210 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2018 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package mclock
 | |
| 
 | |
| import (
 | |
| 	"container/heap"
 | |
| 	"sync"
 | |
| 	"time"
 | |
| )
 | |
| 
 | |
| // Simulated implements a virtual Clock for reproducible time-sensitive tests. It
 | |
| // simulates a scheduler on a virtual timescale where actual processing takes zero time.
 | |
| //
 | |
| // The virtual clock doesn't advance on its own, call Run to advance it and execute timers.
 | |
| // Since there is no way to influence the Go scheduler, testing timeout behaviour involving
 | |
| // goroutines needs special care. A good way to test such timeouts is as follows: First
 | |
| // perform the action that is supposed to time out. Ensure that the timer you want to test
 | |
| // is created. Then run the clock until after the timeout. Finally observe the effect of
 | |
| // the timeout using a channel or semaphore.
 | |
| type Simulated struct {
 | |
| 	now       AbsTime
 | |
| 	scheduled simTimerHeap
 | |
| 	mu        sync.RWMutex
 | |
| 	cond      *sync.Cond
 | |
| }
 | |
| 
 | |
| // simTimer implements ChanTimer on the virtual clock.
 | |
| type simTimer struct {
 | |
| 	at    AbsTime
 | |
| 	index int // position in s.scheduled
 | |
| 	s     *Simulated
 | |
| 	do    func()
 | |
| 	ch    <-chan AbsTime
 | |
| }
 | |
| 
 | |
| func (s *Simulated) init() {
 | |
| 	if s.cond == nil {
 | |
| 		s.cond = sync.NewCond(&s.mu)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Run moves the clock by the given duration, executing all timers before that duration.
 | |
| func (s *Simulated) Run(d time.Duration) {
 | |
| 	s.mu.Lock()
 | |
| 	s.init()
 | |
| 
 | |
| 	end := s.now.Add(d)
 | |
| 	var do []func()
 | |
| 	for len(s.scheduled) > 0 && s.scheduled[0].at <= end {
 | |
| 		ev := heap.Pop(&s.scheduled).(*simTimer)
 | |
| 		do = append(do, ev.do)
 | |
| 	}
 | |
| 	s.now = end
 | |
| 	s.mu.Unlock()
 | |
| 
 | |
| 	for _, fn := range do {
 | |
| 		fn()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ActiveTimers returns the number of timers that haven't fired.
 | |
| func (s *Simulated) ActiveTimers() int {
 | |
| 	s.mu.RLock()
 | |
| 	defer s.mu.RUnlock()
 | |
| 
 | |
| 	return len(s.scheduled)
 | |
| }
 | |
| 
 | |
| // WaitForTimers waits until the clock has at least n scheduled timers.
 | |
| func (s *Simulated) WaitForTimers(n int) {
 | |
| 	s.mu.Lock()
 | |
| 	defer s.mu.Unlock()
 | |
| 	s.init()
 | |
| 
 | |
| 	for len(s.scheduled) < n {
 | |
| 		s.cond.Wait()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Now returns the current virtual time.
 | |
| func (s *Simulated) Now() AbsTime {
 | |
| 	s.mu.RLock()
 | |
| 	defer s.mu.RUnlock()
 | |
| 
 | |
| 	return s.now
 | |
| }
 | |
| 
 | |
| // Sleep blocks until the clock has advanced by d.
 | |
| func (s *Simulated) Sleep(d time.Duration) {
 | |
| 	<-s.After(d)
 | |
| }
 | |
| 
 | |
| // NewTimer creates a timer which fires when the clock has advanced by d.
 | |
| func (s *Simulated) NewTimer(d time.Duration) ChanTimer {
 | |
| 	s.mu.Lock()
 | |
| 	defer s.mu.Unlock()
 | |
| 
 | |
| 	ch := make(chan AbsTime, 1)
 | |
| 	var timer *simTimer
 | |
| 	timer = s.schedule(d, func() { ch <- timer.at })
 | |
| 	timer.ch = ch
 | |
| 	return timer
 | |
| }
 | |
| 
 | |
| // After returns a channel which receives the current time after the clock
 | |
| // has advanced by d.
 | |
| func (s *Simulated) After(d time.Duration) <-chan AbsTime {
 | |
| 	return s.NewTimer(d).C()
 | |
| }
 | |
| 
 | |
| // AfterFunc runs fn after the clock has advanced by d. Unlike with the system
 | |
| // clock, fn runs on the goroutine that calls Run.
 | |
| func (s *Simulated) AfterFunc(d time.Duration, fn func()) Timer {
 | |
| 	s.mu.Lock()
 | |
| 	defer s.mu.Unlock()
 | |
| 
 | |
| 	return s.schedule(d, fn)
 | |
| }
 | |
| 
 | |
| func (s *Simulated) schedule(d time.Duration, fn func()) *simTimer {
 | |
| 	s.init()
 | |
| 
 | |
| 	at := s.now.Add(d)
 | |
| 	ev := &simTimer{do: fn, at: at, s: s}
 | |
| 	heap.Push(&s.scheduled, ev)
 | |
| 	s.cond.Broadcast()
 | |
| 	return ev
 | |
| }
 | |
| 
 | |
| func (ev *simTimer) Stop() bool {
 | |
| 	ev.s.mu.Lock()
 | |
| 	defer ev.s.mu.Unlock()
 | |
| 
 | |
| 	if ev.index < 0 {
 | |
| 		return false
 | |
| 	}
 | |
| 	heap.Remove(&ev.s.scheduled, ev.index)
 | |
| 	ev.s.cond.Broadcast()
 | |
| 	ev.index = -1
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (ev *simTimer) Reset(d time.Duration) {
 | |
| 	if ev.ch == nil {
 | |
| 		panic("mclock: Reset() on timer created by AfterFunc")
 | |
| 	}
 | |
| 
 | |
| 	ev.s.mu.Lock()
 | |
| 	defer ev.s.mu.Unlock()
 | |
| 	ev.at = ev.s.now.Add(d)
 | |
| 	if ev.index < 0 {
 | |
| 		heap.Push(&ev.s.scheduled, ev) // already expired
 | |
| 	} else {
 | |
| 		heap.Fix(&ev.s.scheduled, ev.index) // hasn't fired yet, reschedule
 | |
| 	}
 | |
| 	ev.s.cond.Broadcast()
 | |
| }
 | |
| 
 | |
| func (ev *simTimer) C() <-chan AbsTime {
 | |
| 	if ev.ch == nil {
 | |
| 		panic("mclock: C() on timer created by AfterFunc")
 | |
| 	}
 | |
| 	return ev.ch
 | |
| }
 | |
| 
 | |
| type simTimerHeap []*simTimer
 | |
| 
 | |
| func (h *simTimerHeap) Len() int {
 | |
| 	return len(*h)
 | |
| }
 | |
| 
 | |
| func (h *simTimerHeap) Less(i, j int) bool {
 | |
| 	return (*h)[i].at < (*h)[j].at
 | |
| }
 | |
| 
 | |
| func (h *simTimerHeap) Swap(i, j int) {
 | |
| 	(*h)[i], (*h)[j] = (*h)[j], (*h)[i]
 | |
| 	(*h)[i].index = i
 | |
| 	(*h)[j].index = j
 | |
| }
 | |
| 
 | |
| func (h *simTimerHeap) Push(x interface{}) {
 | |
| 	t := x.(*simTimer)
 | |
| 	t.index = len(*h)
 | |
| 	*h = append(*h, t)
 | |
| }
 | |
| 
 | |
| func (h *simTimerHeap) Pop() interface{} {
 | |
| 	end := len(*h) - 1
 | |
| 	t := (*h)[end]
 | |
| 	t.index = -1
 | |
| 	(*h)[end] = nil
 | |
| 	*h = (*h)[:end]
 | |
| 	return t
 | |
| }
 |