// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package core implements the Ethereum consensus protocol. package core import ( "errors" "fmt" "io" "math/big" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/pow" "github.com/ethereum/go-ethereum/rlp" "github.com/hashicorp/golang-lru" ) var ( chainlogger = logger.NewLogger("CHAIN") jsonlogger = logger.NewJsonLogger() blockInsertTimer = metrics.NewTimer("chain/inserts") ErrNoGenesis = errors.New("Genesis not found in chain") ) const ( headerCacheLimit = 512 bodyCacheLimit = 256 tdCacheLimit = 1024 blockCacheLimit = 256 maxFutureBlocks = 256 maxTimeFutureBlocks = 30 checkpointLimit = 200 ) type ChainManager struct { //eth EthManager chainDb ethdb.Database processor types.BlockProcessor eventMux *event.TypeMux genesisBlock *types.Block // Last known total difficulty mu sync.RWMutex chainmu sync.RWMutex tsmu sync.RWMutex checkpoint int // checkpoint counts towards the new checkpoint td *big.Int currentBlock *types.Block currentGasLimit *big.Int headerCache *lru.Cache // Cache for the most recent block headers bodyCache *lru.Cache // Cache for the most recent block bodies bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format tdCache *lru.Cache // Cache for the most recent block total difficulties blockCache *lru.Cache // Cache for the most recent entire blocks futureBlocks *lru.Cache // future blocks are blocks added for later processing quit chan struct{} running int32 // running must be called automically // procInterrupt must be atomically called procInterrupt int32 // interrupt signaler for block processing wg sync.WaitGroup pow pow.PoW } func NewChainManager(chainDb ethdb.Database, pow pow.PoW, mux *event.TypeMux) (*ChainManager, error) { headerCache, _ := lru.New(headerCacheLimit) bodyCache, _ := lru.New(bodyCacheLimit) bodyRLPCache, _ := lru.New(bodyCacheLimit) tdCache, _ := lru.New(tdCacheLimit) blockCache, _ := lru.New(blockCacheLimit) futureBlocks, _ := lru.New(maxFutureBlocks) bc := &ChainManager{ chainDb: chainDb, eventMux: mux, quit: make(chan struct{}), headerCache: headerCache, bodyCache: bodyCache, bodyRLPCache: bodyRLPCache, tdCache: tdCache, blockCache: blockCache, futureBlocks: futureBlocks, pow: pow, } bc.genesisBlock = bc.GetBlockByNumber(0) if bc.genesisBlock == nil { reader, err := NewDefaultGenesisReader() if err != nil { return nil, err } bc.genesisBlock, err = WriteGenesisBlock(chainDb, reader) if err != nil { return nil, err } glog.V(logger.Info).Infoln("WARNING: Wrote default ethereum genesis block") } if err := bc.setLastState(); err != nil { return nil, err } // Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain for hash, _ := range BadHashes { if block := bc.GetBlock(hash); block != nil { glog.V(logger.Error).Infof("Found bad hash. Reorganising chain to state %x\n", block.ParentHash().Bytes()[:4]) block = bc.GetBlock(block.ParentHash()) if block == nil { glog.Fatal("Unable to complete. Parent block not found. Corrupted DB?") } bc.SetHead(block) glog.V(logger.Error).Infoln("Chain reorg was successfull. Resuming normal operation") } } // Take ownership of this particular state go bc.update() return bc, nil } func (bc *ChainManager) SetHead(head *types.Block) { bc.mu.Lock() defer bc.mu.Unlock() for block := bc.currentBlock; block != nil && block.Hash() != head.Hash(); block = bc.GetBlock(block.ParentHash()) { DeleteBlock(bc.chainDb, block.Hash()) } bc.headerCache.Purge() bc.bodyCache.Purge() bc.bodyRLPCache.Purge() bc.blockCache.Purge() bc.futureBlocks.Purge() bc.currentBlock = head bc.setTotalDifficulty(bc.GetTd(head.Hash())) bc.insert(head) bc.setLastState() } func (self *ChainManager) Td() *big.Int { self.mu.RLock() defer self.mu.RUnlock() return new(big.Int).Set(self.td) } func (self *ChainManager) GasLimit() *big.Int { self.mu.RLock() defer self.mu.RUnlock() return self.currentBlock.GasLimit() } func (self *ChainManager) LastBlockHash() common.Hash { self.mu.RLock() defer self.mu.RUnlock() return self.currentBlock.Hash() } func (self *ChainManager) CurrentBlock() *types.Block { self.mu.RLock() defer self.mu.RUnlock() return self.currentBlock } func (self *ChainManager) Status() (td *big.Int, currentBlock common.Hash, genesisBlock common.Hash) { self.mu.RLock() defer self.mu.RUnlock() return new(big.Int).Set(self.td), self.currentBlock.Hash(), self.genesisBlock.Hash() } func (self *ChainManager) SetProcessor(proc types.BlockProcessor) { self.processor = proc } func (self *ChainManager) State() *state.StateDB { return state.New(self.CurrentBlock().Root(), self.chainDb) } func (bc *ChainManager) recover() bool { data, _ := bc.chainDb.Get([]byte("checkpoint")) if len(data) != 0 { block := bc.GetBlock(common.BytesToHash(data)) if block != nil { if err := WriteCanonicalHash(bc.chainDb, block.Hash(), block.NumberU64()); err != nil { glog.Fatalf("failed to write database head number: %v", err) } if err := WriteHeadBlockHash(bc.chainDb, block.Hash()); err != nil { glog.Fatalf("failed to write database head hash: %v", err) } bc.currentBlock = block return true } } return false } func (bc *ChainManager) setLastState() error { head := GetHeadBlockHash(bc.chainDb) if head != (common.Hash{}) { block := bc.GetBlock(head) if block != nil { bc.currentBlock = block } else { glog.Infof("LastBlock (%x) not found. Recovering...\n", head) if bc.recover() { glog.Infof("Recover successful") } else { glog.Fatalf("Recover failed. Please report") } } } else { bc.Reset() } bc.td = bc.GetTd(bc.currentBlock.Hash()) bc.currentGasLimit = CalcGasLimit(bc.currentBlock) if glog.V(logger.Info) { glog.Infof("Last block (#%v) %x TD=%v\n", bc.currentBlock.Number(), bc.currentBlock.Hash(), bc.td) } return nil } // Reset purges the entire blockchain, restoring it to its genesis state. func (bc *ChainManager) Reset() { bc.ResetWithGenesisBlock(bc.genesisBlock) } // ResetWithGenesisBlock purges the entire blockchain, restoring it to the // specified genesis state. func (bc *ChainManager) ResetWithGenesisBlock(genesis *types.Block) { bc.mu.Lock() defer bc.mu.Unlock() // Dump the entire block chain and purge the caches for block := bc.currentBlock; block != nil; block = bc.GetBlock(block.ParentHash()) { DeleteBlock(bc.chainDb, block.Hash()) } bc.headerCache.Purge() bc.bodyCache.Purge() bc.bodyRLPCache.Purge() bc.blockCache.Purge() bc.futureBlocks.Purge() // Prepare the genesis block and reinitialize the chain if err := WriteTd(bc.chainDb, genesis.Hash(), genesis.Difficulty()); err != nil { glog.Fatalf("failed to write genesis block TD: %v", err) } if err := WriteBlock(bc.chainDb, genesis); err != nil { glog.Fatalf("failed to write genesis block: %v", err) } bc.genesisBlock = genesis bc.insert(bc.genesisBlock) bc.currentBlock = bc.genesisBlock bc.setTotalDifficulty(genesis.Difficulty()) } // Export writes the active chain to the given writer. func (self *ChainManager) Export(w io.Writer) error { if err := self.ExportN(w, uint64(0), self.currentBlock.NumberU64()); err != nil { return err } return nil } // ExportN writes a subset of the active chain to the given writer. func (self *ChainManager) ExportN(w io.Writer, first uint64, last uint64) error { self.mu.RLock() defer self.mu.RUnlock() if first > last { return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last) } glog.V(logger.Info).Infof("exporting %d blocks...\n", last-first+1) for nr := first; nr <= last; nr++ { block := self.GetBlockByNumber(nr) if block == nil { return fmt.Errorf("export failed on #%d: not found", nr) } if err := block.EncodeRLP(w); err != nil { return err } } return nil } // insert injects a block into the current chain block chain. Note, this function // assumes that the `mu` mutex is held! func (bc *ChainManager) insert(block *types.Block) { // Add the block to the canonical chain number scheme and mark as the head if err := WriteCanonicalHash(bc.chainDb, block.Hash(), block.NumberU64()); err != nil { glog.Fatalf("failed to insert block number: %v", err) } if err := WriteHeadBlockHash(bc.chainDb, block.Hash()); err != nil { glog.Fatalf("failed to insert block number: %v", err) } // Add a new restore point if we reached some limit bc.checkpoint++ if bc.checkpoint > checkpointLimit { if err := bc.chainDb.Put([]byte("checkpoint"), block.Hash().Bytes()); err != nil { glog.Fatalf("failed to create checkpoint: %v", err) } bc.checkpoint = 0 } // Update the internal internal state with the head block bc.currentBlock = block } // Accessors func (bc *ChainManager) Genesis() *types.Block { return bc.genesisBlock } // HasHeader checks if a block header is present in the database or not, caching // it if present. func (bc *ChainManager) HasHeader(hash common.Hash) bool { return bc.GetHeader(hash) != nil } // GetHeader retrieves a block header from the database by hash, caching it if // found. func (self *ChainManager) GetHeader(hash common.Hash) *types.Header { // Short circuit if the header's already in the cache, retrieve otherwise if header, ok := self.headerCache.Get(hash); ok { return header.(*types.Header) } header := GetHeader(self.chainDb, hash) if header == nil { return nil } // Cache the found header for next time and return self.headerCache.Add(header.Hash(), header) return header } // GetHeaderByNumber retrieves a block header from the database by number, // caching it (associated with its hash) if found. func (self *ChainManager) GetHeaderByNumber(number uint64) *types.Header { hash := GetCanonicalHash(self.chainDb, number) if hash == (common.Hash{}) { return nil } return self.GetHeader(hash) } // GetBody retrieves a block body (transactions and uncles) from the database by // hash, caching it if found. func (self *ChainManager) GetBody(hash common.Hash) *types.Body { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := self.bodyCache.Get(hash); ok { body := cached.(*types.Body) return body } body := GetBody(self.chainDb, hash) if body == nil { return nil } // Cache the found body for next time and return self.bodyCache.Add(hash, body) return body } // GetBodyRLP retrieves a block body in RLP encoding from the database by hash, // caching it if found. func (self *ChainManager) GetBodyRLP(hash common.Hash) rlp.RawValue { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := self.bodyRLPCache.Get(hash); ok { return cached.(rlp.RawValue) } body := GetBodyRLP(self.chainDb, hash) if len(body) == 0 { return nil } // Cache the found body for next time and return self.bodyRLPCache.Add(hash, body) return body } // GetTd retrieves a block's total difficulty in the canonical chain from the // database by hash, caching it if found. func (self *ChainManager) GetTd(hash common.Hash) *big.Int { // Short circuit if the td's already in the cache, retrieve otherwise if cached, ok := self.tdCache.Get(hash); ok { return cached.(*big.Int) } td := GetTd(self.chainDb, hash) if td == nil { return nil } // Cache the found body for next time and return self.tdCache.Add(hash, td) return td } // HasBlock checks if a block is fully present in the database or not, caching // it if present. func (bc *ChainManager) HasBlock(hash common.Hash) bool { return bc.GetBlock(hash) != nil } // GetBlock retrieves a block from the database by hash, caching it if found. func (self *ChainManager) GetBlock(hash common.Hash) *types.Block { // Short circuit if the block's already in the cache, retrieve otherwise if block, ok := self.blockCache.Get(hash); ok { return block.(*types.Block) } block := GetBlock(self.chainDb, hash) if block == nil { return nil } // Cache the found block for next time and return self.blockCache.Add(block.Hash(), block) return block } // GetBlockByNumber retrieves a block from the database by number, caching it // (associated with its hash) if found. func (self *ChainManager) GetBlockByNumber(number uint64) *types.Block { hash := GetCanonicalHash(self.chainDb, number) if hash == (common.Hash{}) { return nil } return self.GetBlock(hash) } // GetBlockHashesFromHash retrieves a number of block hashes starting at a given // hash, fetching towards the genesis block. func (self *ChainManager) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash { // Get the origin header from which to fetch header := self.GetHeader(hash) if header == nil { return nil } // Iterate the headers until enough is collected or the genesis reached chain := make([]common.Hash, 0, max) for i := uint64(0); i < max; i++ { if header = self.GetHeader(header.ParentHash); header == nil { break } chain = append(chain, header.Hash()) if header.Number.Cmp(common.Big0) == 0 { break } } return chain } // [deprecated by eth/62] // GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors. func (self *ChainManager) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) { for i := 0; i < n; i++ { block := self.GetBlock(hash) if block == nil { break } blocks = append(blocks, block) hash = block.ParentHash() } return } func (self *ChainManager) GetUnclesInChain(block *types.Block, length int) (uncles []*types.Header) { for i := 0; block != nil && i < length; i++ { uncles = append(uncles, block.Uncles()...) block = self.GetBlock(block.ParentHash()) } return } // setTotalDifficulty updates the TD of the chain manager. Note, this function // assumes that the `mu` mutex is held! func (bc *ChainManager) setTotalDifficulty(td *big.Int) { bc.td = new(big.Int).Set(td) } func (bc *ChainManager) Stop() { if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) { return } close(bc.quit) atomic.StoreInt32(&bc.procInterrupt, 1) bc.wg.Wait() glog.V(logger.Info).Infoln("Chain manager stopped") } type queueEvent struct { queue []interface{} canonicalCount int sideCount int splitCount int } func (self *ChainManager) procFutureBlocks() { blocks := make([]*types.Block, self.futureBlocks.Len()) for i, hash := range self.futureBlocks.Keys() { block, _ := self.futureBlocks.Get(hash) blocks[i] = block.(*types.Block) } if len(blocks) > 0 { types.BlockBy(types.Number).Sort(blocks) self.InsertChain(blocks) } } type writeStatus byte const ( NonStatTy writeStatus = iota CanonStatTy SplitStatTy SideStatTy ) // WriteBlock writes the block to the chain. func (self *ChainManager) WriteBlock(block *types.Block) (status writeStatus, err error) { self.wg.Add(1) defer self.wg.Done() // Calculate the total difficulty of the block ptd := self.GetTd(block.ParentHash()) if ptd == nil { return NonStatTy, ParentError(block.ParentHash()) } td := new(big.Int).Add(block.Difficulty(), ptd) self.mu.RLock() cblock := self.currentBlock self.mu.RUnlock() // Compare the TD of the last known block in the canonical chain to make sure it's greater. // At this point it's possible that a different chain (fork) becomes the new canonical chain. if td.Cmp(self.Td()) > 0 { // chain fork if block.ParentHash() != cblock.Hash() { // during split we merge two different chains and create the new canonical chain err := self.reorg(cblock, block) if err != nil { return NonStatTy, err } } status = CanonStatTy self.mu.Lock() self.setTotalDifficulty(td) self.insert(block) self.mu.Unlock() } else { status = SideStatTy } if err := WriteTd(self.chainDb, block.Hash(), td); err != nil { glog.Fatalf("failed to write block total difficulty: %v", err) } if err := WriteBlock(self.chainDb, block); err != nil { glog.Fatalf("filed to write block contents: %v", err) } // Delete from future blocks self.futureBlocks.Remove(block.Hash()) return } // InsertChain will attempt to insert the given chain in to the canonical chain or, otherwise, create a fork. It an error is returned // it will return the index number of the failing block as well an error describing what went wrong (for possible errors see core/errors.go). func (self *ChainManager) InsertChain(chain types.Blocks) (int, error) { self.wg.Add(1) defer self.wg.Done() self.chainmu.Lock() defer self.chainmu.Unlock() // A queued approach to delivering events. This is generally // faster than direct delivery and requires much less mutex // acquiring. var ( queue = make([]interface{}, len(chain)) queueEvent = queueEvent{queue: queue} stats struct{ queued, processed, ignored int } tstart = time.Now() nonceChecked = make([]bool, len(chain)) ) // Start the parallel nonce verifier. nonceAbort, nonceResults := verifyNoncesFromBlocks(self.pow, chain) defer close(nonceAbort) txcount := 0 for i, block := range chain { if atomic.LoadInt32(&self.procInterrupt) == 1 { glog.V(logger.Debug).Infoln("Premature abort during chain processing") break } bstart := time.Now() // Wait for block i's nonce to be verified before processing // its state transition. for !nonceChecked[i] { r := <-nonceResults nonceChecked[r.index] = true if !r.valid { block := chain[r.index] return r.index, &BlockNonceErr{Hash: block.Hash(), Number: block.Number(), Nonce: block.Nonce()} } } if BadHashes[block.Hash()] { err := BadHashError(block.Hash()) blockErr(block, err) return i, err } // Call in to the block processor and check for errors. It's likely that if one block fails // all others will fail too (unless a known block is returned). logs, receipts, err := self.processor.Process(block) if err != nil { if IsKnownBlockErr(err) { stats.ignored++ continue } if err == BlockFutureErr { // Allow up to MaxFuture second in the future blocks. If this limit // is exceeded the chain is discarded and processed at a later time // if given. max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks) if block.Time().Cmp(max) == 1 { return i, fmt.Errorf("%v: BlockFutureErr, %v > %v", BlockFutureErr, block.Time(), max) } self.futureBlocks.Add(block.Hash(), block) stats.queued++ continue } if IsParentErr(err) && self.futureBlocks.Contains(block.ParentHash()) { self.futureBlocks.Add(block.Hash(), block) stats.queued++ continue } blockErr(block, err) go ReportBlock(block, err) return i, err } if err := PutBlockReceipts(self.chainDb, block, receipts); err != nil { glog.V(logger.Warn).Infoln("error writing block receipts:", err) } txcount += len(block.Transactions()) // write the block to the chain and get the status status, err := self.WriteBlock(block) if err != nil { return i, err } switch status { case CanonStatTy: if glog.V(logger.Debug) { glog.Infof("[%v] inserted block #%d (%d TXs %v G %d UNCs) (%x...). Took %v\n", time.Now().UnixNano(), block.Number(), len(block.Transactions()), block.GasUsed(), len(block.Uncles()), block.Hash().Bytes()[0:4], time.Since(bstart)) } queue[i] = ChainEvent{block, block.Hash(), logs} queueEvent.canonicalCount++ // This puts transactions in a extra db for rpc PutTransactions(self.chainDb, block, block.Transactions()) // store the receipts PutReceipts(self.chainDb, receipts) case SideStatTy: if glog.V(logger.Detail) { glog.Infof("inserted forked block #%d (TD=%v) (%d TXs %d UNCs) (%x...). Took %v\n", block.Number(), block.Difficulty(), len(block.Transactions()), len(block.Uncles()), block.Hash().Bytes()[0:4], time.Since(bstart)) } queue[i] = ChainSideEvent{block, logs} queueEvent.sideCount++ case SplitStatTy: queue[i] = ChainSplitEvent{block, logs} queueEvent.splitCount++ } stats.processed++ } if (stats.queued > 0 || stats.processed > 0 || stats.ignored > 0) && bool(glog.V(logger.Info)) { tend := time.Since(tstart) start, end := chain[0], chain[len(chain)-1] glog.Infof("imported %d block(s) (%d queued %d ignored) including %d txs in %v. #%v [%x / %x]\n", stats.processed, stats.queued, stats.ignored, txcount, tend, end.Number(), start.Hash().Bytes()[:4], end.Hash().Bytes()[:4]) } go self.eventMux.Post(queueEvent) return 0, nil } // reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them // to be part of the new canonical chain and accumulates potential missing transactions and post an // event about them func (self *ChainManager) reorg(oldBlock, newBlock *types.Block) error { self.mu.Lock() defer self.mu.Unlock() var ( newChain types.Blocks commonBlock *types.Block oldStart = oldBlock newStart = newBlock deletedTxs types.Transactions ) // first reduce whoever is higher bound if oldBlock.NumberU64() > newBlock.NumberU64() { // reduce old chain for oldBlock = oldBlock; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = self.GetBlock(oldBlock.ParentHash()) { deletedTxs = append(deletedTxs, oldBlock.Transactions()...) } } else { // reduce new chain and append new chain blocks for inserting later on for newBlock = newBlock; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = self.GetBlock(newBlock.ParentHash()) { newChain = append(newChain, newBlock) } } if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } numSplit := newBlock.Number() for { if oldBlock.Hash() == newBlock.Hash() { commonBlock = oldBlock break } newChain = append(newChain, newBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) oldBlock, newBlock = self.GetBlock(oldBlock.ParentHash()), self.GetBlock(newBlock.ParentHash()) if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } } if glog.V(logger.Debug) { commonHash := commonBlock.Hash() glog.Infof("Chain split detected @ %x. Reorganising chain from #%v %x to %x", commonHash[:4], numSplit, oldStart.Hash().Bytes()[:4], newStart.Hash().Bytes()[:4]) } var addedTxs types.Transactions // insert blocks. Order does not matter. Last block will be written in ImportChain itself which creates the new head properly for _, block := range newChain { // insert the block in the canonical way, re-writing history self.insert(block) // write canonical receipts and transactions PutTransactions(self.chainDb, block, block.Transactions()) PutReceipts(self.chainDb, GetBlockReceipts(self.chainDb, block.Hash())) addedTxs = append(addedTxs, block.Transactions()...) } // calculate the difference between deleted and added transactions diff := types.TxDifference(deletedTxs, addedTxs) // When transactions get deleted from the database that means the // receipts that were created in the fork must also be deleted for _, tx := range diff { DeleteReceipt(self.chainDb, tx.Hash()) DeleteTransaction(self.chainDb, tx.Hash()) } self.eventMux.Post(RemovedTransactionEvent{diff}) return nil } func (self *ChainManager) update() { events := self.eventMux.Subscribe(queueEvent{}) futureTimer := time.Tick(5 * time.Second) out: for { select { case ev := <-events.Chan(): switch ev := ev.(type) { case queueEvent: for _, event := range ev.queue { switch event := event.(type) { case ChainEvent: // We need some control over the mining operation. Acquiring locks and waiting for the miner to create new block takes too long // and in most cases isn't even necessary. if self.currentBlock.Hash() == event.Hash { self.currentGasLimit = CalcGasLimit(event.Block) self.eventMux.Post(ChainHeadEvent{event.Block}) } } self.eventMux.Post(event) } } case <-futureTimer: self.procFutureBlocks() case <-self.quit: break out } } } func blockErr(block *types.Block, err error) { if glog.V(logger.Error) { glog.Errorf("Bad block #%v (%s)\n", block.Number(), block.Hash().Hex()) glog.Errorf(" %v", err) } }