205 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| package bn256
 | |
| 
 | |
| import (
 | |
| 	"math/big"
 | |
| )
 | |
| 
 | |
| // twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
 | |
| // kept in Jacobian form and t=z² when valid. The group G₂ is the set of
 | |
| // n-torsion points of this curve over GF(p²) (where n = Order)
 | |
| type twistPoint struct {
 | |
| 	x, y, z, t gfP2
 | |
| }
 | |
| 
 | |
| var twistB = &gfP2{
 | |
| 	gfP{0x38e7ecccd1dcff67, 0x65f0b37d93ce0d3e, 0xd749d0dd22ac00aa, 0x0141b9ce4a688d4d},
 | |
| 	gfP{0x3bf938e377b802a8, 0x020b1b273633535d, 0x26b7edf049755260, 0x2514c6324384a86d},
 | |
| }
 | |
| 
 | |
| // twistGen is the generator of group G₂.
 | |
| var twistGen = &twistPoint{
 | |
| 	gfP2{
 | |
| 		gfP{0xafb4737da84c6140, 0x6043dd5a5802d8c4, 0x09e950fc52a02f86, 0x14fef0833aea7b6b},
 | |
| 		gfP{0x8e83b5d102bc2026, 0xdceb1935497b0172, 0xfbb8264797811adf, 0x19573841af96503b},
 | |
| 	},
 | |
| 	gfP2{
 | |
| 		gfP{0x64095b56c71856ee, 0xdc57f922327d3cbb, 0x55f935be33351076, 0x0da4a0e693fd6482},
 | |
| 		gfP{0x619dfa9d886be9f6, 0xfe7fd297f59e9b78, 0xff9e1a62231b7dfe, 0x28fd7eebae9e4206},
 | |
| 	},
 | |
| 	gfP2{*newGFp(0), *newGFp(1)},
 | |
| 	gfP2{*newGFp(0), *newGFp(1)},
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) String() string {
 | |
| 	c.MakeAffine()
 | |
| 	x, y := gfP2Decode(&c.x), gfP2Decode(&c.y)
 | |
| 	return "(" + x.String() + ", " + y.String() + ")"
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Set(a *twistPoint) {
 | |
| 	c.x.Set(&a.x)
 | |
| 	c.y.Set(&a.y)
 | |
| 	c.z.Set(&a.z)
 | |
| 	c.t.Set(&a.t)
 | |
| }
 | |
| 
 | |
| // IsOnCurve returns true iff c is on the curve.
 | |
| func (c *twistPoint) IsOnCurve() bool {
 | |
| 	c.MakeAffine()
 | |
| 	if c.IsInfinity() {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	y2, x3 := &gfP2{}, &gfP2{}
 | |
| 	y2.Square(&c.y)
 | |
| 	x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB)
 | |
| 
 | |
| 	if *y2 != *x3 {
 | |
| 		return false
 | |
| 	}
 | |
| 	cneg := &twistPoint{}
 | |
| 	cneg.Mul(c, Order)
 | |
| 	return cneg.z.IsZero()
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) SetInfinity() {
 | |
| 	c.x.SetZero()
 | |
| 	c.y.SetOne()
 | |
| 	c.z.SetZero()
 | |
| 	c.t.SetZero()
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) IsInfinity() bool {
 | |
| 	return c.z.IsZero()
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Add(a, b *twistPoint) {
 | |
| 	// For additional comments, see the same function in curve.go.
 | |
| 
 | |
| 	if a.IsInfinity() {
 | |
| 		c.Set(b)
 | |
| 		return
 | |
| 	}
 | |
| 	if b.IsInfinity() {
 | |
| 		c.Set(a)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
 | |
| 	z12 := (&gfP2{}).Square(&a.z)
 | |
| 	z22 := (&gfP2{}).Square(&b.z)
 | |
| 	u1 := (&gfP2{}).Mul(&a.x, z22)
 | |
| 	u2 := (&gfP2{}).Mul(&b.x, z12)
 | |
| 
 | |
| 	t := (&gfP2{}).Mul(&b.z, z22)
 | |
| 	s1 := (&gfP2{}).Mul(&a.y, t)
 | |
| 
 | |
| 	t.Mul(&a.z, z12)
 | |
| 	s2 := (&gfP2{}).Mul(&b.y, t)
 | |
| 
 | |
| 	h := (&gfP2{}).Sub(u2, u1)
 | |
| 	xEqual := h.IsZero()
 | |
| 
 | |
| 	t.Add(h, h)
 | |
| 	i := (&gfP2{}).Square(t)
 | |
| 	j := (&gfP2{}).Mul(h, i)
 | |
| 
 | |
| 	t.Sub(s2, s1)
 | |
| 	yEqual := t.IsZero()
 | |
| 	if xEqual && yEqual {
 | |
| 		c.Double(a)
 | |
| 		return
 | |
| 	}
 | |
| 	r := (&gfP2{}).Add(t, t)
 | |
| 
 | |
| 	v := (&gfP2{}).Mul(u1, i)
 | |
| 
 | |
| 	t4 := (&gfP2{}).Square(r)
 | |
| 	t.Add(v, v)
 | |
| 	t6 := (&gfP2{}).Sub(t4, j)
 | |
| 	c.x.Sub(t6, t)
 | |
| 
 | |
| 	t.Sub(v, &c.x) // t7
 | |
| 	t4.Mul(s1, j)  // t8
 | |
| 	t6.Add(t4, t4) // t9
 | |
| 	t4.Mul(r, t)   // t10
 | |
| 	c.y.Sub(t4, t6)
 | |
| 
 | |
| 	t.Add(&a.z, &b.z) // t11
 | |
| 	t4.Square(t)      // t12
 | |
| 	t.Sub(t4, z12)    // t13
 | |
| 	t4.Sub(t, z22)    // t14
 | |
| 	c.z.Mul(t4, h)
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Double(a *twistPoint) {
 | |
| 	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
 | |
| 	A := (&gfP2{}).Square(&a.x)
 | |
| 	B := (&gfP2{}).Square(&a.y)
 | |
| 	C := (&gfP2{}).Square(B)
 | |
| 
 | |
| 	t := (&gfP2{}).Add(&a.x, B)
 | |
| 	t2 := (&gfP2{}).Square(t)
 | |
| 	t.Sub(t2, A)
 | |
| 	t2.Sub(t, C)
 | |
| 	d := (&gfP2{}).Add(t2, t2)
 | |
| 	t.Add(A, A)
 | |
| 	e := (&gfP2{}).Add(t, A)
 | |
| 	f := (&gfP2{}).Square(e)
 | |
| 
 | |
| 	t.Add(d, d)
 | |
| 	c.x.Sub(f, t)
 | |
| 
 | |
| 	c.z.Mul(&a.y, &a.z)
 | |
| 	c.z.Add(&c.z, &c.z)
 | |
| 
 | |
| 	t.Add(C, C)
 | |
| 	t2.Add(t, t)
 | |
| 	t.Add(t2, t2)
 | |
| 	c.y.Sub(d, &c.x)
 | |
| 	t2.Mul(e, &c.y)
 | |
| 	c.y.Sub(t2, t)
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
 | |
| 	sum, t := &twistPoint{}, &twistPoint{}
 | |
| 
 | |
| 	for i := scalar.BitLen(); i >= 0; i-- {
 | |
| 		t.Double(sum)
 | |
| 		if scalar.Bit(i) != 0 {
 | |
| 			sum.Add(t, a)
 | |
| 		} else {
 | |
| 			sum.Set(t)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	c.Set(sum)
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) MakeAffine() {
 | |
| 	if c.z.IsOne() {
 | |
| 		return
 | |
| 	} else if c.z.IsZero() {
 | |
| 		c.x.SetZero()
 | |
| 		c.y.SetOne()
 | |
| 		c.t.SetZero()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	zInv := (&gfP2{}).Invert(&c.z)
 | |
| 	t := (&gfP2{}).Mul(&c.y, zInv)
 | |
| 	zInv2 := (&gfP2{}).Square(zInv)
 | |
| 	c.y.Mul(t, zInv2)
 | |
| 	t.Mul(&c.x, zInv2)
 | |
| 	c.x.Set(t)
 | |
| 	c.z.SetOne()
 | |
| 	c.t.SetOne()
 | |
| }
 | |
| 
 | |
| func (c *twistPoint) Neg(a *twistPoint) {
 | |
| 	c.x.Set(&a.x)
 | |
| 	c.y.Neg(&a.y)
 | |
| 	c.z.Set(&a.z)
 | |
| 	c.t.SetZero()
 | |
| }
 |