go-ethereum/rlp/rlpgen/types.go
Felix Lange 9b93564e21
rlp/rlpgen: RLP encoder code generator (#24251)
This change adds a code generator tool for creating EncodeRLP method
implementations. The generated methods will behave identically to the
reflect-based encoder, but run faster because there is no reflection overhead.

Package rlp now provides the EncoderBuffer type for incremental encoding. This
is used by generated code, but the new methods can also be useful for
hand-written encoders.

There is also experimental support for generating DecodeRLP, and some new
methods have been added to the existing Stream type to support this. Creating
decoders with rlpgen is not recommended at this time because the generated
methods create very poor error reporting.

More detail about package rlp changes:

* rlp: externalize struct field processing / validation

This adds a new package, rlp/internal/rlpstruct, in preparation for the
RLP encoder generator.

I think the struct field rules are subtle enough to warrant extracting
this into their own package, even though it means that a bunch of
adapter code is needed for converting to/from rlpstruct.Type.

* rlp: add more decoder methods (for rlpgen)

This adds new methods on rlp.Stream:

- Uint64, Uint32, Uint16, Uint8, BigInt
- ReadBytes for decoding into []byte
- MoreDataInList - useful for optional list elements

* rlp: expose encoder buffer (for rlpgen)

This exposes the internal encoder buffer type for use in EncodeRLP
implementations.

The new EncoderBuffer type is a sort-of 'opaque handle' for a pointer to
encBuffer. It is implemented this way to ensure the global encBuffer pool
is handled correctly.
2022-02-16 18:14:12 +01:00

99 lines
2.4 KiB
Go

package main
import (
"fmt"
"go/types"
"reflect"
)
// typeReflectKind gives the reflect.Kind that represents typ.
func typeReflectKind(typ types.Type) reflect.Kind {
switch typ := typ.(type) {
case *types.Basic:
k := typ.Kind()
if k >= types.Bool && k <= types.Complex128 {
// value order matches for Bool..Complex128
return reflect.Bool + reflect.Kind(k-types.Bool)
}
if k == types.String {
return reflect.String
}
if k == types.UnsafePointer {
return reflect.UnsafePointer
}
panic(fmt.Errorf("unhandled BasicKind %v", k))
case *types.Array:
return reflect.Array
case *types.Chan:
return reflect.Chan
case *types.Interface:
return reflect.Interface
case *types.Map:
return reflect.Map
case *types.Pointer:
return reflect.Ptr
case *types.Signature:
return reflect.Func
case *types.Slice:
return reflect.Slice
case *types.Struct:
return reflect.Struct
default:
panic(fmt.Errorf("unhandled type %T", typ))
}
}
// nonZeroCheck returns the expression that checks whether 'v' is a non-zero value of type 'vtyp'.
func nonZeroCheck(v string, vtyp types.Type, qualify types.Qualifier) string {
// Resolve type name.
typ := resolveUnderlying(vtyp)
switch typ := typ.(type) {
case *types.Basic:
k := typ.Kind()
switch {
case k == types.Bool:
return v
case k >= types.Uint && k <= types.Complex128:
return fmt.Sprintf("%s != 0", v)
case k == types.String:
return fmt.Sprintf(`%s != ""`, v)
default:
panic(fmt.Errorf("unhandled BasicKind %v", k))
}
case *types.Array, *types.Struct:
return fmt.Sprintf("%s != (%s{})", v, types.TypeString(vtyp, qualify))
case *types.Interface, *types.Pointer, *types.Signature:
return fmt.Sprintf("%s != nil", v)
case *types.Slice, *types.Map:
return fmt.Sprintf("len(%s) > 0", v)
default:
panic(fmt.Errorf("unhandled type %T", typ))
}
}
// isBigInt checks whether 'typ' is "math/big".Int.
func isBigInt(typ types.Type) bool {
named, ok := typ.(*types.Named)
if !ok {
return false
}
name := named.Obj()
return name.Pkg().Path() == "math/big" && name.Name() == "Int"
}
// isByte checks whether the underlying type of 'typ' is uint8.
func isByte(typ types.Type) bool {
basic, ok := resolveUnderlying(typ).(*types.Basic)
return ok && basic.Kind() == types.Uint8
}
func resolveUnderlying(typ types.Type) types.Type {
for {
t := typ.Underlying()
if t == typ {
return t
}
typ = t
}
}