// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package miner import ( "bytes" "fmt" "math/big" "sync" "sync/atomic" "time" mapset "github.com/deckarep/golang-set" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/consensus/misc" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" ) const ( // resultQueueSize is the size of channel listening to sealing result. resultQueueSize = 10 // txChanSize is the size of channel listening to NewTxsEvent. // The number is referenced from the size of tx pool. txChanSize = 4096 // chainHeadChanSize is the size of channel listening to ChainHeadEvent. chainHeadChanSize = 10 // chainSideChanSize is the size of channel listening to ChainSideEvent. chainSideChanSize = 10 // miningLogAtDepth is the number of confirmations before logging successful mining. miningLogAtDepth = 5 // blockRecommitInterval is the time interval to recreate the mining block with // any newly arrived transactions. blockRecommitInterval = 3 * time.Second ) // environment is the worker's current environment and holds all of the current state information. type environment struct { signer types.Signer state *state.StateDB // apply state changes here ancestors mapset.Set // ancestor set (used for checking uncle parent validity) family mapset.Set // family set (used for checking uncle invalidity) uncles mapset.Set // uncle set tcount int // tx count in cycle gasPool *core.GasPool // available gas used to pack transactions header *types.Header txs []*types.Transaction receipts []*types.Receipt } // task contains all information for consensus engine sealing and result submitting. type task struct { receipts []*types.Receipt state *state.StateDB block *types.Block createdAt time.Time } const ( commitInterruptNone int32 = iota commitInterruptNewHead commitInterruptResubmit ) type newWorkReq struct { interrupt *int32 noempty bool } // worker is the main object which takes care of submitting new work to consensus engine // and gathering the sealing result. type worker struct { config *params.ChainConfig engine consensus.Engine eth Backend chain *core.BlockChain // Subscriptions mux *event.TypeMux txsCh chan core.NewTxsEvent txsSub event.Subscription chainHeadCh chan core.ChainHeadEvent chainHeadSub event.Subscription chainSideCh chan core.ChainSideEvent chainSideSub event.Subscription // Channels newWorkCh chan *newWorkReq taskCh chan *task resultCh chan *task startCh chan struct{} exitCh chan struct{} current *environment // An environment for current running cycle. possibleUncles map[common.Hash]*types.Block // A set of side blocks as the possible uncle blocks. unconfirmed *unconfirmedBlocks // A set of locally mined blocks pending canonicalness confirmations. mu sync.RWMutex // The lock used to protect the coinbase and extra fields coinbase common.Address extra []byte snapshotMu sync.RWMutex // The lock used to protect the block snapshot and state snapshot snapshotBlock *types.Block snapshotState *state.StateDB // atomic status counters running int32 // The indicator whether the consensus engine is running or not. // Test hooks newTaskHook func(*task) // Method to call upon receiving a new sealing task skipSealHook func(*task) bool // Method to decide whether skipping the sealing. fullTaskHook func() // Method to call before pushing the full sealing task } func newWorker(config *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux) *worker { worker := &worker{ config: config, engine: engine, eth: eth, mux: mux, chain: eth.BlockChain(), possibleUncles: make(map[common.Hash]*types.Block), unconfirmed: newUnconfirmedBlocks(eth.BlockChain(), miningLogAtDepth), txsCh: make(chan core.NewTxsEvent, txChanSize), chainHeadCh: make(chan core.ChainHeadEvent, chainHeadChanSize), chainSideCh: make(chan core.ChainSideEvent, chainSideChanSize), newWorkCh: make(chan *newWorkReq), taskCh: make(chan *task), resultCh: make(chan *task, resultQueueSize), exitCh: make(chan struct{}), startCh: make(chan struct{}, 1), } // Subscribe NewTxsEvent for tx pool worker.txsSub = eth.TxPool().SubscribeNewTxsEvent(worker.txsCh) // Subscribe events for blockchain worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh) worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh) go worker.mainLoop() go worker.newWorkLoop() go worker.resultLoop() go worker.taskLoop() // Submit first work to initialize pending state. worker.startCh <- struct{}{} return worker } // setEtherbase sets the etherbase used to initialize the block coinbase field. func (w *worker) setEtherbase(addr common.Address) { w.mu.Lock() defer w.mu.Unlock() w.coinbase = addr } // setExtra sets the content used to initialize the block extra field. func (w *worker) setExtra(extra []byte) { w.mu.Lock() defer w.mu.Unlock() w.extra = extra } // pending returns the pending state and corresponding block. func (w *worker) pending() (*types.Block, *state.StateDB) { // return a snapshot to avoid contention on currentMu mutex w.snapshotMu.RLock() defer w.snapshotMu.RUnlock() if w.snapshotState == nil { return nil, nil } return w.snapshotBlock, w.snapshotState.Copy() } // pendingBlock returns pending block. func (w *worker) pendingBlock() *types.Block { // return a snapshot to avoid contention on currentMu mutex w.snapshotMu.RLock() defer w.snapshotMu.RUnlock() return w.snapshotBlock } // start sets the running status as 1 and triggers new work submitting. func (w *worker) start() { atomic.StoreInt32(&w.running, 1) w.startCh <- struct{}{} } // stop sets the running status as 0. func (w *worker) stop() { atomic.StoreInt32(&w.running, 0) } // isRunning returns an indicator whether worker is running or not. func (w *worker) isRunning() bool { return atomic.LoadInt32(&w.running) == 1 } // close terminates all background threads maintained by the worker and cleans up buffered channels. // Note the worker does not support being closed multiple times. func (w *worker) close() { close(w.exitCh) // Clean up buffered channels for empty := false; !empty; { select { case <-w.resultCh: default: empty = true } } } // newWorkLoop is a standalone goroutine to submit new mining work upon received events. func (w *worker) newWorkLoop() { var interrupt *int32 timer := time.NewTimer(0) <-timer.C // discard the initial tick // recommit aborts in-flight transaction execution with given signal and resubmits a new one. recommit := func(noempty bool, s int32) { if interrupt != nil { atomic.StoreInt32(interrupt, s) } interrupt = new(int32) w.newWorkCh <- &newWorkReq{interrupt: interrupt, noempty: noempty} timer.Reset(blockRecommitInterval) } for { select { case <-w.startCh: recommit(false, commitInterruptNewHead) case <-w.chainHeadCh: recommit(false, commitInterruptNewHead) case <-timer.C: // If mining is running resubmit a new work cycle periodically to pull in // higher priced transactions. Disable this overhead for pending blocks. if w.isRunning() && (w.config.Clique == nil || w.config.Clique.Period > 0) { recommit(true, commitInterruptResubmit) } case <-w.exitCh: return } } } // mainLoop is a standalone goroutine to regenerate the sealing task based on the received event. func (w *worker) mainLoop() { defer w.txsSub.Unsubscribe() defer w.chainHeadSub.Unsubscribe() defer w.chainSideSub.Unsubscribe() for { select { case req := <-w.newWorkCh: w.commitNewWork(req.interrupt, req.noempty) case ev := <-w.chainSideCh: if _, exist := w.possibleUncles[ev.Block.Hash()]; exist { continue } // Add side block to possible uncle block set. w.possibleUncles[ev.Block.Hash()] = ev.Block // If our mining block contains less than 2 uncle blocks, // add the new uncle block if valid and regenerate a mining block. if w.isRunning() && w.current != nil && w.current.uncles.Cardinality() < 2 { start := time.Now() if err := w.commitUncle(w.current, ev.Block.Header()); err == nil { var uncles []*types.Header w.current.uncles.Each(func(item interface{}) bool { hash, ok := item.(common.Hash) if !ok { return false } uncle, exist := w.possibleUncles[hash] if !exist { return false } uncles = append(uncles, uncle.Header()) return false }) w.commit(uncles, nil, true, start) } } case ev := <-w.txsCh: // Apply transactions to the pending state if we're not mining. // // Note all transactions received may not be continuous with transactions // already included in the current mining block. These transactions will // be automatically eliminated. if !w.isRunning() && w.current != nil { w.mu.RLock() coinbase := w.coinbase w.mu.RUnlock() txs := make(map[common.Address]types.Transactions) for _, tx := range ev.Txs { acc, _ := types.Sender(w.current.signer, tx) txs[acc] = append(txs[acc], tx) } txset := types.NewTransactionsByPriceAndNonce(w.current.signer, txs) w.commitTransactions(txset, coinbase, nil) w.updateSnapshot() } else { // If we're mining, but nothing is being processed, wake on new transactions if w.config.Clique != nil && w.config.Clique.Period == 0 { w.commitNewWork(nil, false) } } // System stopped case <-w.exitCh: return case <-w.txsSub.Err(): return case <-w.chainHeadSub.Err(): return case <-w.chainSideSub.Err(): return } } } // seal pushes a sealing task to consensus engine and submits the result. func (w *worker) seal(t *task, stop <-chan struct{}) { var ( err error res *task ) if w.skipSealHook != nil && w.skipSealHook(t) { return } if t.block, err = w.engine.Seal(w.chain, t.block, stop); t.block != nil { log.Info("Successfully sealed new block", "number", t.block.Number(), "hash", t.block.Hash(), "elapsed", common.PrettyDuration(time.Since(t.createdAt))) res = t } else { if err != nil { log.Warn("Block sealing failed", "err", err) } res = nil } select { case w.resultCh <- res: case <-w.exitCh: } } // taskLoop is a standalone goroutine to fetch sealing task from the generator and // push them to consensus engine. func (w *worker) taskLoop() { var stopCh chan struct{} // interrupt aborts the in-flight sealing task. interrupt := func() { if stopCh != nil { close(stopCh) stopCh = nil } } for { select { case task := <-w.taskCh: if w.newTaskHook != nil { w.newTaskHook(task) } interrupt() stopCh = make(chan struct{}) go w.seal(task, stopCh) case <-w.exitCh: interrupt() return } } } // resultLoop is a standalone goroutine to handle sealing result submitting // and flush relative data to the database. func (w *worker) resultLoop() { for { select { case result := <-w.resultCh: if result == nil { continue } block := result.block // Update the block hash in all logs since it is now available and not when the // receipt/log of individual transactions were created. for _, r := range result.receipts { for _, l := range r.Logs { l.BlockHash = block.Hash() } } for _, log := range result.state.Logs() { log.BlockHash = block.Hash() } // Commit block and state to database. stat, err := w.chain.WriteBlockWithState(block, result.receipts, result.state) if err != nil { log.Error("Failed writing block to chain", "err", err) continue } // Broadcast the block and announce chain insertion event w.mux.Post(core.NewMinedBlockEvent{Block: block}) var ( events []interface{} logs = result.state.Logs() ) switch stat { case core.CanonStatTy: events = append(events, core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs}) events = append(events, core.ChainHeadEvent{Block: block}) case core.SideStatTy: events = append(events, core.ChainSideEvent{Block: block}) } w.chain.PostChainEvents(events, logs) // Insert the block into the set of pending ones to resultLoop for confirmations w.unconfirmed.Insert(block.NumberU64(), block.Hash()) case <-w.exitCh: return } } } // makeCurrent creates a new environment for the current cycle. func (w *worker) makeCurrent(parent *types.Block, header *types.Header) error { state, err := w.chain.StateAt(parent.Root()) if err != nil { return err } env := &environment{ signer: types.NewEIP155Signer(w.config.ChainID), state: state, ancestors: mapset.NewSet(), family: mapset.NewSet(), uncles: mapset.NewSet(), header: header, } // when 08 is processed ancestors contain 07 (quick block) for _, ancestor := range w.chain.GetBlocksFromHash(parent.Hash(), 7) { for _, uncle := range ancestor.Uncles() { env.family.Add(uncle.Hash()) } env.family.Add(ancestor.Hash()) env.ancestors.Add(ancestor.Hash()) } // Keep track of transactions which return errors so they can be removed env.tcount = 0 w.current = env return nil } // commitUncle adds the given block to uncle block set, returns error if failed to add. func (w *worker) commitUncle(env *environment, uncle *types.Header) error { hash := uncle.Hash() if env.uncles.Contains(hash) { return fmt.Errorf("uncle not unique") } if !env.ancestors.Contains(uncle.ParentHash) { return fmt.Errorf("uncle's parent unknown (%x)", uncle.ParentHash[0:4]) } if env.family.Contains(hash) { return fmt.Errorf("uncle already in family (%x)", hash) } env.uncles.Add(uncle.Hash()) return nil } // updateSnapshot updates pending snapshot block and state. // Note this function assumes the current variable is thread safe. func (w *worker) updateSnapshot() { w.snapshotMu.Lock() defer w.snapshotMu.Unlock() var uncles []*types.Header w.current.uncles.Each(func(item interface{}) bool { hash, ok := item.(common.Hash) if !ok { return false } uncle, exist := w.possibleUncles[hash] if !exist { return false } uncles = append(uncles, uncle.Header()) return false }) w.snapshotBlock = types.NewBlock( w.current.header, w.current.txs, uncles, w.current.receipts, ) w.snapshotState = w.current.state.Copy() } func (w *worker) commitTransaction(tx *types.Transaction, coinbase common.Address) ([]*types.Log, error) { snap := w.current.state.Snapshot() receipt, _, err := core.ApplyTransaction(w.config, w.chain, &coinbase, w.current.gasPool, w.current.state, w.current.header, tx, &w.current.header.GasUsed, vm.Config{}) if err != nil { w.current.state.RevertToSnapshot(snap) return nil, err } w.current.txs = append(w.current.txs, tx) w.current.receipts = append(w.current.receipts, receipt) return receipt.Logs, nil } func (w *worker) commitTransactions(txs *types.TransactionsByPriceAndNonce, coinbase common.Address, interrupt *int32) bool { // Short circuit if current is nil if w.current == nil { return true } if w.current.gasPool == nil { w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit) } var coalescedLogs []*types.Log for { // In the following three cases, we will interrupt the execution of the transaction. // (1) new head block event arrival, the interrupt signal is 1 // (2) worker start or restart, the interrupt signal is 1 // (3) worker recreate the mining block with any newly arrived transactions, the interrupt signal is 2. // For the first two cases, the semi-finished work will be discarded. // For the third case, the semi-finished work will be submitted to the consensus engine. // TODO(rjl493456442) give feedback to newWorkLoop to adjust resubmit interval if it is too short. if interrupt != nil && atomic.LoadInt32(interrupt) != commitInterruptNone { return atomic.LoadInt32(interrupt) == commitInterruptNewHead } // If we don't have enough gas for any further transactions then we're done if w.current.gasPool.Gas() < params.TxGas { log.Trace("Not enough gas for further transactions", "have", w.current.gasPool, "want", params.TxGas) break } // Retrieve the next transaction and abort if all done tx := txs.Peek() if tx == nil { break } // Error may be ignored here. The error has already been checked // during transaction acceptance is the transaction pool. // // We use the eip155 signer regardless of the current hf. from, _ := types.Sender(w.current.signer, tx) // Check whether the tx is replay protected. If we're not in the EIP155 hf // phase, start ignoring the sender until we do. if tx.Protected() && !w.config.IsEIP155(w.current.header.Number) { log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.config.EIP155Block) txs.Pop() continue } // Start executing the transaction w.current.state.Prepare(tx.Hash(), common.Hash{}, w.current.tcount) logs, err := w.commitTransaction(tx, coinbase) switch err { case core.ErrGasLimitReached: // Pop the current out-of-gas transaction without shifting in the next from the account log.Trace("Gas limit exceeded for current block", "sender", from) txs.Pop() case core.ErrNonceTooLow: // New head notification data race between the transaction pool and miner, shift log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce()) txs.Shift() case core.ErrNonceTooHigh: // Reorg notification data race between the transaction pool and miner, skip account = log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce()) txs.Pop() case nil: // Everything ok, collect the logs and shift in the next transaction from the same account coalescedLogs = append(coalescedLogs, logs...) w.current.tcount++ txs.Shift() default: // Strange error, discard the transaction and get the next in line (note, the // nonce-too-high clause will prevent us from executing in vain). log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err) txs.Shift() } } if !w.isRunning() && len(coalescedLogs) > 0 { // We don't push the pendingLogsEvent while we are mining. The reason is that // when we are mining, the worker will regenerate a mining block every 3 seconds. // In order to avoid pushing the repeated pendingLog, we disable the pending log pushing. // make a copy, the state caches the logs and these logs get "upgraded" from pending to mined // logs by filling in the block hash when the block was mined by the local miner. This can // cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed. cpy := make([]*types.Log, len(coalescedLogs)) for i, l := range coalescedLogs { cpy[i] = new(types.Log) *cpy[i] = *l } go w.mux.Post(core.PendingLogsEvent{Logs: cpy}) } return false } // commitNewWork generates several new sealing tasks based on the parent block. func (w *worker) commitNewWork(interrupt *int32, noempty bool) { w.mu.RLock() defer w.mu.RUnlock() tstart := time.Now() parent := w.chain.CurrentBlock() tstamp := tstart.Unix() if parent.Time().Cmp(new(big.Int).SetInt64(tstamp)) >= 0 { tstamp = parent.Time().Int64() + 1 } // this will ensure we're not going off too far in the future if now := time.Now().Unix(); tstamp > now+1 { wait := time.Duration(tstamp-now) * time.Second log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait)) time.Sleep(wait) } num := parent.Number() header := &types.Header{ ParentHash: parent.Hash(), Number: num.Add(num, common.Big1), GasLimit: core.CalcGasLimit(parent), Extra: w.extra, Time: big.NewInt(tstamp), } // Only set the coinbase if our consensus engine is running (avoid spurious block rewards) if w.isRunning() { if w.coinbase == (common.Address{}) { log.Error("Refusing to mine without etherbase") return } header.Coinbase = w.coinbase } if err := w.engine.Prepare(w.chain, header); err != nil { log.Error("Failed to prepare header for mining", "err", err) return } // If we are care about TheDAO hard-fork check whether to override the extra-data or not if daoBlock := w.config.DAOForkBlock; daoBlock != nil { // Check whether the block is among the fork extra-override range limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange) if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 { // Depending whether we support or oppose the fork, override differently if w.config.DAOForkSupport { header.Extra = common.CopyBytes(params.DAOForkBlockExtra) } else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) { header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data } } } // Could potentially happen if starting to mine in an odd state. err := w.makeCurrent(parent, header) if err != nil { log.Error("Failed to create mining context", "err", err) return } // Create the current work task and check any fork transitions needed env := w.current if w.config.DAOForkSupport && w.config.DAOForkBlock != nil && w.config.DAOForkBlock.Cmp(header.Number) == 0 { misc.ApplyDAOHardFork(env.state) } // compute uncles for the new block. var ( uncles []*types.Header badUncles []common.Hash ) for hash, uncle := range w.possibleUncles { if len(uncles) == 2 { break } if err := w.commitUncle(env, uncle.Header()); err != nil { log.Trace("Bad uncle found and will be removed", "hash", hash) log.Trace(fmt.Sprint(uncle)) badUncles = append(badUncles, hash) } else { log.Debug("Committing new uncle to block", "hash", hash) uncles = append(uncles, uncle.Header()) } } for _, hash := range badUncles { delete(w.possibleUncles, hash) } if !noempty { // Create an empty block based on temporary copied state for sealing in advance without waiting block // execution finished. w.commit(uncles, nil, false, tstart) } // Fill the block with all available pending transactions. pending, err := w.eth.TxPool().Pending() if err != nil { log.Error("Failed to fetch pending transactions", "err", err) return } // Short circuit if there is no available pending transactions if len(pending) == 0 { w.updateSnapshot() return } txs := types.NewTransactionsByPriceAndNonce(w.current.signer, pending) if w.commitTransactions(txs, w.coinbase, interrupt) { return } w.commit(uncles, w.fullTaskHook, true, tstart) } // commit runs any post-transaction state modifications, assembles the final block // and commits new work if consensus engine is running. func (w *worker) commit(uncles []*types.Header, interval func(), update bool, start time.Time) error { // Deep copy receipts here to avoid interaction between different tasks. receipts := make([]*types.Receipt, len(w.current.receipts)) for i, l := range w.current.receipts { receipts[i] = new(types.Receipt) *receipts[i] = *l } s := w.current.state.Copy() block, err := w.engine.Finalize(w.chain, w.current.header, s, w.current.txs, uncles, w.current.receipts) if err != nil { return err } if w.isRunning() { if interval != nil { interval() } select { case w.taskCh <- &task{receipts: receipts, state: s, block: block, createdAt: time.Now()}: w.unconfirmed.Shift(block.NumberU64() - 1) feesWei := new(big.Int) for i, tx := range block.Transactions() { feesWei.Add(feesWei, new(big.Int).Mul(new(big.Int).SetUint64(receipts[i].GasUsed), tx.GasPrice())) } feesEth := new(big.Float).Quo(new(big.Float).SetInt(feesWei), new(big.Float).SetInt(big.NewInt(params.Ether))) log.Info("Commit new mining work", "number", block.Number(), "uncles", len(uncles), "txs", w.current.tcount, "gas", block.GasUsed(), "fees", feesEth, "elapsed", common.PrettyDuration(time.Since(start))) case <-w.exitCh: log.Info("Worker has exited") } } if update { w.updateSnapshot() } return nil }