package discover import ( "bytes" "crypto/ecdsa" "errors" "fmt" "net" "time" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/p2p/nat" "github.com/ethereum/go-ethereum/rlp" ) const Version = 4 // Errors var ( errPacketTooSmall = errors.New("too small") errBadHash = errors.New("bad hash") errExpired = errors.New("expired") errBadVersion = errors.New("version mismatch") errUnsolicitedReply = errors.New("unsolicited reply") errUnknownNode = errors.New("unknown node") errTimeout = errors.New("RPC timeout") errClosed = errors.New("socket closed") ) // Timeouts const ( respTimeout = 300 * time.Millisecond sendTimeout = 300 * time.Millisecond expiration = 20 * time.Second refreshInterval = 1 * time.Hour ) // RPC packet types const ( pingPacket = iota + 1 // zero is 'reserved' pongPacket findnodePacket neighborsPacket ) // RPC request structures type ( ping struct { Version uint From, To rpcEndpoint Expiration uint64 } // pong is the reply to ping. pong struct { // This field should mirror the UDP envelope address // of the ping packet, which provides a way to discover the // the external address (after NAT). To rpcEndpoint ReplyTok []byte // This contains the hash of the ping packet. Expiration uint64 // Absolute timestamp at which the packet becomes invalid. } findnode struct { // Id to look up. The responding node will send back nodes // closest to the target. Target NodeID Expiration uint64 } // reply to findnode neighbors struct { Nodes []rpcNode Expiration uint64 } rpcNode struct { IP net.IP // len 4 for IPv4 or 16 for IPv6 UDP uint16 // for discovery protocol TCP uint16 // for RLPx protocol ID NodeID } rpcEndpoint struct { IP net.IP // len 4 for IPv4 or 16 for IPv6 UDP uint16 // for discovery protocol TCP uint16 // for RLPx protocol } ) func makeEndpoint(addr *net.UDPAddr, tcpPort uint16) rpcEndpoint { ip := addr.IP.To4() if ip == nil { ip = addr.IP.To16() } return rpcEndpoint{IP: ip, UDP: uint16(addr.Port), TCP: tcpPort} } func nodeFromRPC(rn rpcNode) (n *Node, valid bool) { // TODO: don't accept localhost, LAN addresses from internet hosts // TODO: check public key is on secp256k1 curve if rn.IP.IsMulticast() || rn.IP.IsUnspecified() || rn.UDP == 0 { return nil, false } return newNode(rn.ID, rn.IP, rn.UDP, rn.TCP), true } func nodeToRPC(n *Node) rpcNode { return rpcNode{ID: n.ID, IP: n.IP, UDP: n.UDP, TCP: n.TCP} } type packet interface { handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error } type conn interface { ReadFromUDP(b []byte) (n int, addr *net.UDPAddr, err error) WriteToUDP(b []byte, addr *net.UDPAddr) (n int, err error) Close() error LocalAddr() net.Addr } // udp implements the RPC protocol. type udp struct { conn conn priv *ecdsa.PrivateKey ourEndpoint rpcEndpoint addpending chan *pending gotreply chan reply closing chan struct{} nat nat.Interface *Table } // pending represents a pending reply. // // some implementations of the protocol wish to send more than one // reply packet to findnode. in general, any neighbors packet cannot // be matched up with a specific findnode packet. // // our implementation handles this by storing a callback function for // each pending reply. incoming packets from a node are dispatched // to all the callback functions for that node. type pending struct { // these fields must match in the reply. from NodeID ptype byte // time when the request must complete deadline time.Time // callback is called when a matching reply arrives. if it returns // true, the callback is removed from the pending reply queue. // if it returns false, the reply is considered incomplete and // the callback will be invoked again for the next matching reply. callback func(resp interface{}) (done bool) // errc receives nil when the callback indicates completion or an // error if no further reply is received within the timeout. errc chan<- error } type reply struct { from NodeID ptype byte data interface{} // loop indicates whether there was // a matching request by sending on this channel. matched chan<- bool } // ListenUDP returns a new table that listens for UDP packets on laddr. func ListenUDP(priv *ecdsa.PrivateKey, laddr string, natm nat.Interface, nodeDBPath string) (*Table, error) { addr, err := net.ResolveUDPAddr("udp", laddr) if err != nil { return nil, err } conn, err := net.ListenUDP("udp", addr) if err != nil { return nil, err } tab, _ := newUDP(priv, conn, natm, nodeDBPath) glog.V(logger.Info).Infoln("Listening,", tab.self) return tab, nil } func newUDP(priv *ecdsa.PrivateKey, c conn, natm nat.Interface, nodeDBPath string) (*Table, *udp) { udp := &udp{ conn: c, priv: priv, closing: make(chan struct{}), gotreply: make(chan reply), addpending: make(chan *pending), } realaddr := c.LocalAddr().(*net.UDPAddr) if natm != nil { if !realaddr.IP.IsLoopback() { go nat.Map(natm, udp.closing, "udp", realaddr.Port, realaddr.Port, "ethereum discovery") } // TODO: react to external IP changes over time. if ext, err := natm.ExternalIP(); err == nil { realaddr = &net.UDPAddr{IP: ext, Port: realaddr.Port} } } // TODO: separate TCP port udp.ourEndpoint = makeEndpoint(realaddr, uint16(realaddr.Port)) udp.Table = newTable(udp, PubkeyID(&priv.PublicKey), realaddr, nodeDBPath) go udp.loop() go udp.readLoop() return udp.Table, udp } func (t *udp) close() { close(t.closing) t.conn.Close() // TODO: wait for the loops to end. } // ping sends a ping message to the given node and waits for a reply. func (t *udp) ping(toid NodeID, toaddr *net.UDPAddr) error { // TODO: maybe check for ReplyTo field in callback to measure RTT errc := t.pending(toid, pongPacket, func(interface{}) bool { return true }) t.send(toaddr, pingPacket, ping{ Version: Version, From: t.ourEndpoint, To: makeEndpoint(toaddr, 0), // TODO: maybe use known TCP port from DB Expiration: uint64(time.Now().Add(expiration).Unix()), }) return <-errc } func (t *udp) waitping(from NodeID) error { return <-t.pending(from, pingPacket, func(interface{}) bool { return true }) } // findnode sends a findnode request to the given node and waits until // the node has sent up to k neighbors. func (t *udp) findnode(toid NodeID, toaddr *net.UDPAddr, target NodeID) ([]*Node, error) { nodes := make([]*Node, 0, bucketSize) nreceived := 0 errc := t.pending(toid, neighborsPacket, func(r interface{}) bool { reply := r.(*neighbors) for _, rn := range reply.Nodes { nreceived++ if n, valid := nodeFromRPC(rn); valid { nodes = append(nodes, n) } } return nreceived >= bucketSize }) t.send(toaddr, findnodePacket, findnode{ Target: target, Expiration: uint64(time.Now().Add(expiration).Unix()), }) err := <-errc return nodes, err } // pending adds a reply callback to the pending reply queue. // see the documentation of type pending for a detailed explanation. func (t *udp) pending(id NodeID, ptype byte, callback func(interface{}) bool) <-chan error { ch := make(chan error, 1) p := &pending{from: id, ptype: ptype, callback: callback, errc: ch} select { case t.addpending <- p: // loop will handle it case <-t.closing: ch <- errClosed } return ch } func (t *udp) handleReply(from NodeID, ptype byte, req packet) bool { matched := make(chan bool) select { case t.gotreply <- reply{from, ptype, req, matched}: // loop will handle it return <-matched case <-t.closing: return false } } // loop runs in its own goroutin. it keeps track of // the refresh timer and the pending reply queue. func (t *udp) loop() { var ( pending []*pending nextDeadline time.Time timeout = time.NewTimer(0) refresh = time.NewTicker(refreshInterval) ) <-timeout.C // ignore first timeout defer refresh.Stop() defer timeout.Stop() rearmTimeout := func() { now := time.Now() if len(pending) == 0 || now.Before(nextDeadline) { return } nextDeadline = pending[0].deadline timeout.Reset(nextDeadline.Sub(now)) } for { select { case <-refresh.C: go t.refresh() case <-t.closing: for _, p := range pending { p.errc <- errClosed } pending = nil return case p := <-t.addpending: p.deadline = time.Now().Add(respTimeout) pending = append(pending, p) rearmTimeout() case r := <-t.gotreply: var matched bool for i := 0; i < len(pending); i++ { if p := pending[i]; p.from == r.from && p.ptype == r.ptype { matched = true if p.callback(r.data) { // callback indicates the request is done, remove it. p.errc <- nil copy(pending[i:], pending[i+1:]) pending = pending[:len(pending)-1] i-- } } } r.matched <- matched case now := <-timeout.C: // notify and remove callbacks whose deadline is in the past. i := 0 for ; i < len(pending) && now.After(pending[i].deadline); i++ { pending[i].errc <- errTimeout } if i > 0 { copy(pending, pending[i:]) pending = pending[:len(pending)-i] } rearmTimeout() } } } const ( macSize = 256 / 8 sigSize = 520 / 8 headSize = macSize + sigSize // space of packet frame data ) var headSpace = make([]byte, headSize) func (t *udp) send(toaddr *net.UDPAddr, ptype byte, req interface{}) error { packet, err := encodePacket(t.priv, ptype, req) if err != nil { return err } glog.V(logger.Detail).Infof(">>> %v %T\n", toaddr, req) if _, err = t.conn.WriteToUDP(packet, toaddr); err != nil { glog.V(logger.Detail).Infoln("UDP send failed:", err) } return err } func encodePacket(priv *ecdsa.PrivateKey, ptype byte, req interface{}) ([]byte, error) { b := new(bytes.Buffer) b.Write(headSpace) b.WriteByte(ptype) if err := rlp.Encode(b, req); err != nil { glog.V(logger.Error).Infoln("error encoding packet:", err) return nil, err } packet := b.Bytes() sig, err := crypto.Sign(crypto.Sha3(packet[headSize:]), priv) if err != nil { glog.V(logger.Error).Infoln("could not sign packet:", err) return nil, err } copy(packet[macSize:], sig) // add the hash to the front. Note: this doesn't protect the // packet in any way. Our public key will be part of this hash in // The future. copy(packet, crypto.Sha3(packet[macSize:])) return packet, nil } // readLoop runs in its own goroutine. it handles incoming UDP packets. func (t *udp) readLoop() { defer t.conn.Close() buf := make([]byte, 4096) // TODO: good buffer size for { nbytes, from, err := t.conn.ReadFromUDP(buf) if err != nil { return } t.handlePacket(from, buf[:nbytes]) } } func (t *udp) handlePacket(from *net.UDPAddr, buf []byte) error { packet, fromID, hash, err := decodePacket(buf) if err != nil { glog.V(logger.Debug).Infof("Bad packet from %v: %v\n", from, err) return err } status := "ok" if err = packet.handle(t, from, fromID, hash); err != nil { status = err.Error() } glog.V(logger.Detail).Infof("<<< %v %T: %s\n", from, packet, status) return err } func decodePacket(buf []byte) (packet, NodeID, []byte, error) { if len(buf) < headSize+1 { return nil, NodeID{}, nil, errPacketTooSmall } hash, sig, sigdata := buf[:macSize], buf[macSize:headSize], buf[headSize:] shouldhash := crypto.Sha3(buf[macSize:]) if !bytes.Equal(hash, shouldhash) { return nil, NodeID{}, nil, errBadHash } fromID, err := recoverNodeID(crypto.Sha3(buf[headSize:]), sig) if err != nil { return nil, NodeID{}, hash, err } var req packet switch ptype := sigdata[0]; ptype { case pingPacket: req = new(ping) case pongPacket: req = new(pong) case findnodePacket: req = new(findnode) case neighborsPacket: req = new(neighbors) default: return nil, fromID, hash, fmt.Errorf("unknown type: %d", ptype) } err = rlp.DecodeBytes(sigdata[1:], req) return req, fromID, hash, err } func (req *ping) handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error { if expired(req.Expiration) { return errExpired } if req.Version != Version { return errBadVersion } t.send(from, pongPacket, pong{ To: makeEndpoint(from, req.From.TCP), ReplyTok: mac, Expiration: uint64(time.Now().Add(expiration).Unix()), }) if !t.handleReply(fromID, pingPacket, req) { // Note: we're ignoring the provided IP address right now go t.bond(true, fromID, from, req.From.TCP) } return nil } func (req *pong) handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error { if expired(req.Expiration) { return errExpired } if !t.handleReply(fromID, pongPacket, req) { return errUnsolicitedReply } return nil } func (req *findnode) handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error { if expired(req.Expiration) { return errExpired } if t.db.node(fromID) == nil { // No bond exists, we don't process the packet. This prevents // an attack vector where the discovery protocol could be used // to amplify traffic in a DDOS attack. A malicious actor // would send a findnode request with the IP address and UDP // port of the target as the source address. The recipient of // the findnode packet would then send a neighbors packet // (which is a much bigger packet than findnode) to the victim. return errUnknownNode } t.mutex.Lock() closest := t.closest(req.Target, bucketSize).entries t.mutex.Unlock() // TODO: this conversion could use a cached version of the slice closestrpc := make([]rpcNode, len(closest)) for i, n := range closest { closestrpc[i] = nodeToRPC(n) } t.send(from, neighborsPacket, neighbors{ Nodes: closestrpc, Expiration: uint64(time.Now().Add(expiration).Unix()), }) return nil } func (req *neighbors) handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error { if expired(req.Expiration) { return errExpired } if !t.handleReply(fromID, neighborsPacket, req) { return errUnsolicitedReply } return nil } func expired(ts uint64) bool { return time.Unix(int64(ts), 0).Before(time.Now()) }