package vm import ( "fmt" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/params" ) // Vm implements VirtualMachine type Vm struct { env Environment err error // For logging debug bool BreakPoints []int64 Stepping bool Fn string Recoverable bool // Will be called before the vm returns After func(*Context, error) } // New returns a new Virtual Machine func New(env Environment) *Vm { return &Vm{env: env, debug: Debug, Recoverable: true} } // Run loops and evaluates the contract's code with the given input data func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) { self.env.SetDepth(self.env.Depth() + 1) defer self.env.SetDepth(self.env.Depth() - 1) var ( caller = context.caller code = context.Code value = context.value price = context.Price ) // User defer pattern to check for an error and, based on the error being nil or not, use all gas and return. defer func() { if self.After != nil { self.After(context, err) } if err != nil { // In case of a VM exception (known exceptions) all gas consumed (panics NOT included). context.UseGas(context.Gas) ret = context.Return(nil) } }() if context.CodeAddr != nil { if p := Precompiled[context.CodeAddr.Str()]; p != nil { return self.RunPrecompiled(p, input, context) } } // Don't bother with the execution if there's no code. if len(code) == 0 { return context.Return(nil), nil } var ( op OpCode // current opcode codehash = crypto.Sha3Hash(code) // codehash is used when doing jump dest caching mem = NewMemory() // bound memory stack = newstack() // local stack pc = uint64(0) // program counter statedb = self.env.State() // current state // jump evaluates and checks whether the given jump destination is a valid one // if valid move the `pc` otherwise return an error. jump = func(from uint64, to *big.Int) error { if !context.jumpdests.has(codehash, code, to) { nop := context.GetOp(to.Uint64()) return fmt.Errorf("invalid jump destination (%v) %v", nop, to) } pc = to.Uint64() return nil } ) for { // The base for all big integer arithmetic base := new(big.Int) // Get the memory location of pc op = context.GetOp(pc) self.log(pc, op, context.Gas, mem, stack, context) // calculate the new memory size and gas price for the current executing opcode newMemSize, gas, err := self.calculateGasAndSize(context, caller, op, statedb, mem, stack) if err != nil { return nil, err } // Use the calculated gas. When insufficient gas is present, use all gas and return an // Out Of Gas error if !context.UseGas(gas) { tmp := new(big.Int).Set(context.Gas) context.UseGas(context.Gas) return context.Return(nil), OOG(gas, tmp) } // Resize the memory calculated previously mem.Resize(newMemSize.Uint64()) switch op { case ADD: x, y := stack.pop(), stack.pop() base.Add(x, y) U256(base) // pop result back on the stack stack.push(base) case SUB: x, y := stack.pop(), stack.pop() base.Sub(x, y) U256(base) // pop result back on the stack stack.push(base) case MUL: x, y := stack.pop(), stack.pop() base.Mul(x, y) U256(base) // pop result back on the stack stack.push(base) case DIV: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) != 0 { base.Div(x, y) } U256(base) // pop result back on the stack stack.push(base) case SDIV: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Div(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case MOD: x, y := stack.pop(), stack.pop() if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { base.Mod(x, y) } U256(base) stack.push(base) case SMOD: x, y := S256(stack.pop()), S256(stack.pop()) if y.Cmp(common.Big0) == 0 { base.Set(common.Big0) } else { n := new(big.Int) if x.Cmp(common.Big0) < 0 { n.SetInt64(-1) } else { n.SetInt64(1) } base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n) U256(base) } stack.push(base) case EXP: x, y := stack.pop(), stack.pop() base.Exp(x, y, Pow256) U256(base) stack.push(base) case SIGNEXTEND: back := stack.pop() if back.Cmp(big.NewInt(31)) < 0 { bit := uint(back.Uint64()*8 + 7) num := stack.pop() mask := new(big.Int).Lsh(common.Big1, bit) mask.Sub(mask, common.Big1) if common.BitTest(num, int(bit)) { num.Or(num, mask.Not(mask)) } else { num.And(num, mask) } num = U256(num) stack.push(num) } case NOT: stack.push(U256(new(big.Int).Not(stack.pop()))) case LT: x, y := stack.pop(), stack.pop() // x < y if x.Cmp(y) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case GT: x, y := stack.pop(), stack.pop() // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SLT: x, y := S256(stack.pop()), S256(stack.pop()) // x < y if x.Cmp(S256(y)) < 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case SGT: x, y := S256(stack.pop()), S256(stack.pop()) // x > y if x.Cmp(y) > 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case EQ: x, y := stack.pop(), stack.pop() // x == y if x.Cmp(y) == 0 { stack.push(common.BigTrue) } else { stack.push(common.BigFalse) } case ISZERO: x := stack.pop() if x.Cmp(common.BigFalse) > 0 { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) } case AND: x, y := stack.pop(), stack.pop() stack.push(base.And(x, y)) case OR: x, y := stack.pop(), stack.pop() stack.push(base.Or(x, y)) case XOR: x, y := stack.pop(), stack.pop() stack.push(base.Xor(x, y)) case BYTE: th, val := stack.pop(), stack.pop() if th.Cmp(big.NewInt(32)) < 0 { byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()])) base.Set(byt) } else { base.Set(common.BigFalse) } stack.push(base) case ADDMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { add := new(big.Int).Add(x, y) base.Mod(add, z) base = U256(base) } stack.push(base) case MULMOD: x := stack.pop() y := stack.pop() z := stack.pop() if z.Cmp(Zero) > 0 { mul := new(big.Int).Mul(x, y) base.Mod(mul, z) U256(base) } stack.push(base) case SHA3: offset, size := stack.pop(), stack.pop() data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64())) stack.push(common.BigD(data)) case ADDRESS: stack.push(common.Bytes2Big(context.Address().Bytes())) case BALANCE: addr := common.BigToAddress(stack.pop()) balance := statedb.GetBalance(addr) stack.push(balance) case ORIGIN: origin := self.env.Origin() stack.push(origin.Big()) case CALLER: caller := context.caller.Address() stack.push(common.Bytes2Big(caller.Bytes())) case CALLVALUE: stack.push(value) case CALLDATALOAD: data := getData(input, stack.pop(), common.Big32) stack.push(common.Bytes2Big(data)) case CALLDATASIZE: l := int64(len(input)) stack.push(big.NewInt(l)) case CALLDATACOPY: var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) data := getData(input, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), data) case CODESIZE, EXTCODESIZE: var code []byte if op == EXTCODESIZE { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } l := big.NewInt(int64(len(code))) stack.push(l) case CODECOPY, EXTCODECOPY: var code []byte if op == EXTCODECOPY { addr := common.BigToAddress(stack.pop()) code = statedb.GetCode(addr) } else { code = context.Code } var ( mOff = stack.pop() cOff = stack.pop() l = stack.pop() ) codeCopy := getData(code, cOff, l) mem.Set(mOff.Uint64(), l.Uint64(), codeCopy) case GASPRICE: stack.push(context.Price) case BLOCKHASH: num := stack.pop() n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257) if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 { stack.push(self.env.GetHash(num.Uint64()).Big()) } else { stack.push(common.Big0) } case COINBASE: coinbase := self.env.Coinbase() stack.push(coinbase.Big()) case TIMESTAMP: time := self.env.Time() stack.push(big.NewInt(time)) case NUMBER: number := self.env.BlockNumber() stack.push(U256(number)) case DIFFICULTY: difficulty := self.env.Difficulty() stack.push(difficulty) case GASLIMIT: stack.push(self.env.GasLimit()) case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32: size := uint64(op - PUSH1 + 1) byts := getData(code, new(big.Int).SetUint64(pc+1), new(big.Int).SetUint64(size)) // push value to stack stack.push(common.Bytes2Big(byts)) pc += size case POP: stack.pop() case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) stack.dup(n) case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) stack.swap(n) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) topics := make([]common.Hash, n) mStart, mSize := stack.pop(), stack.pop() for i := 0; i < n; i++ { topics[i] = common.BigToHash(stack.pop()) } data := mem.Get(mStart.Int64(), mSize.Int64()) log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64()) self.env.AddLog(log) case MLOAD: offset := stack.pop() val := common.BigD(mem.Get(offset.Int64(), 32)) stack.push(val) case MSTORE: // pop value of the stack mStart, val := stack.pop(), stack.pop() mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256)) case MSTORE8: off, val := stack.pop().Int64(), stack.pop().Int64() mem.store[off] = byte(val & 0xff) case SLOAD: loc := common.BigToHash(stack.pop()) val := common.Bytes2Big(statedb.GetState(context.Address(), loc)) stack.push(val) case SSTORE: loc := common.BigToHash(stack.pop()) val := stack.pop() statedb.SetState(context.Address(), loc, val) case JUMP: if err := jump(pc, stack.pop()); err != nil { return nil, err } continue case JUMPI: pos, cond := stack.pop(), stack.pop() if cond.Cmp(common.BigTrue) >= 0 { if err := jump(pc, pos); err != nil { return nil, err } continue } case JUMPDEST: case PC: stack.push(new(big.Int).SetUint64(pc)) case MSIZE: stack.push(big.NewInt(int64(mem.Len()))) case GAS: stack.push(context.Gas) case CREATE: var ( value = stack.pop() offset, size = stack.pop(), stack.pop() input = mem.Get(offset.Int64(), size.Int64()) gas = new(big.Int).Set(context.Gas) addr common.Address ) context.UseGas(context.Gas) ret, suberr, ref := self.env.Create(context, input, gas, price, value) if suberr != nil { stack.push(common.BigFalse) } else { // gas < len(ret) * CreateDataGas == NO_CODE dataGas := big.NewInt(int64(len(ret))) dataGas.Mul(dataGas, params.CreateDataGas) if context.UseGas(dataGas) { ref.SetCode(ret) } addr = ref.Address() stack.push(addr.Big()) } case CALL, CALLCODE: gas := stack.pop() // pop gas and value of the stack. addr, value := stack.pop(), stack.pop() value = U256(value) // pop input size and offset inOffset, inSize := stack.pop(), stack.pop() // pop return size and offset retOffset, retSize := stack.pop(), stack.pop() address := common.BigToAddress(addr) // Get the arguments from the memory args := mem.Get(inOffset.Int64(), inSize.Int64()) if len(value.Bytes()) > 0 { gas.Add(gas, params.CallStipend) } var ( ret []byte err error ) if op == CALLCODE { ret, err = self.env.CallCode(context, address, args, gas, price, value) } else { ret, err = self.env.Call(context, address, args, gas, price, value) } if err != nil { stack.push(common.BigFalse) } else { stack.push(common.BigTrue) mem.Set(retOffset.Uint64(), retSize.Uint64(), ret) } case RETURN: offset, size := stack.pop(), stack.pop() ret := mem.GetPtr(offset.Int64(), size.Int64()) return context.Return(ret), nil case SUICIDE: receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop())) balance := statedb.GetBalance(context.Address()) receiver.AddBalance(balance) statedb.Delete(context.Address()) fallthrough case STOP: // Stop the context return context.Return(nil), nil default: return nil, fmt.Errorf("Invalid opcode %x", op) } pc++ } } // calculateGasAndSize calculates the required given the opcode and stack items calculates the new memorysize for // the operation. This does not reduce gas or resizes the memory. func (self *Vm) calculateGasAndSize(context *Context, caller ContextRef, op OpCode, statedb *state.StateDB, mem *Memory, stack *stack) (*big.Int, *big.Int, error) { var ( gas = new(big.Int) newMemSize *big.Int = new(big.Int) ) err := baseCheck(op, stack, gas) if err != nil { return nil, nil, err } // stack Check, memory resize & gas phase switch op { case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16: n := int(op - SWAP1 + 2) err := stack.require(n) if err != nil { return nil, nil, err } gas.Set(GasFastestStep) case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16: n := int(op - DUP1 + 1) err := stack.require(n) if err != nil { return nil, nil, err } gas.Set(GasFastestStep) case LOG0, LOG1, LOG2, LOG3, LOG4: n := int(op - LOG0) err := stack.require(n + 2) if err != nil { return nil, nil, err } mSize, mStart := stack.data[stack.len()-2], stack.data[stack.len()-1] gas.Add(gas, params.LogGas) gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(n)), params.LogTopicGas)) gas.Add(gas, new(big.Int).Mul(mSize, params.LogDataGas)) newMemSize = calcMemSize(mStart, mSize) case EXP: gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(len(stack.data[stack.len()-2].Bytes()))), params.ExpByteGas)) case SSTORE: err := stack.require(2) if err != nil { return nil, nil, err } var g *big.Int y, x := stack.data[stack.len()-2], stack.data[stack.len()-1] val := statedb.GetState(context.Address(), common.BigToHash(x)) if len(val) == 0 && len(y.Bytes()) > 0 { // 0 => non 0 g = params.SstoreSetGas } else if len(val) > 0 && len(y.Bytes()) == 0 { statedb.Refund(self.env.Origin(), params.SstoreRefundGas) g = params.SstoreClearGas } else { // non 0 => non 0 (or 0 => 0) g = params.SstoreClearGas } gas.Set(g) case SUICIDE: if !statedb.IsDeleted(context.Address()) { statedb.Refund(self.env.Origin(), params.SuicideRefundGas) } case MLOAD: newMemSize = calcMemSize(stack.peek(), u256(32)) case MSTORE8: newMemSize = calcMemSize(stack.peek(), u256(1)) case MSTORE: newMemSize = calcMemSize(stack.peek(), u256(32)) case RETURN: newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2]) case SHA3: newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2]) words := toWordSize(stack.data[stack.len()-2]) gas.Add(gas, words.Mul(words, params.Sha3WordGas)) case CALLDATACOPY: newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3]) words := toWordSize(stack.data[stack.len()-3]) gas.Add(gas, words.Mul(words, params.CopyGas)) case CODECOPY: newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3]) words := toWordSize(stack.data[stack.len()-3]) gas.Add(gas, words.Mul(words, params.CopyGas)) case EXTCODECOPY: newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-4]) words := toWordSize(stack.data[stack.len()-4]) gas.Add(gas, words.Mul(words, params.CopyGas)) case CREATE: newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-3]) case CALL, CALLCODE: gas.Add(gas, stack.data[stack.len()-1]) if op == CALL { if self.env.State().GetStateObject(common.BigToAddress(stack.data[stack.len()-2])) == nil { gas.Add(gas, params.CallNewAccountGas) } } if len(stack.data[stack.len()-3].Bytes()) > 0 { gas.Add(gas, params.CallValueTransferGas) } x := calcMemSize(stack.data[stack.len()-6], stack.data[stack.len()-7]) y := calcMemSize(stack.data[stack.len()-4], stack.data[stack.len()-5]) newMemSize = common.BigMax(x, y) } if newMemSize.Cmp(common.Big0) > 0 { newMemSizeWords := toWordSize(newMemSize) newMemSize.Mul(newMemSizeWords, u256(32)) if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 { oldSize := toWordSize(big.NewInt(int64(mem.Len()))) pow := new(big.Int).Exp(oldSize, common.Big2, Zero) linCoef := new(big.Int).Mul(oldSize, params.MemoryGas) quadCoef := new(big.Int).Div(pow, params.QuadCoeffDiv) oldTotalFee := new(big.Int).Add(linCoef, quadCoef) pow.Exp(newMemSizeWords, common.Big2, Zero) linCoef = new(big.Int).Mul(newMemSizeWords, params.MemoryGas) quadCoef = new(big.Int).Div(pow, params.QuadCoeffDiv) newTotalFee := new(big.Int).Add(linCoef, quadCoef) fee := new(big.Int).Sub(newTotalFee, oldTotalFee) gas.Add(gas, fee) } } return newMemSize, gas, nil } // RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go func (self *Vm) RunPrecompiled(p *PrecompiledAccount, input []byte, context *Context) (ret []byte, err error) { gas := p.Gas(len(input)) if context.UseGas(gas) { ret = p.Call(input) return context.Return(ret), nil } else { tmp := new(big.Int).Set(context.Gas) return nil, OOG(gas, tmp) } } // log emits a log event to the environment for each opcode encountered. This is not to be confused with the // LOG* opcode. func (self *Vm) log(pc uint64, op OpCode, gas *big.Int, memory *Memory, stack *stack, context *Context) { if Debug { mem := make([]byte, len(memory.Data())) copy(mem, memory.Data()) stck := make([]*big.Int, len(stack.Data())) copy(stck, stack.Data()) object := context.self.(*state.StateObject) storage := make(map[common.Hash][]byte) object.EachStorage(func(k, v []byte) { storage[common.BytesToHash(k)] = v }) self.env.AddStructLog(StructLog{pc, op, new(big.Int).Set(gas), mem, stck, storage}) } } // Environment returns the current workable state of the VM func (self *Vm) Env() Environment { return self.env }