514 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			514 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2020 The go-ethereum Authors
 | |
| // This file is part of the go-ethereum library.
 | |
| //
 | |
| // The go-ethereum library is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU Lesser General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // The go-ethereum library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
| // GNU Lesser General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU Lesser General Public License
 | |
| // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| package trie
 | |
| 
 | |
| import (
 | |
| 	"bufio"
 | |
| 	"bytes"
 | |
| 	"encoding/gob"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"sync"
 | |
| 
 | |
| 	"github.com/ethereum/go-ethereum/common"
 | |
| 	"github.com/ethereum/go-ethereum/ethdb"
 | |
| 	"github.com/ethereum/go-ethereum/log"
 | |
| 	"github.com/ethereum/go-ethereum/rlp"
 | |
| )
 | |
| 
 | |
| var ErrCommitDisabled = errors.New("no database for committing")
 | |
| 
 | |
| var stPool = sync.Pool{
 | |
| 	New: func() interface{} {
 | |
| 		return NewStackTrie(nil)
 | |
| 	},
 | |
| }
 | |
| 
 | |
| func stackTrieFromPool(db ethdb.KeyValueWriter) *StackTrie {
 | |
| 	st := stPool.Get().(*StackTrie)
 | |
| 	st.db = db
 | |
| 	return st
 | |
| }
 | |
| 
 | |
| func returnToPool(st *StackTrie) {
 | |
| 	st.Reset()
 | |
| 	stPool.Put(st)
 | |
| }
 | |
| 
 | |
| // StackTrie is a trie implementation that expects keys to be inserted
 | |
| // in order. Once it determines that a subtree will no longer be inserted
 | |
| // into, it will hash it and free up the memory it uses.
 | |
| type StackTrie struct {
 | |
| 	nodeType  uint8                // node type (as in branch, ext, leaf)
 | |
| 	val       []byte               // value contained by this node if it's a leaf
 | |
| 	key       []byte               // key chunk covered by this (full|ext) node
 | |
| 	keyOffset int                  // offset of the key chunk inside a full key
 | |
| 	children  [16]*StackTrie       // list of children (for fullnodes and exts)
 | |
| 	db        ethdb.KeyValueWriter // Pointer to the commit db, can be nil
 | |
| }
 | |
| 
 | |
| // NewStackTrie allocates and initializes an empty trie.
 | |
| func NewStackTrie(db ethdb.KeyValueWriter) *StackTrie {
 | |
| 	return &StackTrie{
 | |
| 		nodeType: emptyNode,
 | |
| 		db:       db,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // NewFromBinary initialises a serialized stacktrie with the given db.
 | |
| func NewFromBinary(data []byte, db ethdb.KeyValueWriter) (*StackTrie, error) {
 | |
| 	var st StackTrie
 | |
| 	if err := st.UnmarshalBinary(data); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	// If a database is used, we need to recursively add it to every child
 | |
| 	if db != nil {
 | |
| 		st.setDb(db)
 | |
| 	}
 | |
| 	return &st, nil
 | |
| }
 | |
| 
 | |
| // MarshalBinary implements encoding.BinaryMarshaler
 | |
| func (st *StackTrie) MarshalBinary() (data []byte, err error) {
 | |
| 	var (
 | |
| 		b bytes.Buffer
 | |
| 		w = bufio.NewWriter(&b)
 | |
| 	)
 | |
| 	if err := gob.NewEncoder(w).Encode(struct {
 | |
| 		Nodetype  uint8
 | |
| 		Val       []byte
 | |
| 		Key       []byte
 | |
| 		KeyOffset uint8
 | |
| 	}{
 | |
| 		st.nodeType,
 | |
| 		st.val,
 | |
| 		st.key,
 | |
| 		uint8(st.keyOffset),
 | |
| 	}); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	for _, child := range st.children {
 | |
| 		if child == nil {
 | |
| 			w.WriteByte(0)
 | |
| 			continue
 | |
| 		}
 | |
| 		w.WriteByte(1)
 | |
| 		if childData, err := child.MarshalBinary(); err != nil {
 | |
| 			return nil, err
 | |
| 		} else {
 | |
| 			w.Write(childData)
 | |
| 		}
 | |
| 	}
 | |
| 	w.Flush()
 | |
| 	return b.Bytes(), nil
 | |
| }
 | |
| 
 | |
| // UnmarshalBinary implements encoding.BinaryUnmarshaler
 | |
| func (st *StackTrie) UnmarshalBinary(data []byte) error {
 | |
| 	r := bytes.NewReader(data)
 | |
| 	return st.unmarshalBinary(r)
 | |
| }
 | |
| 
 | |
| func (st *StackTrie) unmarshalBinary(r io.Reader) error {
 | |
| 	var dec struct {
 | |
| 		Nodetype  uint8
 | |
| 		Val       []byte
 | |
| 		Key       []byte
 | |
| 		KeyOffset uint8
 | |
| 	}
 | |
| 	gob.NewDecoder(r).Decode(&dec)
 | |
| 	st.nodeType = dec.Nodetype
 | |
| 	st.val = dec.Val
 | |
| 	st.key = dec.Key
 | |
| 	st.keyOffset = int(dec.KeyOffset)
 | |
| 
 | |
| 	var hasChild = make([]byte, 1)
 | |
| 	for i := range st.children {
 | |
| 		if _, err := r.Read(hasChild); err != nil {
 | |
| 			return err
 | |
| 		} else if hasChild[0] == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		var child StackTrie
 | |
| 		child.unmarshalBinary(r)
 | |
| 		st.children[i] = &child
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (st *StackTrie) setDb(db ethdb.KeyValueWriter) {
 | |
| 	st.db = db
 | |
| 	for _, child := range st.children {
 | |
| 		if child != nil {
 | |
| 			child.setDb(db)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func newLeaf(ko int, key, val []byte, db ethdb.KeyValueWriter) *StackTrie {
 | |
| 	st := stackTrieFromPool(db)
 | |
| 	st.nodeType = leafNode
 | |
| 	st.keyOffset = ko
 | |
| 	st.key = append(st.key, key[ko:]...)
 | |
| 	st.val = val
 | |
| 	return st
 | |
| }
 | |
| 
 | |
| func newExt(ko int, key []byte, child *StackTrie, db ethdb.KeyValueWriter) *StackTrie {
 | |
| 	st := stackTrieFromPool(db)
 | |
| 	st.nodeType = extNode
 | |
| 	st.keyOffset = ko
 | |
| 	st.key = append(st.key, key[ko:]...)
 | |
| 	st.children[0] = child
 | |
| 	return st
 | |
| }
 | |
| 
 | |
| // List all values that StackTrie#nodeType can hold
 | |
| const (
 | |
| 	emptyNode = iota
 | |
| 	branchNode
 | |
| 	extNode
 | |
| 	leafNode
 | |
| 	hashedNode
 | |
| )
 | |
| 
 | |
| // TryUpdate inserts a (key, value) pair into the stack trie
 | |
| func (st *StackTrie) TryUpdate(key, value []byte) error {
 | |
| 	k := keybytesToHex(key)
 | |
| 	if len(value) == 0 {
 | |
| 		panic("deletion not supported")
 | |
| 	}
 | |
| 	st.insert(k[:len(k)-1], value)
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (st *StackTrie) Update(key, value []byte) {
 | |
| 	if err := st.TryUpdate(key, value); err != nil {
 | |
| 		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (st *StackTrie) Reset() {
 | |
| 	st.db = nil
 | |
| 	st.key = st.key[:0]
 | |
| 	st.val = nil
 | |
| 	for i := range st.children {
 | |
| 		st.children[i] = nil
 | |
| 	}
 | |
| 	st.nodeType = emptyNode
 | |
| 	st.keyOffset = 0
 | |
| }
 | |
| 
 | |
| // Helper function that, given a full key, determines the index
 | |
| // at which the chunk pointed by st.keyOffset is different from
 | |
| // the same chunk in the full key.
 | |
| func (st *StackTrie) getDiffIndex(key []byte) int {
 | |
| 	diffindex := 0
 | |
| 	for ; diffindex < len(st.key) && st.key[diffindex] == key[st.keyOffset+diffindex]; diffindex++ {
 | |
| 	}
 | |
| 	return diffindex
 | |
| }
 | |
| 
 | |
| // Helper function to that inserts a (key, value) pair into
 | |
| // the trie.
 | |
| func (st *StackTrie) insert(key, value []byte) {
 | |
| 	switch st.nodeType {
 | |
| 	case branchNode: /* Branch */
 | |
| 		idx := int(key[st.keyOffset])
 | |
| 		// Unresolve elder siblings
 | |
| 		for i := idx - 1; i >= 0; i-- {
 | |
| 			if st.children[i] != nil {
 | |
| 				if st.children[i].nodeType != hashedNode {
 | |
| 					st.children[i].hash()
 | |
| 				}
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 		// Add new child
 | |
| 		if st.children[idx] == nil {
 | |
| 			st.children[idx] = stackTrieFromPool(st.db)
 | |
| 			st.children[idx].keyOffset = st.keyOffset + 1
 | |
| 		}
 | |
| 		st.children[idx].insert(key, value)
 | |
| 	case extNode: /* Ext */
 | |
| 		// Compare both key chunks and see where they differ
 | |
| 		diffidx := st.getDiffIndex(key)
 | |
| 
 | |
| 		// Check if chunks are identical. If so, recurse into
 | |
| 		// the child node. Otherwise, the key has to be split
 | |
| 		// into 1) an optional common prefix, 2) the fullnode
 | |
| 		// representing the two differing path, and 3) a leaf
 | |
| 		// for each of the differentiated subtrees.
 | |
| 		if diffidx == len(st.key) {
 | |
| 			// Ext key and key segment are identical, recurse into
 | |
| 			// the child node.
 | |
| 			st.children[0].insert(key, value)
 | |
| 			return
 | |
| 		}
 | |
| 		// Save the original part. Depending if the break is
 | |
| 		// at the extension's last byte or not, create an
 | |
| 		// intermediate extension or use the extension's child
 | |
| 		// node directly.
 | |
| 		var n *StackTrie
 | |
| 		if diffidx < len(st.key)-1 {
 | |
| 			n = newExt(diffidx+1, st.key, st.children[0], st.db)
 | |
| 		} else {
 | |
| 			// Break on the last byte, no need to insert
 | |
| 			// an extension node: reuse the current node
 | |
| 			n = st.children[0]
 | |
| 		}
 | |
| 		// Convert to hash
 | |
| 		n.hash()
 | |
| 		var p *StackTrie
 | |
| 		if diffidx == 0 {
 | |
| 			// the break is on the first byte, so
 | |
| 			// the current node is converted into
 | |
| 			// a branch node.
 | |
| 			st.children[0] = nil
 | |
| 			p = st
 | |
| 			st.nodeType = branchNode
 | |
| 		} else {
 | |
| 			// the common prefix is at least one byte
 | |
| 			// long, insert a new intermediate branch
 | |
| 			// node.
 | |
| 			st.children[0] = stackTrieFromPool(st.db)
 | |
| 			st.children[0].nodeType = branchNode
 | |
| 			st.children[0].keyOffset = st.keyOffset + diffidx
 | |
| 			p = st.children[0]
 | |
| 		}
 | |
| 		// Create a leaf for the inserted part
 | |
| 		o := newLeaf(st.keyOffset+diffidx+1, key, value, st.db)
 | |
| 
 | |
| 		// Insert both child leaves where they belong:
 | |
| 		origIdx := st.key[diffidx]
 | |
| 		newIdx := key[diffidx+st.keyOffset]
 | |
| 		p.children[origIdx] = n
 | |
| 		p.children[newIdx] = o
 | |
| 		st.key = st.key[:diffidx]
 | |
| 
 | |
| 	case leafNode: /* Leaf */
 | |
| 		// Compare both key chunks and see where they differ
 | |
| 		diffidx := st.getDiffIndex(key)
 | |
| 
 | |
| 		// Overwriting a key isn't supported, which means that
 | |
| 		// the current leaf is expected to be split into 1) an
 | |
| 		// optional extension for the common prefix of these 2
 | |
| 		// keys, 2) a fullnode selecting the path on which the
 | |
| 		// keys differ, and 3) one leaf for the differentiated
 | |
| 		// component of each key.
 | |
| 		if diffidx >= len(st.key) {
 | |
| 			panic("Trying to insert into existing key")
 | |
| 		}
 | |
| 
 | |
| 		// Check if the split occurs at the first nibble of the
 | |
| 		// chunk. In that case, no prefix extnode is necessary.
 | |
| 		// Otherwise, create that
 | |
| 		var p *StackTrie
 | |
| 		if diffidx == 0 {
 | |
| 			// Convert current leaf into a branch
 | |
| 			st.nodeType = branchNode
 | |
| 			p = st
 | |
| 			st.children[0] = nil
 | |
| 		} else {
 | |
| 			// Convert current node into an ext,
 | |
| 			// and insert a child branch node.
 | |
| 			st.nodeType = extNode
 | |
| 			st.children[0] = NewStackTrie(st.db)
 | |
| 			st.children[0].nodeType = branchNode
 | |
| 			st.children[0].keyOffset = st.keyOffset + diffidx
 | |
| 			p = st.children[0]
 | |
| 		}
 | |
| 
 | |
| 		// Create the two child leaves: the one containing the
 | |
| 		// original value and the one containing the new value
 | |
| 		// The child leave will be hashed directly in order to
 | |
| 		// free up some memory.
 | |
| 		origIdx := st.key[diffidx]
 | |
| 		p.children[origIdx] = newLeaf(diffidx+1, st.key, st.val, st.db)
 | |
| 		p.children[origIdx].hash()
 | |
| 
 | |
| 		newIdx := key[diffidx+st.keyOffset]
 | |
| 		p.children[newIdx] = newLeaf(p.keyOffset+1, key, value, st.db)
 | |
| 
 | |
| 		// Finally, cut off the key part that has been passed
 | |
| 		// over to the children.
 | |
| 		st.key = st.key[:diffidx]
 | |
| 		st.val = nil
 | |
| 	case emptyNode: /* Empty */
 | |
| 		st.nodeType = leafNode
 | |
| 		st.key = key[st.keyOffset:]
 | |
| 		st.val = value
 | |
| 	case hashedNode:
 | |
| 		panic("trying to insert into hash")
 | |
| 	default:
 | |
| 		panic("invalid type")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // hash() hashes the node 'st' and converts it into 'hashedNode', if possible.
 | |
| // Possible outcomes:
 | |
| // 1. The rlp-encoded value was >= 32 bytes:
 | |
| //  - Then the 32-byte `hash` will be accessible in `st.val`.
 | |
| //  - And the 'st.type' will be 'hashedNode'
 | |
| // 2. The rlp-encoded value was < 32 bytes
 | |
| //  - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
 | |
| //  - And the 'st.type' will be 'hashedNode' AGAIN
 | |
| //
 | |
| // This method will also:
 | |
| // set 'st.type' to hashedNode
 | |
| // clear 'st.key'
 | |
| func (st *StackTrie) hash() {
 | |
| 	/* Shortcut if node is already hashed */
 | |
| 	if st.nodeType == hashedNode {
 | |
| 		return
 | |
| 	}
 | |
| 	// The 'hasher' is taken from a pool, but we don't actually
 | |
| 	// claim an instance until all children are done with their hashing,
 | |
| 	// and we actually need one
 | |
| 	var h *hasher
 | |
| 
 | |
| 	switch st.nodeType {
 | |
| 	case branchNode:
 | |
| 		var nodes [17]node
 | |
| 		for i, child := range st.children {
 | |
| 			if child == nil {
 | |
| 				nodes[i] = nilValueNode
 | |
| 				continue
 | |
| 			}
 | |
| 			child.hash()
 | |
| 			if len(child.val) < 32 {
 | |
| 				nodes[i] = rawNode(child.val)
 | |
| 			} else {
 | |
| 				nodes[i] = hashNode(child.val)
 | |
| 			}
 | |
| 			st.children[i] = nil // Reclaim mem from subtree
 | |
| 			returnToPool(child)
 | |
| 		}
 | |
| 		nodes[16] = nilValueNode
 | |
| 		h = newHasher(false)
 | |
| 		defer returnHasherToPool(h)
 | |
| 		h.tmp.Reset()
 | |
| 		if err := rlp.Encode(&h.tmp, nodes); err != nil {
 | |
| 			panic(err)
 | |
| 		}
 | |
| 	case extNode:
 | |
| 		st.children[0].hash()
 | |
| 		h = newHasher(false)
 | |
| 		defer returnHasherToPool(h)
 | |
| 		h.tmp.Reset()
 | |
| 		var valuenode node
 | |
| 		if len(st.children[0].val) < 32 {
 | |
| 			valuenode = rawNode(st.children[0].val)
 | |
| 		} else {
 | |
| 			valuenode = hashNode(st.children[0].val)
 | |
| 		}
 | |
| 		n := struct {
 | |
| 			Key []byte
 | |
| 			Val node
 | |
| 		}{
 | |
| 			Key: hexToCompact(st.key),
 | |
| 			Val: valuenode,
 | |
| 		}
 | |
| 		if err := rlp.Encode(&h.tmp, n); err != nil {
 | |
| 			panic(err)
 | |
| 		}
 | |
| 		returnToPool(st.children[0])
 | |
| 		st.children[0] = nil // Reclaim mem from subtree
 | |
| 	case leafNode:
 | |
| 		h = newHasher(false)
 | |
| 		defer returnHasherToPool(h)
 | |
| 		h.tmp.Reset()
 | |
| 		st.key = append(st.key, byte(16))
 | |
| 		sz := hexToCompactInPlace(st.key)
 | |
| 		n := [][]byte{st.key[:sz], st.val}
 | |
| 		if err := rlp.Encode(&h.tmp, n); err != nil {
 | |
| 			panic(err)
 | |
| 		}
 | |
| 	case emptyNode:
 | |
| 		st.val = emptyRoot.Bytes()
 | |
| 		st.key = st.key[:0]
 | |
| 		st.nodeType = hashedNode
 | |
| 		return
 | |
| 	default:
 | |
| 		panic("Invalid node type")
 | |
| 	}
 | |
| 	st.key = st.key[:0]
 | |
| 	st.nodeType = hashedNode
 | |
| 	if len(h.tmp) < 32 {
 | |
| 		st.val = common.CopyBytes(h.tmp)
 | |
| 		return
 | |
| 	}
 | |
| 	// Write the hash to the 'val'. We allocate a new val here to not mutate
 | |
| 	// input values
 | |
| 	st.val = make([]byte, 32)
 | |
| 	h.sha.Reset()
 | |
| 	h.sha.Write(h.tmp)
 | |
| 	h.sha.Read(st.val)
 | |
| 	if st.db != nil {
 | |
| 		// TODO! Is it safe to Put the slice here?
 | |
| 		// Do all db implementations copy the value provided?
 | |
| 		st.db.Put(st.val, h.tmp)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Hash returns the hash of the current node
 | |
| func (st *StackTrie) Hash() (h common.Hash) {
 | |
| 	st.hash()
 | |
| 	if len(st.val) != 32 {
 | |
| 		// If the node's RLP isn't 32 bytes long, the node will not
 | |
| 		// be hashed, and instead contain the  rlp-encoding of the
 | |
| 		// node. For the top level node, we need to force the hashing.
 | |
| 		ret := make([]byte, 32)
 | |
| 		h := newHasher(false)
 | |
| 		defer returnHasherToPool(h)
 | |
| 		h.sha.Reset()
 | |
| 		h.sha.Write(st.val)
 | |
| 		h.sha.Read(ret)
 | |
| 		return common.BytesToHash(ret)
 | |
| 	}
 | |
| 	return common.BytesToHash(st.val)
 | |
| }
 | |
| 
 | |
| // Commit will firstly hash the entrie trie if it's still not hashed
 | |
| // and then commit all nodes to the associated database. Actually most
 | |
| // of the trie nodes MAY have been committed already. The main purpose
 | |
| // here is to commit the root node.
 | |
| //
 | |
| // The associated database is expected, otherwise the whole commit
 | |
| // functionality should be disabled.
 | |
| func (st *StackTrie) Commit() (common.Hash, error) {
 | |
| 	if st.db == nil {
 | |
| 		return common.Hash{}, ErrCommitDisabled
 | |
| 	}
 | |
| 	st.hash()
 | |
| 	if len(st.val) != 32 {
 | |
| 		// If the node's RLP isn't 32 bytes long, the node will not
 | |
| 		// be hashed (and committed), and instead contain the  rlp-encoding of the
 | |
| 		// node. For the top level node, we need to force the hashing+commit.
 | |
| 		ret := make([]byte, 32)
 | |
| 		h := newHasher(false)
 | |
| 		defer returnHasherToPool(h)
 | |
| 		h.sha.Reset()
 | |
| 		h.sha.Write(st.val)
 | |
| 		h.sha.Read(ret)
 | |
| 		st.db.Put(ret, st.val)
 | |
| 		return common.BytesToHash(ret), nil
 | |
| 	}
 | |
| 	return common.BytesToHash(st.val), nil
 | |
| }
 |