're placing it next to has the same value,
// so whichever winds up on n+1 will need further iteration
clash = n + 1
return cur.priority < fi.iterators[n+1].priority
})
fi.move(idx, index)
if clash != -1 {
fi.next(clash)
}
return true
}
// move advances an iterator to another position in the list.
func (fi *fastIterator) move(index, newpos int) {
elem := fi.iterators[index]
copy(fi.iterators[index:], fi.iterators[index+1:newpos+1])
fi.iterators[newpos] = elem
}
// Error returns any failure that occurred during iteration, which might have
// caused a premature iteration exit (e.g. snapshot stack becoming stale).
func (fi *fastIterator) Error() error {
return fi.fail
}
// Hash returns the current key
func (fi *fastIterator) Hash() common.Hash {
return fi.iterators[0].it.Hash()
}
// Account returns the current account blob.
// Note the returned account is not a copy, please don't modify it.
func (fi *fastIterator) Account() []byte {
return fi.curAccount
}
// Slot returns the current storage slot.
// Note the returned slot is not a copy, please don't modify it.
func (fi *fastIterator) Slot() []byte {
return fi.curSlot
}
// Release iterates over all the remaining live layer iterators and releases each
// of them individually.
func (fi *fastIterator) Release() {
for _, it := range fi.iterators {
it.it.Release()
}
fi.iterators = nil
}
// Debug is a convenience helper during testing
func (fi *fastIterator) Debug() {
for _, it := range fi.iterators {
fmt.Printf("[p=%v v=%v] ", it.priority, it.it.Hash()[0])
}
fmt.Println()
}
// newFastAccountIterator creates a new hierarchical account iterator with one
// element per diff layer. The returned combo iterator can be used to walk over
// the entire snapshot diff stack simultaneously.
func newFastAccountIterator(tree *Tree, root common.Hash, seek common.Hash) (AccountIterator, error) {
return newFastIterator(tree, root, common.Hash{}, seek, true)
}
// newFastStorageIterator creates a new hierarchical storage iterator with one
// element per diff layer. The returned combo iterator can be used to walk over
// the entire snapshot diff stack simultaneously.
func newFastStorageIterator(tree *Tree, root common.Hash, account common.Hash, seek common.Hash) (StorageIterator, error) {
return newFastIterator(tree, root, account, seek, false)
}