* core/vm, crypto/bn256: switch over to cloudflare library * crypto/bn256: unmarshal constraint + start pure go impl * crypto/bn256: combo cloudflare and google lib * travis: drop 386 test job
		
			
				
	
	
		
			161 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| package bn256
 | |
| 
 | |
| // For details of the algorithms used, see "Multiplication and Squaring on
 | |
| // Pairing-Friendly Fields, Devegili et al.
 | |
| // http://eprint.iacr.org/2006/471.pdf.
 | |
| 
 | |
| import (
 | |
| 	"math/big"
 | |
| )
 | |
| 
 | |
| // gfP12 implements the field of size p¹² as a quadratic extension of gfP6
 | |
| // where ω²=τ.
 | |
| type gfP12 struct {
 | |
| 	x, y gfP6 // value is xω + y
 | |
| }
 | |
| 
 | |
| func (e *gfP12) String() string {
 | |
| 	return "(" + e.x.String() + "," + e.y.String() + ")"
 | |
| }
 | |
| 
 | |
| func (e *gfP12) Set(a *gfP12) *gfP12 {
 | |
| 	e.x.Set(&a.x)
 | |
| 	e.y.Set(&a.y)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) SetZero() *gfP12 {
 | |
| 	e.x.SetZero()
 | |
| 	e.y.SetZero()
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) SetOne() *gfP12 {
 | |
| 	e.x.SetZero()
 | |
| 	e.y.SetOne()
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) IsZero() bool {
 | |
| 	return e.x.IsZero() && e.y.IsZero()
 | |
| }
 | |
| 
 | |
| func (e *gfP12) IsOne() bool {
 | |
| 	return e.x.IsZero() && e.y.IsOne()
 | |
| }
 | |
| 
 | |
| func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
 | |
| 	e.x.Neg(&a.x)
 | |
| 	e.y.Set(&a.y)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) Neg(a *gfP12) *gfP12 {
 | |
| 	e.x.Neg(&a.x)
 | |
| 	e.y.Neg(&a.y)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
 | |
| func (e *gfP12) Frobenius(a *gfP12) *gfP12 {
 | |
| 	e.x.Frobenius(&a.x)
 | |
| 	e.y.Frobenius(&a.y)
 | |
| 	e.x.MulScalar(&e.x, xiToPMinus1Over6)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| // FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
 | |
| func (e *gfP12) FrobeniusP2(a *gfP12) *gfP12 {
 | |
| 	e.x.FrobeniusP2(&a.x)
 | |
| 	e.x.MulGFP(&e.x, xiToPSquaredMinus1Over6)
 | |
| 	e.y.FrobeniusP2(&a.y)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) FrobeniusP4(a *gfP12) *gfP12 {
 | |
| 	e.x.FrobeniusP4(&a.x)
 | |
| 	e.x.MulGFP(&e.x, xiToPSquaredMinus1Over3)
 | |
| 	e.y.FrobeniusP4(&a.y)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) Add(a, b *gfP12) *gfP12 {
 | |
| 	e.x.Add(&a.x, &b.x)
 | |
| 	e.y.Add(&a.y, &b.y)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
 | |
| 	e.x.Sub(&a.x, &b.x)
 | |
| 	e.y.Sub(&a.y, &b.y)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) Mul(a, b *gfP12) *gfP12 {
 | |
| 	tx := (&gfP6{}).Mul(&a.x, &b.y)
 | |
| 	t := (&gfP6{}).Mul(&b.x, &a.y)
 | |
| 	tx.Add(tx, t)
 | |
| 
 | |
| 	ty := (&gfP6{}).Mul(&a.y, &b.y)
 | |
| 	t.Mul(&a.x, &b.x).MulTau(t)
 | |
| 
 | |
| 	e.x.Set(tx)
 | |
| 	e.y.Add(ty, t)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) MulScalar(a *gfP12, b *gfP6) *gfP12 {
 | |
| 	e.x.Mul(&e.x, b)
 | |
| 	e.y.Mul(&e.y, b)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (c *gfP12) Exp(a *gfP12, power *big.Int) *gfP12 {
 | |
| 	sum := (&gfP12{}).SetOne()
 | |
| 	t := &gfP12{}
 | |
| 
 | |
| 	for i := power.BitLen() - 1; i >= 0; i-- {
 | |
| 		t.Square(sum)
 | |
| 		if power.Bit(i) != 0 {
 | |
| 			sum.Mul(t, a)
 | |
| 		} else {
 | |
| 			sum.Set(t)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	c.Set(sum)
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func (e *gfP12) Square(a *gfP12) *gfP12 {
 | |
| 	// Complex squaring algorithm
 | |
| 	v0 := (&gfP6{}).Mul(&a.x, &a.y)
 | |
| 
 | |
| 	t := (&gfP6{}).MulTau(&a.x)
 | |
| 	t.Add(&a.y, t)
 | |
| 	ty := (&gfP6{}).Add(&a.x, &a.y)
 | |
| 	ty.Mul(ty, t).Sub(ty, v0)
 | |
| 	t.MulTau(v0)
 | |
| 	ty.Sub(ty, t)
 | |
| 
 | |
| 	e.x.Add(v0, v0)
 | |
| 	e.y.Set(ty)
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (e *gfP12) Invert(a *gfP12) *gfP12 {
 | |
| 	// See "Implementing cryptographic pairings", M. Scott, section 3.2.
 | |
| 	// ftp://136.206.11.249/pub/crypto/pairings.pdf
 | |
| 	t1, t2 := &gfP6{}, &gfP6{}
 | |
| 
 | |
| 	t1.Square(&a.x)
 | |
| 	t2.Square(&a.y)
 | |
| 	t1.MulTau(t1).Sub(t2, t1)
 | |
| 	t2.Invert(t1)
 | |
| 
 | |
| 	e.x.Neg(&a.x)
 | |
| 	e.y.Set(&a.y)
 | |
| 	e.MulScalar(e, t2)
 | |
| 	return e
 | |
| }
 |