go-ethereum/core/vm/interpreter.go
2021-03-02 23:40:57 +02:00

309 lines
10 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"hash"
"sync/atomic"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/log"
)
// Config are the configuration options for the Interpreter
type Config struct {
Debug bool // Enables debugging
Tracer Tracer // Opcode logger
NoRecursion bool // Disables call, callcode, delegate call and create
EnablePreimageRecording bool // Enables recording of SHA3/keccak preimages
JumpTable [256]*operation // EVM instruction table, automatically populated if unset
EWASMInterpreter string // External EWASM interpreter options
EVMInterpreter string // External EVM interpreter options
ExtraEips []int // Additional EIPS that are to be enabled
}
// Interpreter is used to run Ethereum based contracts and will utilise the
// passed environment to query external sources for state information.
// The Interpreter will run the byte code VM based on the passed
// configuration.
type Interpreter interface {
// Run loops and evaluates the contract's code with the given input data and returns
// the return byte-slice and an error if one occurred.
Run(contract *Contract, input []byte, static bool) ([]byte, error)
// CanRun tells if the contract, passed as an argument, can be
// run by the current interpreter. This is meant so that the
// caller can do something like:
//
// ```golang
// for _, interpreter := range interpreters {
// if interpreter.CanRun(contract.code) {
// interpreter.Run(contract.code, input)
// }
// }
// ```
CanRun([]byte) bool
}
// callCtx contains the things that are per-call, such as stack and memory,
// but not transients like pc and gas
type callCtx struct {
memory *Memory
stack *Stack
contract *Contract
}
// keccakState wraps sha3.state. In addition to the usual hash methods, it also supports
// Read to get a variable amount of data from the hash state. Read is faster than Sum
// because it doesn't copy the internal state, but also modifies the internal state.
type keccakState interface {
hash.Hash
Read([]byte) (int, error)
}
// EVMInterpreter represents an EVM interpreter
type EVMInterpreter struct {
evm *EVM
cfg Config
hasher keccakState // Keccak256 hasher instance shared across opcodes
hasherBuf common.Hash // Keccak256 hasher result array shared aross opcodes
readOnly bool // Whether to throw on stateful modifications
returnData []byte // Last CALL's return data for subsequent reuse
}
// NewEVMInterpreter returns a new instance of the Interpreter.
func NewEVMInterpreter(evm *EVM, cfg Config) *EVMInterpreter {
// We use the STOP instruction whether to see
// the jump table was initialised. If it was not
// we'll set the default jump table.
if cfg.JumpTable[STOP] == nil {
var jt JumpTable
switch {
case evm.chainRules.IsBerlin:
jt = berlinInstructionSet
case evm.chainRules.IsIstanbul:
jt = istanbulInstructionSet
case evm.chainRules.IsConstantinople:
jt = constantinopleInstructionSet
case evm.chainRules.IsByzantium:
jt = byzantiumInstructionSet
case evm.chainRules.IsEIP158:
jt = spuriousDragonInstructionSet
case evm.chainRules.IsEIP150:
jt = tangerineWhistleInstructionSet
case evm.chainRules.IsHomestead:
jt = homesteadInstructionSet
default:
jt = frontierInstructionSet
}
for i, eip := range cfg.ExtraEips {
if err := EnableEIP(eip, &jt); err != nil {
// Disable it, so caller can check if it's activated or not
cfg.ExtraEips = append(cfg.ExtraEips[:i], cfg.ExtraEips[i+1:]...)
log.Error("EIP activation failed", "eip", eip, "error", err)
}
}
cfg.JumpTable = jt
}
return &EVMInterpreter{
evm: evm,
cfg: cfg,
}
}
// Run loops and evaluates the contract's code with the given input data and returns
// the return byte-slice and an error if one occurred.
//
// It's important to note that any errors returned by the interpreter should be
// considered a revert-and-consume-all-gas operation except for
// ErrExecutionReverted which means revert-and-keep-gas-left.
func (in *EVMInterpreter) Run(contract *Contract, input []byte, readOnly bool) (ret []byte, err error) {
// Increment the call depth which is restricted to 1024
in.evm.depth++
defer func() { in.evm.depth-- }()
// Make sure the readOnly is only set if we aren't in readOnly yet.
// This makes also sure that the readOnly flag isn't removed for child calls.
if readOnly && !in.readOnly {
in.readOnly = true
defer func() { in.readOnly = false }()
}
// Reset the previous call's return data. It's unimportant to preserve the old buffer
// as every returning call will return new data anyway.
in.returnData = nil
// Don't bother with the execution if there's no code.
if len(contract.Code) == 0 {
return nil, nil
}
var (
op OpCode // current opcode
mem = NewMemory() // bound memory
stack = newstack() // local stack
callContext = &callCtx{
memory: mem,
stack: stack,
contract: contract,
}
// For optimisation reason we're using uint64 as the program counter.
// It's theoretically possible to go above 2^64. The YP defines the PC
// to be uint256. Practically much less so feasible.
pc = uint64(0) // program counter
cost uint64
// copies used by tracer
pcCopy uint64 // needed for the deferred Tracer
gasCopy uint64 // for Tracer to log gas remaining before execution
logged bool // deferred Tracer should ignore already logged steps
res []byte // result of the opcode execution function
)
// Don't move this deferrred function, it's placed before the capturestate-deferred method,
// so that it get's executed _after_: the capturestate needs the stacks before
// they are returned to the pools
defer func() {
returnStack(stack)
}()
contract.Input = input
if in.cfg.Debug {
defer func() {
if err != nil {
if !logged {
in.cfg.Tracer.CaptureState(in.evm, pcCopy, op, gasCopy, cost, mem, stack, in.returnData, contract, in.evm.depth, err)
} else {
in.cfg.Tracer.CaptureFault(in.evm, pcCopy, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err)
}
}
}()
}
// The Interpreter main run loop (contextual). This loop runs until either an
// explicit STOP, RETURN or SELFDESTRUCT is executed, an error occurred during
// the execution of one of the operations or until the done flag is set by the
// parent context.
steps := 0
for {
steps++
if steps%1000 == 0 && atomic.LoadInt32(&in.evm.abort) != 0 {
break
}
if in.cfg.Debug {
// Capture pre-execution values for tracing.
logged, pcCopy, gasCopy = false, pc, contract.Gas
}
// Get the operation from the jump table and validate the stack to ensure there are
// enough stack items available to perform the operation.
op = contract.GetOp(pc)
operation := in.cfg.JumpTable[op]
if operation == nil {
return nil, &ErrInvalidOpCode{opcode: op}
}
// Validate stack
if sLen := stack.len(); sLen < operation.minStack {
return nil, &ErrStackUnderflow{stackLen: sLen, required: operation.minStack}
} else if sLen > operation.maxStack {
return nil, &ErrStackOverflow{stackLen: sLen, limit: operation.maxStack}
}
// If the operation is valid, enforce and write restrictions
if in.readOnly && in.evm.chainRules.IsByzantium {
// If the interpreter is operating in readonly mode, make sure no
// state-modifying operation is performed. The 3rd stack item
// for a call operation is the value. Transferring value from one
// account to the others means the state is modified and should also
// return with an error.
if operation.writes || (op == CALL && stack.Back(2).Sign() != 0) {
return nil, ErrWriteProtection
}
}
// Static portion of gas
cost = operation.constantGas // For tracing
if !contract.UseGas(operation.constantGas) {
return nil, ErrOutOfGas
}
var memorySize uint64
// calculate the new memory size and expand the memory to fit
// the operation
// Memory check needs to be done prior to evaluating the dynamic gas portion,
// to detect calculation overflows
if operation.memorySize != nil {
memSize, overflow := operation.memorySize(stack)
if overflow {
return nil, ErrGasUintOverflow
}
// memory is expanded in words of 32 bytes. Gas
// is also calculated in words.
if memorySize, overflow = math.SafeMul(toWordSize(memSize), 32); overflow {
return nil, ErrGasUintOverflow
}
}
// Dynamic portion of gas
// consume the gas and return an error if not enough gas is available.
// cost is explicitly set so that the capture state defer method can get the proper cost
if operation.dynamicGas != nil {
var dynamicCost uint64
dynamicCost, err = operation.dynamicGas(in.evm, contract, stack, mem, memorySize)
cost += dynamicCost // total cost, for debug tracing
if err != nil || !contract.UseGas(dynamicCost) {
return nil, ErrOutOfGas
}
}
if memorySize > 0 {
mem.Resize(memorySize)
}
if in.cfg.Debug {
in.cfg.Tracer.CaptureState(in.evm, pc, op, gasCopy, cost, mem, stack, in.returnData, contract, in.evm.depth, err)
logged = true
}
// execute the operation
res, err = operation.execute(&pc, in, callContext)
// if the operation clears the return data (e.g. it has returning data)
// set the last return to the result of the operation.
if operation.returns {
in.returnData = common.CopyBytes(res)
}
switch {
case err != nil:
return nil, err
case operation.reverts:
return res, ErrExecutionReverted
case operation.halts:
return res, nil
case !operation.jumps:
pc++
}
}
return nil, nil
}
// CanRun tells if the contract, passed as an argument, can be
// run by the current interpreter.
func (in *EVMInterpreter) CanRun(code []byte) bool {
return true
}