* trie: fix error in stacktrie not committing small roots * fuzzers: make trie-fuzzer use correct returnvalues * trie: improved tests * tests/fuzzers: fuzzer for stacktrie vs regular trie * test/fuzzers: make stacktrie fuzzer use 32-byte keys * trie: fix error in stacktrie with small nodes * trie: add (skipped) testcase for stacktrie * tests/fuzzers: address review comments for stacktrie fuzzer * trie: fix docs in stacktrie
		
			
				
	
	
		
			427 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			427 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2020 The go-ethereum Authors
 | 
						|
// This file is part of the go-ethereum library.
 | 
						|
//
 | 
						|
// The go-ethereum library is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU Lesser General Public License as published by
 | 
						|
// the Free Software Foundation, either version 3 of the License, or
 | 
						|
// (at your option) any later version.
 | 
						|
//
 | 
						|
// The go-ethereum library is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | 
						|
// GNU Lesser General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Lesser General Public License
 | 
						|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
package trie
 | 
						|
 | 
						|
import (
 | 
						|
	"errors"
 | 
						|
	"fmt"
 | 
						|
	"sync"
 | 
						|
 | 
						|
	"github.com/ethereum/go-ethereum/common"
 | 
						|
	"github.com/ethereum/go-ethereum/ethdb"
 | 
						|
	"github.com/ethereum/go-ethereum/log"
 | 
						|
	"github.com/ethereum/go-ethereum/rlp"
 | 
						|
)
 | 
						|
 | 
						|
var ErrCommitDisabled = errors.New("no database for committing")
 | 
						|
 | 
						|
var stPool = sync.Pool{
 | 
						|
	New: func() interface{} {
 | 
						|
		return NewStackTrie(nil)
 | 
						|
	},
 | 
						|
}
 | 
						|
 | 
						|
func stackTrieFromPool(db ethdb.KeyValueStore) *StackTrie {
 | 
						|
	st := stPool.Get().(*StackTrie)
 | 
						|
	st.db = db
 | 
						|
	return st
 | 
						|
}
 | 
						|
 | 
						|
func returnToPool(st *StackTrie) {
 | 
						|
	st.Reset()
 | 
						|
	stPool.Put(st)
 | 
						|
}
 | 
						|
 | 
						|
// StackTrie is a trie implementation that expects keys to be inserted
 | 
						|
// in order. Once it determines that a subtree will no longer be inserted
 | 
						|
// into, it will hash it and free up the memory it uses.
 | 
						|
type StackTrie struct {
 | 
						|
	nodeType  uint8          // node type (as in branch, ext, leaf)
 | 
						|
	val       []byte         // value contained by this node if it's a leaf
 | 
						|
	key       []byte         // key chunk covered by this (full|ext) node
 | 
						|
	keyOffset int            // offset of the key chunk inside a full key
 | 
						|
	children  [16]*StackTrie // list of children (for fullnodes and exts)
 | 
						|
 | 
						|
	db ethdb.KeyValueStore // Pointer to the commit db, can be nil
 | 
						|
}
 | 
						|
 | 
						|
// NewStackTrie allocates and initializes an empty trie.
 | 
						|
func NewStackTrie(db ethdb.KeyValueStore) *StackTrie {
 | 
						|
	return &StackTrie{
 | 
						|
		nodeType: emptyNode,
 | 
						|
		db:       db,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func newLeaf(ko int, key, val []byte, db ethdb.KeyValueStore) *StackTrie {
 | 
						|
	st := stackTrieFromPool(db)
 | 
						|
	st.nodeType = leafNode
 | 
						|
	st.keyOffset = ko
 | 
						|
	st.key = append(st.key, key[ko:]...)
 | 
						|
	st.val = val
 | 
						|
	return st
 | 
						|
}
 | 
						|
 | 
						|
func newExt(ko int, key []byte, child *StackTrie, db ethdb.KeyValueStore) *StackTrie {
 | 
						|
	st := stackTrieFromPool(db)
 | 
						|
	st.nodeType = extNode
 | 
						|
	st.keyOffset = ko
 | 
						|
	st.key = append(st.key, key[ko:]...)
 | 
						|
	st.children[0] = child
 | 
						|
	return st
 | 
						|
}
 | 
						|
 | 
						|
// List all values that StackTrie#nodeType can hold
 | 
						|
const (
 | 
						|
	emptyNode = iota
 | 
						|
	branchNode
 | 
						|
	extNode
 | 
						|
	leafNode
 | 
						|
	hashedNode
 | 
						|
)
 | 
						|
 | 
						|
// TryUpdate inserts a (key, value) pair into the stack trie
 | 
						|
func (st *StackTrie) TryUpdate(key, value []byte) error {
 | 
						|
	k := keybytesToHex(key)
 | 
						|
	if len(value) == 0 {
 | 
						|
		panic("deletion not supported")
 | 
						|
	}
 | 
						|
	st.insert(k[:len(k)-1], value)
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
func (st *StackTrie) Update(key, value []byte) {
 | 
						|
	if err := st.TryUpdate(key, value); err != nil {
 | 
						|
		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (st *StackTrie) Reset() {
 | 
						|
	st.db = nil
 | 
						|
	st.key = st.key[:0]
 | 
						|
	st.val = nil
 | 
						|
	for i := range st.children {
 | 
						|
		st.children[i] = nil
 | 
						|
	}
 | 
						|
	st.nodeType = emptyNode
 | 
						|
	st.keyOffset = 0
 | 
						|
}
 | 
						|
 | 
						|
// Helper function that, given a full key, determines the index
 | 
						|
// at which the chunk pointed by st.keyOffset is different from
 | 
						|
// the same chunk in the full key.
 | 
						|
func (st *StackTrie) getDiffIndex(key []byte) int {
 | 
						|
	diffindex := 0
 | 
						|
	for ; diffindex < len(st.key) && st.key[diffindex] == key[st.keyOffset+diffindex]; diffindex++ {
 | 
						|
	}
 | 
						|
	return diffindex
 | 
						|
}
 | 
						|
 | 
						|
// Helper function to that inserts a (key, value) pair into
 | 
						|
// the trie.
 | 
						|
func (st *StackTrie) insert(key, value []byte) {
 | 
						|
	switch st.nodeType {
 | 
						|
	case branchNode: /* Branch */
 | 
						|
		idx := int(key[st.keyOffset])
 | 
						|
		// Unresolve elder siblings
 | 
						|
		for i := idx - 1; i >= 0; i-- {
 | 
						|
			if st.children[i] != nil {
 | 
						|
				if st.children[i].nodeType != hashedNode {
 | 
						|
					st.children[i].hash()
 | 
						|
				}
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
		// Add new child
 | 
						|
		if st.children[idx] == nil {
 | 
						|
			st.children[idx] = stackTrieFromPool(st.db)
 | 
						|
			st.children[idx].keyOffset = st.keyOffset + 1
 | 
						|
		}
 | 
						|
		st.children[idx].insert(key, value)
 | 
						|
	case extNode: /* Ext */
 | 
						|
		// Compare both key chunks and see where they differ
 | 
						|
		diffidx := st.getDiffIndex(key)
 | 
						|
 | 
						|
		// Check if chunks are identical. If so, recurse into
 | 
						|
		// the child node. Otherwise, the key has to be split
 | 
						|
		// into 1) an optional common prefix, 2) the fullnode
 | 
						|
		// representing the two differing path, and 3) a leaf
 | 
						|
		// for each of the differentiated subtrees.
 | 
						|
		if diffidx == len(st.key) {
 | 
						|
			// Ext key and key segment are identical, recurse into
 | 
						|
			// the child node.
 | 
						|
			st.children[0].insert(key, value)
 | 
						|
			return
 | 
						|
		}
 | 
						|
		// Save the original part. Depending if the break is
 | 
						|
		// at the extension's last byte or not, create an
 | 
						|
		// intermediate extension or use the extension's child
 | 
						|
		// node directly.
 | 
						|
		var n *StackTrie
 | 
						|
		if diffidx < len(st.key)-1 {
 | 
						|
			n = newExt(diffidx+1, st.key, st.children[0], st.db)
 | 
						|
		} else {
 | 
						|
			// Break on the last byte, no need to insert
 | 
						|
			// an extension node: reuse the current node
 | 
						|
			n = st.children[0]
 | 
						|
		}
 | 
						|
		// Convert to hash
 | 
						|
		n.hash()
 | 
						|
		var p *StackTrie
 | 
						|
		if diffidx == 0 {
 | 
						|
			// the break is on the first byte, so
 | 
						|
			// the current node is converted into
 | 
						|
			// a branch node.
 | 
						|
			st.children[0] = nil
 | 
						|
			p = st
 | 
						|
			st.nodeType = branchNode
 | 
						|
		} else {
 | 
						|
			// the common prefix is at least one byte
 | 
						|
			// long, insert a new intermediate branch
 | 
						|
			// node.
 | 
						|
			st.children[0] = stackTrieFromPool(st.db)
 | 
						|
			st.children[0].nodeType = branchNode
 | 
						|
			st.children[0].keyOffset = st.keyOffset + diffidx
 | 
						|
			p = st.children[0]
 | 
						|
		}
 | 
						|
		// Create a leaf for the inserted part
 | 
						|
		o := newLeaf(st.keyOffset+diffidx+1, key, value, st.db)
 | 
						|
 | 
						|
		// Insert both child leaves where they belong:
 | 
						|
		origIdx := st.key[diffidx]
 | 
						|
		newIdx := key[diffidx+st.keyOffset]
 | 
						|
		p.children[origIdx] = n
 | 
						|
		p.children[newIdx] = o
 | 
						|
		st.key = st.key[:diffidx]
 | 
						|
 | 
						|
	case leafNode: /* Leaf */
 | 
						|
		// Compare both key chunks and see where they differ
 | 
						|
		diffidx := st.getDiffIndex(key)
 | 
						|
 | 
						|
		// Overwriting a key isn't supported, which means that
 | 
						|
		// the current leaf is expected to be split into 1) an
 | 
						|
		// optional extension for the common prefix of these 2
 | 
						|
		// keys, 2) a fullnode selecting the path on which the
 | 
						|
		// keys differ, and 3) one leaf for the differentiated
 | 
						|
		// component of each key.
 | 
						|
		if diffidx >= len(st.key) {
 | 
						|
			panic("Trying to insert into existing key")
 | 
						|
		}
 | 
						|
 | 
						|
		// Check if the split occurs at the first nibble of the
 | 
						|
		// chunk. In that case, no prefix extnode is necessary.
 | 
						|
		// Otherwise, create that
 | 
						|
		var p *StackTrie
 | 
						|
		if diffidx == 0 {
 | 
						|
			// Convert current leaf into a branch
 | 
						|
			st.nodeType = branchNode
 | 
						|
			p = st
 | 
						|
			st.children[0] = nil
 | 
						|
		} else {
 | 
						|
			// Convert current node into an ext,
 | 
						|
			// and insert a child branch node.
 | 
						|
			st.nodeType = extNode
 | 
						|
			st.children[0] = NewStackTrie(st.db)
 | 
						|
			st.children[0].nodeType = branchNode
 | 
						|
			st.children[0].keyOffset = st.keyOffset + diffidx
 | 
						|
			p = st.children[0]
 | 
						|
		}
 | 
						|
 | 
						|
		// Create the two child leaves: the one containing the
 | 
						|
		// original value and the one containing the new value
 | 
						|
		// The child leave will be hashed directly in order to
 | 
						|
		// free up some memory.
 | 
						|
		origIdx := st.key[diffidx]
 | 
						|
		p.children[origIdx] = newLeaf(diffidx+1, st.key, st.val, st.db)
 | 
						|
		p.children[origIdx].hash()
 | 
						|
 | 
						|
		newIdx := key[diffidx+st.keyOffset]
 | 
						|
		p.children[newIdx] = newLeaf(p.keyOffset+1, key, value, st.db)
 | 
						|
 | 
						|
		// Finally, cut off the key part that has been passed
 | 
						|
		// over to the children.
 | 
						|
		st.key = st.key[:diffidx]
 | 
						|
		st.val = nil
 | 
						|
	case emptyNode: /* Empty */
 | 
						|
		st.nodeType = leafNode
 | 
						|
		st.key = key[st.keyOffset:]
 | 
						|
		st.val = value
 | 
						|
	case hashedNode:
 | 
						|
		panic("trying to insert into hash")
 | 
						|
	default:
 | 
						|
		panic("invalid type")
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// hash() hashes the node 'st' and converts it into 'hashedNode', if possible.
 | 
						|
// Possible outcomes:
 | 
						|
// 1. The rlp-encoded value was >= 32 bytes:
 | 
						|
//  - Then the 32-byte `hash` will be accessible in `st.val`.
 | 
						|
//  - And the 'st.type' will be 'hashedNode'
 | 
						|
// 2. The rlp-encoded value was < 32 bytes
 | 
						|
//  - Then the <32 byte rlp-encoded value will be accessible in 'st.val'.
 | 
						|
//  - And the 'st.type' will be 'hashedNode' AGAIN
 | 
						|
//
 | 
						|
// This method will also:
 | 
						|
// set 'st.type' to hashedNode
 | 
						|
// clear 'st.key'
 | 
						|
func (st *StackTrie) hash() {
 | 
						|
	/* Shortcut if node is already hashed */
 | 
						|
	if st.nodeType == hashedNode {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	// The 'hasher' is taken from a pool, but we don't actually
 | 
						|
	// claim an instance until all children are done with their hashing,
 | 
						|
	// and we actually need one
 | 
						|
	var h *hasher
 | 
						|
 | 
						|
	switch st.nodeType {
 | 
						|
	case branchNode:
 | 
						|
		var nodes [17]node
 | 
						|
		for i, child := range st.children {
 | 
						|
			if child == nil {
 | 
						|
				nodes[i] = nilValueNode
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			child.hash()
 | 
						|
			if len(child.val) < 32 {
 | 
						|
				nodes[i] = rawNode(child.val)
 | 
						|
			} else {
 | 
						|
				nodes[i] = hashNode(child.val)
 | 
						|
			}
 | 
						|
			st.children[i] = nil // Reclaim mem from subtree
 | 
						|
			returnToPool(child)
 | 
						|
		}
 | 
						|
		nodes[16] = nilValueNode
 | 
						|
		h = newHasher(false)
 | 
						|
		defer returnHasherToPool(h)
 | 
						|
		h.tmp.Reset()
 | 
						|
		if err := rlp.Encode(&h.tmp, nodes); err != nil {
 | 
						|
			panic(err)
 | 
						|
		}
 | 
						|
	case extNode:
 | 
						|
		st.children[0].hash()
 | 
						|
		h = newHasher(false)
 | 
						|
		defer returnHasherToPool(h)
 | 
						|
		h.tmp.Reset()
 | 
						|
		var valuenode node
 | 
						|
		if len(st.children[0].val) < 32 {
 | 
						|
			valuenode = rawNode(st.children[0].val)
 | 
						|
		} else {
 | 
						|
			valuenode = hashNode(st.children[0].val)
 | 
						|
		}
 | 
						|
		n := struct {
 | 
						|
			Key []byte
 | 
						|
			Val node
 | 
						|
		}{
 | 
						|
			Key: hexToCompact(st.key),
 | 
						|
			Val: valuenode,
 | 
						|
		}
 | 
						|
		if err := rlp.Encode(&h.tmp, n); err != nil {
 | 
						|
			panic(err)
 | 
						|
		}
 | 
						|
		returnToPool(st.children[0])
 | 
						|
		st.children[0] = nil // Reclaim mem from subtree
 | 
						|
	case leafNode:
 | 
						|
		h = newHasher(false)
 | 
						|
		defer returnHasherToPool(h)
 | 
						|
		h.tmp.Reset()
 | 
						|
		st.key = append(st.key, byte(16))
 | 
						|
		sz := hexToCompactInPlace(st.key)
 | 
						|
		n := [][]byte{st.key[:sz], st.val}
 | 
						|
		if err := rlp.Encode(&h.tmp, n); err != nil {
 | 
						|
			panic(err)
 | 
						|
		}
 | 
						|
	case emptyNode:
 | 
						|
		st.val = st.val[:0]
 | 
						|
		st.val = append(st.val, emptyRoot[:]...)
 | 
						|
		st.key = st.key[:0]
 | 
						|
		st.nodeType = hashedNode
 | 
						|
		return
 | 
						|
	default:
 | 
						|
		panic("Invalid node type")
 | 
						|
	}
 | 
						|
	st.key = st.key[:0]
 | 
						|
	st.nodeType = hashedNode
 | 
						|
	if len(h.tmp) < 32 {
 | 
						|
		st.val = st.val[:0]
 | 
						|
		st.val = append(st.val, h.tmp...)
 | 
						|
		return
 | 
						|
	}
 | 
						|
	// Going to write the hash to the 'val'. Need to ensure it's properly sized first
 | 
						|
	// Typically, 'branchNode's will have no 'val', and require this allocation
 | 
						|
	if required := 32 - len(st.val); required > 0 {
 | 
						|
		buf := make([]byte, required)
 | 
						|
		st.val = append(st.val, buf...)
 | 
						|
	}
 | 
						|
	st.val = st.val[:32]
 | 
						|
	h.sha.Reset()
 | 
						|
	h.sha.Write(h.tmp)
 | 
						|
	h.sha.Read(st.val)
 | 
						|
	if st.db != nil {
 | 
						|
		// TODO! Is it safe to Put the slice here?
 | 
						|
		// Do all db implementations copy the value provided?
 | 
						|
		st.db.Put(st.val, h.tmp)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Hash returns the hash of the current node
 | 
						|
func (st *StackTrie) Hash() (h common.Hash) {
 | 
						|
	st.hash()
 | 
						|
	if len(st.val) != 32 {
 | 
						|
		// If the node's RLP isn't 32 bytes long, the node will not
 | 
						|
		// be hashed, and instead contain the  rlp-encoding of the
 | 
						|
		// node. For the top level node, we need to force the hashing.
 | 
						|
		ret := make([]byte, 32)
 | 
						|
		h := newHasher(false)
 | 
						|
		defer returnHasherToPool(h)
 | 
						|
		h.sha.Reset()
 | 
						|
		h.sha.Write(st.val)
 | 
						|
		h.sha.Read(ret)
 | 
						|
		return common.BytesToHash(ret)
 | 
						|
	}
 | 
						|
	return common.BytesToHash(st.val)
 | 
						|
}
 | 
						|
 | 
						|
// Commit will firstly hash the entrie trie if it's still not hashed
 | 
						|
// and then commit all nodes to the associated database. Actually most
 | 
						|
// of the trie nodes MAY have been committed already. The main purpose
 | 
						|
// here is to commit the root node.
 | 
						|
//
 | 
						|
// The associated database is expected, otherwise the whole commit
 | 
						|
// functionality should be disabled.
 | 
						|
func (st *StackTrie) Commit() (common.Hash, error) {
 | 
						|
	if st.db == nil {
 | 
						|
		return common.Hash{}, ErrCommitDisabled
 | 
						|
	}
 | 
						|
	st.hash()
 | 
						|
	if len(st.val) != 32 {
 | 
						|
		// If the node's RLP isn't 32 bytes long, the node will not
 | 
						|
		// be hashed (and committed), and instead contain the  rlp-encoding of the
 | 
						|
		// node. For the top level node, we need to force the hashing+commit.
 | 
						|
		ret := make([]byte, 32)
 | 
						|
		h := newHasher(false)
 | 
						|
		defer returnHasherToPool(h)
 | 
						|
		h.sha.Reset()
 | 
						|
		h.sha.Write(st.val)
 | 
						|
		h.sha.Read(ret)
 | 
						|
		st.db.Put(ret, st.val)
 | 
						|
		return common.BytesToHash(ret), nil
 | 
						|
	}
 | 
						|
	return common.BytesToHash(st.val), nil
 | 
						|
}
 |