git-subtree-dir: crypto/ecies git-subtree-mainline:49a739c8d6git-subtree-split:7c0f4a9b18
		
			
				
	
	
		
			490 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			490 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| package ecies
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"crypto/elliptic"
 | |
| 	"crypto/rand"
 | |
| 	"crypto/sha256"
 | |
| 	"flag"
 | |
| 	"fmt"
 | |
| 	"io/ioutil"
 | |
| 	"testing"
 | |
| )
 | |
| 
 | |
| var dumpEnc bool
 | |
| 
 | |
| func init() {
 | |
| 	flDump := flag.Bool("dump", false, "write encrypted test message to file")
 | |
| 	flag.Parse()
 | |
| 	dumpEnc = *flDump
 | |
| }
 | |
| 
 | |
| // Ensure the KDF generates appropriately sized keys.
 | |
| func TestKDF(t *testing.T) {
 | |
| 	msg := []byte("Hello, world")
 | |
| 	h := sha256.New()
 | |
| 
 | |
| 	k, err := concatKDF(h, msg, nil, 64)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 	if len(k) != 64 {
 | |
| 		fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n",
 | |
| 			len(k))
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| var skLen int
 | |
| var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
 | |
| 
 | |
| // cmpParams compares a set of ECIES parameters. We assume, as per the
 | |
| // docs, that AES is the only supported symmetric encryption algorithm.
 | |
| func cmpParams(p1, p2 *ECIESParams) bool {
 | |
| 	if p1.hashAlgo != p2.hashAlgo {
 | |
| 		return false
 | |
| 	} else if p1.KeyLen != p2.KeyLen {
 | |
| 		return false
 | |
| 	} else if p1.BlockSize != p2.BlockSize {
 | |
| 		return false
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // cmpPublic returns true if the two public keys represent the same pojnt.
 | |
| func cmpPublic(pub1, pub2 PublicKey) bool {
 | |
| 	if pub1.X == nil || pub1.Y == nil {
 | |
| 		fmt.Println(ErrInvalidPublicKey.Error())
 | |
| 		return false
 | |
| 	}
 | |
| 	if pub2.X == nil || pub2.Y == nil {
 | |
| 		fmt.Println(ErrInvalidPublicKey.Error())
 | |
| 		return false
 | |
| 	}
 | |
| 	pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y)
 | |
| 	pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y)
 | |
| 
 | |
| 	return bytes.Equal(pub1Out, pub2Out)
 | |
| }
 | |
| 
 | |
| // cmpPrivate returns true if the two private keys are the same.
 | |
| func cmpPrivate(prv1, prv2 *PrivateKey) bool {
 | |
| 	if prv1 == nil || prv1.D == nil {
 | |
| 		return false
 | |
| 	} else if prv2 == nil || prv2.D == nil {
 | |
| 		return false
 | |
| 	} else if prv1.D.Cmp(prv2.D) != 0 {
 | |
| 		return false
 | |
| 	} else {
 | |
| 		return cmpPublic(prv1.PublicKey, prv2.PublicKey)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Validate the ECDH component.
 | |
| func TestSharedKey(t *testing.T) {
 | |
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 	skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2
 | |
| 
 | |
| 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	if !bytes.Equal(sk1, sk2) {
 | |
| 		fmt.Println(ErrBadSharedKeys.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Verify that the key generation code fails when too much key data is
 | |
| // requested.
 | |
| func TestTooBigSharedKey(t *testing.T) {
 | |
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	_, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2)
 | |
| 	if err != ErrSharedKeyTooBig {
 | |
| 		fmt.Println("ecdh: shared key should be too large for curve")
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	_, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2)
 | |
| 	if err != ErrSharedKeyTooBig {
 | |
| 		fmt.Println("ecdh: shared key should be too large for curve")
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Ensure a public key can be successfully marshalled and unmarshalled, and
 | |
| // that the decoded key is the same as the original.
 | |
| func TestMarshalPublic(t *testing.T) {
 | |
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	out, err := MarshalPublic(&prv.PublicKey)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	pub, err := UnmarshalPublic(out)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	if !cmpPublic(prv.PublicKey, *pub) {
 | |
| 		fmt.Println("ecies: failed to unmarshal public key")
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Ensure that a private key can be encoded into DER format, and that
 | |
| // the resulting key is properly parsed back into a public key.
 | |
| func TestMarshalPrivate(t *testing.T) {
 | |
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	out, err := MarshalPrivate(prv)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	if dumpEnc {
 | |
| 		ioutil.WriteFile("test.out", out, 0644)
 | |
| 	}
 | |
| 
 | |
| 	prv2, err := UnmarshalPrivate(out)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	if !cmpPrivate(prv, prv2) {
 | |
| 		fmt.Println("ecdh: private key import failed")
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Ensure that a private key can be successfully encoded to PEM format, and
 | |
| // the resulting key is properly parsed back in.
 | |
| func TestPrivatePEM(t *testing.T) {
 | |
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	out, err := ExportPrivatePEM(prv)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	if dumpEnc {
 | |
| 		ioutil.WriteFile("test.key", out, 0644)
 | |
| 	}
 | |
| 
 | |
| 	prv2, err := ImportPrivatePEM(out)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	} else if !cmpPrivate(prv, prv2) {
 | |
| 		fmt.Println("ecdh: import from PEM failed")
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Ensure that a public key can be successfully encoded to PEM format, and
 | |
| // the resulting key is properly parsed back in.
 | |
| func TestPublicPEM(t *testing.T) {
 | |
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	out, err := ExportPublicPEM(&prv.PublicKey)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	if dumpEnc {
 | |
| 		ioutil.WriteFile("test.pem", out, 0644)
 | |
| 	}
 | |
| 
 | |
| 	pub2, err := ImportPublicPEM(out)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	} else if !cmpPublic(prv.PublicKey, *pub2) {
 | |
| 		fmt.Println("ecdh: import from PEM failed")
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmark the generation of P256 keys.
 | |
| func BenchmarkGenerateKeyP256(b *testing.B) {
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
 | |
| 			fmt.Println(err.Error())
 | |
| 			b.FailNow()
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Benchmark the generation of P256 shared keys.
 | |
| func BenchmarkGenSharedKeyP256(b *testing.B) {
 | |
| 	prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		b.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	for i := 0; i < b.N; i++ {
 | |
| 		_, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen)
 | |
| 		if err != nil {
 | |
| 			fmt.Println(err.Error())
 | |
| 			b.FailNow()
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Verify that an encrypted message can be successfully decrypted.
 | |
| func TestEncryptDecrypt(t *testing.T) {
 | |
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	message := []byte("Hello, world.")
 | |
| 	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	if !bytes.Equal(pt, message) {
 | |
| 		fmt.Println("ecies: plaintext doesn't match message")
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
 | |
| 	if err == nil {
 | |
| 		fmt.Println("ecies: encryption should not have succeeded")
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // TestMarshalEncryption validates the encode/decode produces a valid
 | |
| // ECIES encryption key.
 | |
| func TestMarshalEncryption(t *testing.T) {
 | |
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	out, err := MarshalPrivate(prv1)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	prv2, err := UnmarshalPrivate(out)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	message := []byte("Hello, world.")
 | |
| 	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	if !bytes.Equal(pt, message) {
 | |
| 		fmt.Println("ecies: plaintext doesn't match message")
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| type testCase struct {
 | |
| 	Curve    elliptic.Curve
 | |
| 	Name     string
 | |
| 	Expected bool
 | |
| }
 | |
| 
 | |
| var testCases = []testCase{
 | |
| 	testCase{
 | |
| 		Curve:    elliptic.P224(),
 | |
| 		Name:     "P224",
 | |
| 		Expected: false,
 | |
| 	},
 | |
| 	testCase{
 | |
| 		Curve:    elliptic.P256(),
 | |
| 		Name:     "P256",
 | |
| 		Expected: true,
 | |
| 	},
 | |
| 	testCase{
 | |
| 		Curve:    elliptic.P384(),
 | |
| 		Name:     "P384",
 | |
| 		Expected: true,
 | |
| 	},
 | |
| 	testCase{
 | |
| 		Curve:    elliptic.P521(),
 | |
| 		Name:     "P521",
 | |
| 		Expected: true,
 | |
| 	},
 | |
| }
 | |
| 
 | |
| // Test parameter selection for each curve, and that P224 fails automatic
 | |
| // parameter selection (see README for a discussion of P224). Ensures that
 | |
| // selecting a set of parameters automatically for the given curve works.
 | |
| func TestParamSelection(t *testing.T) {
 | |
| 	for _, c := range testCases {
 | |
| 		testParamSelection(t, c)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func testParamSelection(t *testing.T, c testCase) {
 | |
| 	params := ParamsFromCurve(c.Curve)
 | |
| 	if params == nil && c.Expected {
 | |
| 		fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name)
 | |
| 		t.FailNow()
 | |
| 	} else if params != nil && !c.Expected {
 | |
| 		fmt.Printf("ecies: parameters should be invalid (%s)\n",
 | |
| 			c.Name)
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	message := []byte("Hello, world.")
 | |
| 	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Printf("%s (%s)\n", err.Error(), c.Name)
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	if !bytes.Equal(pt, message) {
 | |
| 		fmt.Printf("ecies: plaintext doesn't match message (%s)\n",
 | |
| 			c.Name)
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil)
 | |
| 	if err == nil {
 | |
| 		fmt.Printf("ecies: encryption should not have succeeded (%s)\n",
 | |
| 			c.Name)
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| // Ensure that the basic public key validation in the decryption operation
 | |
| // works.
 | |
| func TestBasicKeyValidation(t *testing.T) {
 | |
| 	badBytes := []byte{0, 1, 5, 6, 7, 8, 9}
 | |
| 
 | |
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	message := []byte("Hello, world.")
 | |
| 	ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
 | |
| 	if err != nil {
 | |
| 		fmt.Println(err.Error())
 | |
| 		t.FailNow()
 | |
| 	}
 | |
| 
 | |
| 	for _, b := range badBytes {
 | |
| 		ct[0] = b
 | |
| 		_, err := prv.Decrypt(rand.Reader, ct, nil, nil)
 | |
| 		if err != ErrInvalidPublicKey {
 | |
| 			fmt.Println("ecies: validated an invalid key")
 | |
| 			t.FailNow()
 | |
| 		}
 | |
| 	}
 | |
| }
 |