go-ethereum/metrics/influxdb/influxdbv2.go
turboboost55 7dc100714d
metrics: add cpu counters (#26796)
This PR adds counter metrics for the CPU system and the Geth process.
Currently the only metrics available for these items are gauges. Gauges are
fine when the consumer scrapes metrics data at the same interval as Geth
produces new values (every 3 seconds), but it is likely that most consumers
will not scrape that often. Intervals of 10, 15, or maybe even 30 seconds
are probably more common.

So the problem is, how does the consumer estimate what the CPU was doing in
between scrapes. With a counter, it's easy ... you just subtract two
successive values and divide by the time to get a nice, accurate average.
But with a gauge, you can't do that. A gauge reading is an instantaneous
picture of what was happening at that moment, but it gives you no idea
about what was going on between scrapes. Taking an average of values is
meaningless.
2023-03-23 14:13:50 +01:00

222 lines
5.4 KiB
Go

package influxdb
import (
"context"
"fmt"
"time"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
influxdb2 "github.com/influxdata/influxdb-client-go/v2"
"github.com/influxdata/influxdb-client-go/v2/api"
)
type v2Reporter struct {
reg metrics.Registry
interval time.Duration
endpoint string
token string
bucket string
organization string
namespace string
tags map[string]string
client influxdb2.Client
write api.WriteAPI
}
// InfluxDBWithTags starts a InfluxDB reporter which will post the from the given metrics.Registry at each d interval with the specified tags
func InfluxDBV2WithTags(r metrics.Registry, d time.Duration, endpoint string, token string, bucket string, organization string, namespace string, tags map[string]string) {
rep := &v2Reporter{
reg: r,
interval: d,
endpoint: endpoint,
token: token,
bucket: bucket,
organization: organization,
namespace: namespace,
tags: tags,
}
rep.client = influxdb2.NewClient(rep.endpoint, rep.token)
defer rep.client.Close()
// async write client
rep.write = rep.client.WriteAPI(rep.organization, rep.bucket)
errorsCh := rep.write.Errors()
// have to handle write errors in a separate goroutine like this b/c the channel is unbuffered and will block writes if not read
go func() {
for err := range errorsCh {
log.Warn("write error", "err", err.Error())
}
}()
rep.run()
}
func (r *v2Reporter) run() {
intervalTicker := time.NewTicker(r.interval)
pingTicker := time.NewTicker(time.Second * 5)
defer intervalTicker.Stop()
defer pingTicker.Stop()
for {
select {
case <-intervalTicker.C:
r.send()
case <-pingTicker.C:
_, err := r.client.Health(context.Background())
if err != nil {
log.Warn("Got error from influxdb client health check", "err", err.Error())
}
}
}
}
func (r *v2Reporter) send() {
r.reg.Each(func(name string, i interface{}) {
now := time.Now()
namespace := r.namespace
switch metric := i.(type) {
case metrics.Counter:
v := metric.Count()
measurement := fmt.Sprintf("%s%s.count", namespace, name)
fields := map[string]interface{}{
"value": v,
}
pt := influxdb2.NewPoint(measurement, r.tags, fields, now)
r.write.WritePoint(pt)
case metrics.CounterFloat64:
v := metric.Count()
measurement := fmt.Sprintf("%s%s.count", namespace, name)
fields := map[string]interface{}{
"value": v,
}
pt := influxdb2.NewPoint(measurement, r.tags, fields, now)
r.write.WritePoint(pt)
case metrics.Gauge:
ms := metric.Snapshot()
measurement := fmt.Sprintf("%s%s.gauge", namespace, name)
fields := map[string]interface{}{
"value": ms.Value(),
}
pt := influxdb2.NewPoint(measurement, r.tags, fields, now)
r.write.WritePoint(pt)
case metrics.GaugeFloat64:
ms := metric.Snapshot()
measurement := fmt.Sprintf("%s%s.gauge", namespace, name)
fields := map[string]interface{}{
"value": ms.Value(),
}
pt := influxdb2.NewPoint(measurement, r.tags, fields, now)
r.write.WritePoint(pt)
case metrics.Histogram:
ms := metric.Snapshot()
if ms.Count() > 0 {
ps := ms.Percentiles([]float64{0.5, 0.75, 0.95, 0.99, 0.999, 0.9999})
measurement := fmt.Sprintf("%s%s.histogram", namespace, name)
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
"p50": ps[0],
"p75": ps[1],
"p95": ps[2],
"p99": ps[3],
"p999": ps[4],
"p9999": ps[5],
}
pt := influxdb2.NewPoint(measurement, r.tags, fields, now)
r.write.WritePoint(pt)
}
case metrics.Meter:
ms := metric.Snapshot()
measurement := fmt.Sprintf("%s%s.meter", namespace, name)
fields := map[string]interface{}{
"count": ms.Count(),
"m1": ms.Rate1(),
"m5": ms.Rate5(),
"m15": ms.Rate15(),
"mean": ms.RateMean(),
}
pt := influxdb2.NewPoint(measurement, r.tags, fields, now)
r.write.WritePoint(pt)
case metrics.Timer:
ms := metric.Snapshot()
ps := ms.Percentiles([]float64{0.5, 0.75, 0.95, 0.99, 0.999, 0.9999})
measurement := fmt.Sprintf("%s%s.timer", namespace, name)
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
"p50": ps[0],
"p75": ps[1],
"p95": ps[2],
"p99": ps[3],
"p999": ps[4],
"p9999": ps[5],
"m1": ms.Rate1(),
"m5": ms.Rate5(),
"m15": ms.Rate15(),
"meanrate": ms.RateMean(),
}
pt := influxdb2.NewPoint(measurement, r.tags, fields, now)
r.write.WritePoint(pt)
case metrics.ResettingTimer:
t := metric.Snapshot()
if len(t.Values()) > 0 {
ps := t.Percentiles([]float64{50, 95, 99})
val := t.Values()
measurement := fmt.Sprintf("%s%s.span", namespace, name)
fields := map[string]interface{}{
"count": len(val),
"max": val[len(val)-1],
"mean": t.Mean(),
"min": val[0],
"p50": ps[0],
"p95": ps[1],
"p99": ps[2],
}
pt := influxdb2.NewPoint(measurement, r.tags, fields, now)
r.write.WritePoint(pt)
}
}
})
// Force all unwritten data to be sent
r.write.Flush()
}