go-ethereum/core/rawdb/accessors_chain_test.go
rjl493456442 503f1f7ada
all: activate pbss as experimental feature (#26274)
* all: activate pbss

* core/rawdb: fix compilation error

* cma, core, eth, les, trie: address comments

* cmd, core, eth, trie: polish code

* core, cmd, eth: address comments

* cmd, core, eth, les, light, tests: address comment

* cmd/utils: shorten log message

* trie/triedb/pathdb: limit node buffer size to 1gb

* cmd/utils: fix opening non-existing db

* cmd/utils: rename flag name

* cmd, core: group chain history flags and fix tests

* core, eth, trie: fix memory leak in snapshot generation

* cmd, eth, internal: deprecate flags

* all: enable state tests for pathdb, fixes

* cmd, core: polish code

* trie/triedb/pathdb: limit the node buffer size to 256mb

---------

Co-authored-by: Martin Holst Swende <martin@swende.se>
Co-authored-by: Péter Szilágyi <peterke@gmail.com>
2023-08-10 22:21:36 +03:00

934 lines
32 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rawdb
import (
"bytes"
"encoding/hex"
"fmt"
"math/big"
"math/rand"
"os"
"reflect"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"golang.org/x/crypto/sha3"
)
// Tests block header storage and retrieval operations.
func TestHeaderStorage(t *testing.T) {
db := NewMemoryDatabase()
// Create a test header to move around the database and make sure it's really new
header := &types.Header{Number: big.NewInt(42), Extra: []byte("test header")}
if entry := ReadHeader(db, header.Hash(), header.Number.Uint64()); entry != nil {
t.Fatalf("Non existent header returned: %v", entry)
}
// Write and verify the header in the database
WriteHeader(db, header)
if entry := ReadHeader(db, header.Hash(), header.Number.Uint64()); entry == nil {
t.Fatalf("Stored header not found")
} else if entry.Hash() != header.Hash() {
t.Fatalf("Retrieved header mismatch: have %v, want %v", entry, header)
}
if entry := ReadHeaderRLP(db, header.Hash(), header.Number.Uint64()); entry == nil {
t.Fatalf("Stored header RLP not found")
} else {
hasher := sha3.NewLegacyKeccak256()
hasher.Write(entry)
if hash := common.BytesToHash(hasher.Sum(nil)); hash != header.Hash() {
t.Fatalf("Retrieved RLP header mismatch: have %v, want %v", entry, header)
}
}
// Delete the header and verify the execution
DeleteHeader(db, header.Hash(), header.Number.Uint64())
if entry := ReadHeader(db, header.Hash(), header.Number.Uint64()); entry != nil {
t.Fatalf("Deleted header returned: %v", entry)
}
}
// Tests block body storage and retrieval operations.
func TestBodyStorage(t *testing.T) {
db := NewMemoryDatabase()
// Create a test body to move around the database and make sure it's really new
body := &types.Body{Uncles: []*types.Header{{Extra: []byte("test header")}}}
hasher := sha3.NewLegacyKeccak256()
rlp.Encode(hasher, body)
hash := common.BytesToHash(hasher.Sum(nil))
if entry := ReadBody(db, hash, 0); entry != nil {
t.Fatalf("Non existent body returned: %v", entry)
}
// Write and verify the body in the database
WriteBody(db, hash, 0, body)
if entry := ReadBody(db, hash, 0); entry == nil {
t.Fatalf("Stored body not found")
} else if types.DeriveSha(types.Transactions(entry.Transactions), newTestHasher()) != types.DeriveSha(types.Transactions(body.Transactions), newTestHasher()) || types.CalcUncleHash(entry.Uncles) != types.CalcUncleHash(body.Uncles) {
t.Fatalf("Retrieved body mismatch: have %v, want %v", entry, body)
}
if entry := ReadBodyRLP(db, hash, 0); entry == nil {
t.Fatalf("Stored body RLP not found")
} else {
hasher := sha3.NewLegacyKeccak256()
hasher.Write(entry)
if calc := common.BytesToHash(hasher.Sum(nil)); calc != hash {
t.Fatalf("Retrieved RLP body mismatch: have %v, want %v", entry, body)
}
}
// Delete the body and verify the execution
DeleteBody(db, hash, 0)
if entry := ReadBody(db, hash, 0); entry != nil {
t.Fatalf("Deleted body returned: %v", entry)
}
}
// Tests block storage and retrieval operations.
func TestBlockStorage(t *testing.T) {
db := NewMemoryDatabase()
// Create a test block to move around the database and make sure it's really new
block := types.NewBlockWithHeader(&types.Header{
Extra: []byte("test block"),
UncleHash: types.EmptyUncleHash,
TxHash: types.EmptyTxsHash,
ReceiptHash: types.EmptyReceiptsHash,
})
if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry != nil {
t.Fatalf("Non existent block returned: %v", entry)
}
if entry := ReadHeader(db, block.Hash(), block.NumberU64()); entry != nil {
t.Fatalf("Non existent header returned: %v", entry)
}
if entry := ReadBody(db, block.Hash(), block.NumberU64()); entry != nil {
t.Fatalf("Non existent body returned: %v", entry)
}
// Write and verify the block in the database
WriteBlock(db, block)
if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry == nil {
t.Fatalf("Stored block not found")
} else if entry.Hash() != block.Hash() {
t.Fatalf("Retrieved block mismatch: have %v, want %v", entry, block)
}
if entry := ReadHeader(db, block.Hash(), block.NumberU64()); entry == nil {
t.Fatalf("Stored header not found")
} else if entry.Hash() != block.Header().Hash() {
t.Fatalf("Retrieved header mismatch: have %v, want %v", entry, block.Header())
}
if entry := ReadBody(db, block.Hash(), block.NumberU64()); entry == nil {
t.Fatalf("Stored body not found")
} else if types.DeriveSha(types.Transactions(entry.Transactions), newTestHasher()) != types.DeriveSha(block.Transactions(), newTestHasher()) || types.CalcUncleHash(entry.Uncles) != types.CalcUncleHash(block.Uncles()) {
t.Fatalf("Retrieved body mismatch: have %v, want %v", entry, block.Body())
}
// Delete the block and verify the execution
DeleteBlock(db, block.Hash(), block.NumberU64())
if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry != nil {
t.Fatalf("Deleted block returned: %v", entry)
}
if entry := ReadHeader(db, block.Hash(), block.NumberU64()); entry != nil {
t.Fatalf("Deleted header returned: %v", entry)
}
if entry := ReadBody(db, block.Hash(), block.NumberU64()); entry != nil {
t.Fatalf("Deleted body returned: %v", entry)
}
}
// Tests that partial block contents don't get reassembled into full blocks.
func TestPartialBlockStorage(t *testing.T) {
db := NewMemoryDatabase()
block := types.NewBlockWithHeader(&types.Header{
Extra: []byte("test block"),
UncleHash: types.EmptyUncleHash,
TxHash: types.EmptyTxsHash,
ReceiptHash: types.EmptyReceiptsHash,
})
// Store a header and check that it's not recognized as a block
WriteHeader(db, block.Header())
if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry != nil {
t.Fatalf("Non existent block returned: %v", entry)
}
DeleteHeader(db, block.Hash(), block.NumberU64())
// Store a body and check that it's not recognized as a block
WriteBody(db, block.Hash(), block.NumberU64(), block.Body())
if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry != nil {
t.Fatalf("Non existent block returned: %v", entry)
}
DeleteBody(db, block.Hash(), block.NumberU64())
// Store a header and a body separately and check reassembly
WriteHeader(db, block.Header())
WriteBody(db, block.Hash(), block.NumberU64(), block.Body())
if entry := ReadBlock(db, block.Hash(), block.NumberU64()); entry == nil {
t.Fatalf("Stored block not found")
} else if entry.Hash() != block.Hash() {
t.Fatalf("Retrieved block mismatch: have %v, want %v", entry, block)
}
}
// Tests block storage and retrieval operations.
func TestBadBlockStorage(t *testing.T) {
db := NewMemoryDatabase()
// Create a test block to move around the database and make sure it's really new
block := types.NewBlockWithHeader(&types.Header{
Number: big.NewInt(1),
Extra: []byte("bad block"),
UncleHash: types.EmptyUncleHash,
TxHash: types.EmptyTxsHash,
ReceiptHash: types.EmptyReceiptsHash,
})
if entry := ReadBadBlock(db, block.Hash()); entry != nil {
t.Fatalf("Non existent block returned: %v", entry)
}
// Write and verify the block in the database
WriteBadBlock(db, block)
if entry := ReadBadBlock(db, block.Hash()); entry == nil {
t.Fatalf("Stored block not found")
} else if entry.Hash() != block.Hash() {
t.Fatalf("Retrieved block mismatch: have %v, want %v", entry, block)
}
// Write one more bad block
blockTwo := types.NewBlockWithHeader(&types.Header{
Number: big.NewInt(2),
Extra: []byte("bad block two"),
UncleHash: types.EmptyUncleHash,
TxHash: types.EmptyTxsHash,
ReceiptHash: types.EmptyReceiptsHash,
})
WriteBadBlock(db, blockTwo)
// Write the block one again, should be filtered out.
WriteBadBlock(db, block)
badBlocks := ReadAllBadBlocks(db)
if len(badBlocks) != 2 {
t.Fatalf("Failed to load all bad blocks")
}
// Write a bunch of bad blocks, all the blocks are should sorted
// in reverse order. The extra blocks should be truncated.
for _, n := range rand.Perm(100) {
block := types.NewBlockWithHeader(&types.Header{
Number: big.NewInt(int64(n)),
Extra: []byte("bad block"),
UncleHash: types.EmptyUncleHash,
TxHash: types.EmptyTxsHash,
ReceiptHash: types.EmptyReceiptsHash,
})
WriteBadBlock(db, block)
}
badBlocks = ReadAllBadBlocks(db)
if len(badBlocks) != badBlockToKeep {
t.Fatalf("The number of persised bad blocks in incorrect %d", len(badBlocks))
}
for i := 0; i < len(badBlocks)-1; i++ {
if badBlocks[i].NumberU64() < badBlocks[i+1].NumberU64() {
t.Fatalf("The bad blocks are not sorted #[%d](%d) < #[%d](%d)", i, i+1, badBlocks[i].NumberU64(), badBlocks[i+1].NumberU64())
}
}
// Delete all bad blocks
DeleteBadBlocks(db)
badBlocks = ReadAllBadBlocks(db)
if len(badBlocks) != 0 {
t.Fatalf("Failed to delete bad blocks")
}
}
// Tests block total difficulty storage and retrieval operations.
func TestTdStorage(t *testing.T) {
db := NewMemoryDatabase()
// Create a test TD to move around the database and make sure it's really new
hash, td := common.Hash{}, big.NewInt(314)
if entry := ReadTd(db, hash, 0); entry != nil {
t.Fatalf("Non existent TD returned: %v", entry)
}
// Write and verify the TD in the database
WriteTd(db, hash, 0, td)
if entry := ReadTd(db, hash, 0); entry == nil {
t.Fatalf("Stored TD not found")
} else if entry.Cmp(td) != 0 {
t.Fatalf("Retrieved TD mismatch: have %v, want %v", entry, td)
}
// Delete the TD and verify the execution
DeleteTd(db, hash, 0)
if entry := ReadTd(db, hash, 0); entry != nil {
t.Fatalf("Deleted TD returned: %v", entry)
}
}
// Tests that canonical numbers can be mapped to hashes and retrieved.
func TestCanonicalMappingStorage(t *testing.T) {
db := NewMemoryDatabase()
// Create a test canonical number and assigned hash to move around
hash, number := common.Hash{0: 0xff}, uint64(314)
if entry := ReadCanonicalHash(db, number); entry != (common.Hash{}) {
t.Fatalf("Non existent canonical mapping returned: %v", entry)
}
// Write and verify the TD in the database
WriteCanonicalHash(db, hash, number)
if entry := ReadCanonicalHash(db, number); entry == (common.Hash{}) {
t.Fatalf("Stored canonical mapping not found")
} else if entry != hash {
t.Fatalf("Retrieved canonical mapping mismatch: have %v, want %v", entry, hash)
}
// Delete the TD and verify the execution
DeleteCanonicalHash(db, number)
if entry := ReadCanonicalHash(db, number); entry != (common.Hash{}) {
t.Fatalf("Deleted canonical mapping returned: %v", entry)
}
}
// Tests that head headers and head blocks can be assigned, individually.
func TestHeadStorage(t *testing.T) {
db := NewMemoryDatabase()
blockHead := types.NewBlockWithHeader(&types.Header{Extra: []byte("test block header")})
blockFull := types.NewBlockWithHeader(&types.Header{Extra: []byte("test block full")})
blockFast := types.NewBlockWithHeader(&types.Header{Extra: []byte("test block fast")})
// Check that no head entries are in a pristine database
if entry := ReadHeadHeaderHash(db); entry != (common.Hash{}) {
t.Fatalf("Non head header entry returned: %v", entry)
}
if entry := ReadHeadBlockHash(db); entry != (common.Hash{}) {
t.Fatalf("Non head block entry returned: %v", entry)
}
if entry := ReadHeadFastBlockHash(db); entry != (common.Hash{}) {
t.Fatalf("Non fast head block entry returned: %v", entry)
}
// Assign separate entries for the head header and block
WriteHeadHeaderHash(db, blockHead.Hash())
WriteHeadBlockHash(db, blockFull.Hash())
WriteHeadFastBlockHash(db, blockFast.Hash())
// Check that both heads are present, and different (i.e. two heads maintained)
if entry := ReadHeadHeaderHash(db); entry != blockHead.Hash() {
t.Fatalf("Head header hash mismatch: have %v, want %v", entry, blockHead.Hash())
}
if entry := ReadHeadBlockHash(db); entry != blockFull.Hash() {
t.Fatalf("Head block hash mismatch: have %v, want %v", entry, blockFull.Hash())
}
if entry := ReadHeadFastBlockHash(db); entry != blockFast.Hash() {
t.Fatalf("Fast head block hash mismatch: have %v, want %v", entry, blockFast.Hash())
}
}
// Tests that receipts associated with a single block can be stored and retrieved.
func TestBlockReceiptStorage(t *testing.T) {
db := NewMemoryDatabase()
// Create a live block since we need metadata to reconstruct the receipt
tx1 := types.NewTransaction(1, common.HexToAddress("0x1"), big.NewInt(1), 1, big.NewInt(1), nil)
tx2 := types.NewTransaction(2, common.HexToAddress("0x2"), big.NewInt(2), 2, big.NewInt(2), nil)
body := &types.Body{Transactions: types.Transactions{tx1, tx2}}
// Create the two receipts to manage afterwards
receipt1 := &types.Receipt{
Status: types.ReceiptStatusFailed,
CumulativeGasUsed: 1,
Logs: []*types.Log{
{Address: common.BytesToAddress([]byte{0x11})},
{Address: common.BytesToAddress([]byte{0x01, 0x11})},
},
TxHash: tx1.Hash(),
ContractAddress: common.BytesToAddress([]byte{0x01, 0x11, 0x11}),
GasUsed: 111111,
}
receipt1.Bloom = types.CreateBloom(types.Receipts{receipt1})
receipt2 := &types.Receipt{
PostState: common.Hash{2}.Bytes(),
CumulativeGasUsed: 2,
Logs: []*types.Log{
{Address: common.BytesToAddress([]byte{0x22})},
{Address: common.BytesToAddress([]byte{0x02, 0x22})},
},
TxHash: tx2.Hash(),
ContractAddress: common.BytesToAddress([]byte{0x02, 0x22, 0x22}),
GasUsed: 222222,
}
receipt2.Bloom = types.CreateBloom(types.Receipts{receipt2})
receipts := []*types.Receipt{receipt1, receipt2}
// Check that no receipt entries are in a pristine database
hash := common.BytesToHash([]byte{0x03, 0x14})
if rs := ReadReceipts(db, hash, 0, 0, params.TestChainConfig); len(rs) != 0 {
t.Fatalf("non existent receipts returned: %v", rs)
}
// Insert the body that corresponds to the receipts
WriteBody(db, hash, 0, body)
// Insert the receipt slice into the database and check presence
WriteReceipts(db, hash, 0, receipts)
if rs := ReadReceipts(db, hash, 0, 0, params.TestChainConfig); len(rs) == 0 {
t.Fatalf("no receipts returned")
} else {
if err := checkReceiptsRLP(rs, receipts); err != nil {
t.Fatalf(err.Error())
}
}
// Delete the body and ensure that the receipts are no longer returned (metadata can't be recomputed)
DeleteBody(db, hash, 0)
if rs := ReadReceipts(db, hash, 0, 0, params.TestChainConfig); rs != nil {
t.Fatalf("receipts returned when body was deleted: %v", rs)
}
// Ensure that receipts without metadata can be returned without the block body too
if err := checkReceiptsRLP(ReadRawReceipts(db, hash, 0), receipts); err != nil {
t.Fatalf(err.Error())
}
// Sanity check that body alone without the receipt is a full purge
WriteBody(db, hash, 0, body)
DeleteReceipts(db, hash, 0)
if rs := ReadReceipts(db, hash, 0, 0, params.TestChainConfig); len(rs) != 0 {
t.Fatalf("deleted receipts returned: %v", rs)
}
}
func checkReceiptsRLP(have, want types.Receipts) error {
if len(have) != len(want) {
return fmt.Errorf("receipts sizes mismatch: have %d, want %d", len(have), len(want))
}
for i := 0; i < len(want); i++ {
rlpHave, err := rlp.EncodeToBytes(have[i])
if err != nil {
return err
}
rlpWant, err := rlp.EncodeToBytes(want[i])
if err != nil {
return err
}
if !bytes.Equal(rlpHave, rlpWant) {
return fmt.Errorf("receipt #%d: receipt mismatch: have %s, want %s", i, hex.EncodeToString(rlpHave), hex.EncodeToString(rlpWant))
}
}
return nil
}
func TestAncientStorage(t *testing.T) {
// Freezer style fast import the chain.
frdir := t.TempDir()
db, err := NewDatabaseWithFreezer(NewMemoryDatabase(), frdir, "", false)
if err != nil {
t.Fatalf("failed to create database with ancient backend")
}
defer db.Close()
// Create a test block
block := types.NewBlockWithHeader(&types.Header{
Number: big.NewInt(0),
Extra: []byte("test block"),
UncleHash: types.EmptyUncleHash,
TxHash: types.EmptyTxsHash,
ReceiptHash: types.EmptyReceiptsHash,
})
// Ensure nothing non-existent will be read
hash, number := block.Hash(), block.NumberU64()
if blob := ReadHeaderRLP(db, hash, number); len(blob) > 0 {
t.Fatalf("non existent header returned")
}
if blob := ReadBodyRLP(db, hash, number); len(blob) > 0 {
t.Fatalf("non existent body returned")
}
if blob := ReadReceiptsRLP(db, hash, number); len(blob) > 0 {
t.Fatalf("non existent receipts returned")
}
if blob := ReadTdRLP(db, hash, number); len(blob) > 0 {
t.Fatalf("non existent td returned")
}
// Write and verify the header in the database
WriteAncientBlocks(db, []*types.Block{block}, []types.Receipts{nil}, big.NewInt(100))
if blob := ReadHeaderRLP(db, hash, number); len(blob) == 0 {
t.Fatalf("no header returned")
}
if blob := ReadBodyRLP(db, hash, number); len(blob) == 0 {
t.Fatalf("no body returned")
}
if blob := ReadReceiptsRLP(db, hash, number); len(blob) == 0 {
t.Fatalf("no receipts returned")
}
if blob := ReadTdRLP(db, hash, number); len(blob) == 0 {
t.Fatalf("no td returned")
}
// Use a fake hash for data retrieval, nothing should be returned.
fakeHash := common.BytesToHash([]byte{0x01, 0x02, 0x03})
if blob := ReadHeaderRLP(db, fakeHash, number); len(blob) != 0 {
t.Fatalf("invalid header returned")
}
if blob := ReadBodyRLP(db, fakeHash, number); len(blob) != 0 {
t.Fatalf("invalid body returned")
}
if blob := ReadReceiptsRLP(db, fakeHash, number); len(blob) != 0 {
t.Fatalf("invalid receipts returned")
}
if blob := ReadTdRLP(db, fakeHash, number); len(blob) != 0 {
t.Fatalf("invalid td returned")
}
}
func TestCanonicalHashIteration(t *testing.T) {
var cases = []struct {
from, to uint64
limit int
expect []uint64
}{
{1, 8, 0, nil},
{1, 8, 1, []uint64{1}},
{1, 8, 10, []uint64{1, 2, 3, 4, 5, 6, 7}},
{1, 9, 10, []uint64{1, 2, 3, 4, 5, 6, 7, 8}},
{2, 9, 10, []uint64{2, 3, 4, 5, 6, 7, 8}},
{9, 10, 10, nil},
}
// Test empty db iteration
db := NewMemoryDatabase()
numbers, _ := ReadAllCanonicalHashes(db, 0, 10, 10)
if len(numbers) != 0 {
t.Fatalf("No entry should be returned to iterate an empty db")
}
// Fill database with testing data.
for i := uint64(1); i <= 8; i++ {
WriteCanonicalHash(db, common.Hash{}, i)
WriteTd(db, common.Hash{}, i, big.NewInt(10)) // Write some interferential data
}
for i, c := range cases {
numbers, _ := ReadAllCanonicalHashes(db, c.from, c.to, c.limit)
if !reflect.DeepEqual(numbers, c.expect) {
t.Fatalf("Case %d failed, want %v, got %v", i, c.expect, numbers)
}
}
}
func TestHashesInRange(t *testing.T) {
mkHeader := func(number, seq int) *types.Header {
h := types.Header{
Difficulty: new(big.Int),
Number: big.NewInt(int64(number)),
GasLimit: uint64(seq),
}
return &h
}
db := NewMemoryDatabase()
// For each number, write N versions of that particular number
total := 0
for i := 0; i < 15; i++ {
for ii := 0; ii < i; ii++ {
WriteHeader(db, mkHeader(i, ii))
total++
}
}
if have, want := len(ReadAllHashesInRange(db, 10, 10)), 10; have != want {
t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have)
}
if have, want := len(ReadAllHashesInRange(db, 10, 9)), 0; have != want {
t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have)
}
if have, want := len(ReadAllHashesInRange(db, 0, 100)), total; have != want {
t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have)
}
if have, want := len(ReadAllHashesInRange(db, 9, 10)), 9+10; have != want {
t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have)
}
if have, want := len(ReadAllHashes(db, 10)), 10; have != want {
t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have)
}
if have, want := len(ReadAllHashes(db, 16)), 0; have != want {
t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have)
}
if have, want := len(ReadAllHashes(db, 1)), 1; have != want {
t.Fatalf("Wrong number of hashes read, want %d, got %d", want, have)
}
}
// This measures the write speed of the WriteAncientBlocks operation.
func BenchmarkWriteAncientBlocks(b *testing.B) {
// Open freezer database.
frdir := b.TempDir()
db, err := NewDatabaseWithFreezer(NewMemoryDatabase(), frdir, "", false)
if err != nil {
b.Fatalf("failed to create database with ancient backend")
}
defer db.Close()
// Create the data to insert. The blocks must have consecutive numbers, so we create
// all of them ahead of time. However, there is no need to create receipts
// individually for each block, just make one batch here and reuse it for all writes.
const batchSize = 128
const blockTxs = 20
allBlocks := makeTestBlocks(b.N, blockTxs)
batchReceipts := makeTestReceipts(batchSize, blockTxs)
b.ResetTimer()
// The benchmark loop writes batches of blocks, but note that the total block count is
// b.N. This means the resulting ns/op measurement is the time it takes to write a
// single block and its associated data.
var td = big.NewInt(55)
var totalSize int64
for i := 0; i < b.N; i += batchSize {
length := batchSize
if i+batchSize > b.N {
length = b.N - i
}
blocks := allBlocks[i : i+length]
receipts := batchReceipts[:length]
writeSize, err := WriteAncientBlocks(db, blocks, receipts, td)
if err != nil {
b.Fatal(err)
}
totalSize += writeSize
}
// Enable MB/s reporting.
b.SetBytes(totalSize / int64(b.N))
}
// makeTestBlocks creates fake blocks for the ancient write benchmark.
func makeTestBlocks(nblock int, txsPerBlock int) []*types.Block {
key, _ := crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
signer := types.LatestSignerForChainID(big.NewInt(8))
// Create transactions.
txs := make([]*types.Transaction, txsPerBlock)
for i := 0; i < len(txs); i++ {
var err error
to := common.Address{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
txs[i], err = types.SignNewTx(key, signer, &types.LegacyTx{
Nonce: 2,
GasPrice: big.NewInt(30000),
Gas: 0x45454545,
To: &to,
})
if err != nil {
panic(err)
}
}
// Create the blocks.
blocks := make([]*types.Block, nblock)
for i := 0; i < nblock; i++ {
header := &types.Header{
Number: big.NewInt(int64(i)),
Extra: []byte("test block"),
}
blocks[i] = types.NewBlockWithHeader(header).WithBody(txs, nil)
blocks[i].Hash() // pre-cache the block hash
}
return blocks
}
// makeTestReceipts creates fake receipts for the ancient write benchmark.
func makeTestReceipts(n int, nPerBlock int) []types.Receipts {
receipts := make([]*types.Receipt, nPerBlock)
for i := 0; i < len(receipts); i++ {
receipts[i] = &types.Receipt{
Status: types.ReceiptStatusSuccessful,
CumulativeGasUsed: 0x888888888,
Logs: make([]*types.Log, 5),
}
}
allReceipts := make([]types.Receipts, n)
for i := 0; i < n; i++ {
allReceipts[i] = receipts
}
return allReceipts
}
type fullLogRLP struct {
Address common.Address
Topics []common.Hash
Data []byte
BlockNumber uint64
TxHash common.Hash
TxIndex uint
BlockHash common.Hash
Index uint
}
func newFullLogRLP(l *types.Log) *fullLogRLP {
return &fullLogRLP{
Address: l.Address,
Topics: l.Topics,
Data: l.Data,
BlockNumber: l.BlockNumber,
TxHash: l.TxHash,
TxIndex: l.TxIndex,
BlockHash: l.BlockHash,
Index: l.Index,
}
}
// Tests that logs associated with a single block can be retrieved.
func TestReadLogs(t *testing.T) {
db := NewMemoryDatabase()
// Create a live block since we need metadata to reconstruct the receipt
tx1 := types.NewTransaction(1, common.HexToAddress("0x1"), big.NewInt(1), 1, big.NewInt(1), nil)
tx2 := types.NewTransaction(2, common.HexToAddress("0x2"), big.NewInt(2), 2, big.NewInt(2), nil)
body := &types.Body{Transactions: types.Transactions{tx1, tx2}}
// Create the two receipts to manage afterwards
receipt1 := &types.Receipt{
Status: types.ReceiptStatusFailed,
CumulativeGasUsed: 1,
Logs: []*types.Log{
{Address: common.BytesToAddress([]byte{0x11})},
{Address: common.BytesToAddress([]byte{0x01, 0x11})},
},
TxHash: tx1.Hash(),
ContractAddress: common.BytesToAddress([]byte{0x01, 0x11, 0x11}),
GasUsed: 111111,
}
receipt1.Bloom = types.CreateBloom(types.Receipts{receipt1})
receipt2 := &types.Receipt{
PostState: common.Hash{2}.Bytes(),
CumulativeGasUsed: 2,
Logs: []*types.Log{
{Address: common.BytesToAddress([]byte{0x22})},
{Address: common.BytesToAddress([]byte{0x02, 0x22})},
},
TxHash: tx2.Hash(),
ContractAddress: common.BytesToAddress([]byte{0x02, 0x22, 0x22}),
GasUsed: 222222,
}
receipt2.Bloom = types.CreateBloom(types.Receipts{receipt2})
receipts := []*types.Receipt{receipt1, receipt2}
hash := common.BytesToHash([]byte{0x03, 0x14})
// Check that no receipt entries are in a pristine database
if rs := ReadReceipts(db, hash, 0, 0, params.TestChainConfig); len(rs) != 0 {
t.Fatalf("non existent receipts returned: %v", rs)
}
// Insert the body that corresponds to the receipts
WriteBody(db, hash, 0, body)
// Insert the receipt slice into the database and check presence
WriteReceipts(db, hash, 0, receipts)
logs := ReadLogs(db, hash, 0)
if len(logs) == 0 {
t.Fatalf("no logs returned")
}
if have, want := len(logs), 2; have != want {
t.Fatalf("unexpected number of logs returned, have %d want %d", have, want)
}
if have, want := len(logs[0]), 2; have != want {
t.Fatalf("unexpected number of logs[0] returned, have %d want %d", have, want)
}
if have, want := len(logs[1]), 2; have != want {
t.Fatalf("unexpected number of logs[1] returned, have %d want %d", have, want)
}
for i, pr := range receipts {
for j, pl := range pr.Logs {
rlpHave, err := rlp.EncodeToBytes(newFullLogRLP(logs[i][j]))
if err != nil {
t.Fatal(err)
}
rlpWant, err := rlp.EncodeToBytes(newFullLogRLP(pl))
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(rlpHave, rlpWant) {
t.Fatalf("receipt #%d: receipt mismatch: have %s, want %s", i, hex.EncodeToString(rlpHave), hex.EncodeToString(rlpWant))
}
}
}
}
func TestDeriveLogFields(t *testing.T) {
// Create a few transactions to have receipts for
to2 := common.HexToAddress("0x2")
to3 := common.HexToAddress("0x3")
txs := types.Transactions{
types.NewTx(&types.LegacyTx{
Nonce: 1,
Value: big.NewInt(1),
Gas: 1,
GasPrice: big.NewInt(1),
}),
types.NewTx(&types.LegacyTx{
To: &to2,
Nonce: 2,
Value: big.NewInt(2),
Gas: 2,
GasPrice: big.NewInt(2),
}),
types.NewTx(&types.AccessListTx{
To: &to3,
Nonce: 3,
Value: big.NewInt(3),
Gas: 3,
GasPrice: big.NewInt(3),
}),
}
// Create the corresponding receipts
receipts := []*receiptLogs{
{
Logs: []*types.Log{
{Address: common.BytesToAddress([]byte{0x11})},
{Address: common.BytesToAddress([]byte{0x01, 0x11})},
},
},
{
Logs: []*types.Log{
{Address: common.BytesToAddress([]byte{0x22})},
{Address: common.BytesToAddress([]byte{0x02, 0x22})},
},
},
{
Logs: []*types.Log{
{Address: common.BytesToAddress([]byte{0x33})},
{Address: common.BytesToAddress([]byte{0x03, 0x33})},
},
},
}
// Derive log metadata fields
number := big.NewInt(1)
hash := common.BytesToHash([]byte{0x03, 0x14})
if err := deriveLogFields(receipts, hash, number.Uint64(), txs); err != nil {
t.Fatal(err)
}
// Iterate over all the computed fields and check that they're correct
logIndex := uint(0)
for i := range receipts {
for j := range receipts[i].Logs {
if receipts[i].Logs[j].BlockNumber != number.Uint64() {
t.Errorf("receipts[%d].Logs[%d].BlockNumber = %d, want %d", i, j, receipts[i].Logs[j].BlockNumber, number.Uint64())
}
if receipts[i].Logs[j].BlockHash != hash {
t.Errorf("receipts[%d].Logs[%d].BlockHash = %s, want %s", i, j, receipts[i].Logs[j].BlockHash.String(), hash.String())
}
if receipts[i].Logs[j].TxHash != txs[i].Hash() {
t.Errorf("receipts[%d].Logs[%d].TxHash = %s, want %s", i, j, receipts[i].Logs[j].TxHash.String(), txs[i].Hash().String())
}
if receipts[i].Logs[j].TxIndex != uint(i) {
t.Errorf("receipts[%d].Logs[%d].TransactionIndex = %d, want %d", i, j, receipts[i].Logs[j].TxIndex, i)
}
if receipts[i].Logs[j].Index != logIndex {
t.Errorf("receipts[%d].Logs[%d].Index = %d, want %d", i, j, receipts[i].Logs[j].Index, logIndex)
}
logIndex++
}
}
}
func BenchmarkDecodeRLPLogs(b *testing.B) {
// Encoded receipts from block 0x14ee094309fbe8f70b65f45ebcc08fb33f126942d97464aad5eb91cfd1e2d269
buf, err := os.ReadFile("testdata/stored_receipts.bin")
if err != nil {
b.Fatal(err)
}
b.Run("ReceiptForStorage", func(b *testing.B) {
b.ReportAllocs()
var r []*types.ReceiptForStorage
for i := 0; i < b.N; i++ {
if err := rlp.DecodeBytes(buf, &r); err != nil {
b.Fatal(err)
}
}
})
b.Run("rlpLogs", func(b *testing.B) {
b.ReportAllocs()
var r []*receiptLogs
for i := 0; i < b.N; i++ {
if err := rlp.DecodeBytes(buf, &r); err != nil {
b.Fatal(err)
}
}
})
}
func TestHeadersRLPStorage(t *testing.T) {
// Have N headers in the freezer
frdir := t.TempDir()
db, err := NewDatabaseWithFreezer(NewMemoryDatabase(), frdir, "", false)
if err != nil {
t.Fatalf("failed to create database with ancient backend")
}
defer db.Close()
// Create blocks
var chain []*types.Block
var pHash common.Hash
for i := 0; i < 100; i++ {
block := types.NewBlockWithHeader(&types.Header{
Number: big.NewInt(int64(i)),
Extra: []byte("test block"),
UncleHash: types.EmptyUncleHash,
TxHash: types.EmptyTxsHash,
ReceiptHash: types.EmptyReceiptsHash,
ParentHash: pHash,
})
chain = append(chain, block)
pHash = block.Hash()
}
var receipts []types.Receipts = make([]types.Receipts, 100)
// Write first half to ancients
WriteAncientBlocks(db, chain[:50], receipts[:50], big.NewInt(100))
// Write second half to db
for i := 50; i < 100; i++ {
WriteCanonicalHash(db, chain[i].Hash(), chain[i].NumberU64())
WriteBlock(db, chain[i])
}
checkSequence := func(from, amount int) {
headersRlp := ReadHeaderRange(db, uint64(from), uint64(amount))
if have, want := len(headersRlp), amount; have != want {
t.Fatalf("have %d headers, want %d", have, want)
}
for i, headerRlp := range headersRlp {
var header types.Header
if err := rlp.DecodeBytes(headerRlp, &header); err != nil {
t.Fatal(err)
}
if have, want := header.Number.Uint64(), uint64(from-i); have != want {
t.Fatalf("wrong number, have %d want %d", have, want)
}
}
}
checkSequence(99, 20) // Latest block and 19 parents
checkSequence(99, 50) // Latest block -> all db blocks
checkSequence(99, 51) // Latest block -> one from ancients
checkSequence(99, 52) // Latest blocks -> two from ancients
checkSequence(50, 2) // One from db, one from ancients
checkSequence(49, 1) // One from ancients
checkSequence(49, 50) // All ancient ones
checkSequence(99, 100) // All blocks
checkSequence(0, 1) // Only genesis
checkSequence(1, 1) // Only block 1
checkSequence(1, 2) // Genesis + block 1
}