// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package core implements the Ethereum consensus protocol. package core import ( "errors" "fmt" "io" "math/big" "runtime" "sort" "strings" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/lru" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/state/snapshot" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/internal/syncx" "github.com/ethereum/go-ethereum/internal/version" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" ) var ( headBlockGauge = metrics.NewRegisteredGauge("chain/head/block", nil) headHeaderGauge = metrics.NewRegisteredGauge("chain/head/header", nil) headFastBlockGauge = metrics.NewRegisteredGauge("chain/head/receipt", nil) headFinalizedBlockGauge = metrics.NewRegisteredGauge("chain/head/finalized", nil) headSafeBlockGauge = metrics.NewRegisteredGauge("chain/head/safe", nil) accountReadTimer = metrics.NewRegisteredTimer("chain/account/reads", nil) accountHashTimer = metrics.NewRegisteredTimer("chain/account/hashes", nil) accountUpdateTimer = metrics.NewRegisteredTimer("chain/account/updates", nil) accountCommitTimer = metrics.NewRegisteredTimer("chain/account/commits", nil) storageReadTimer = metrics.NewRegisteredTimer("chain/storage/reads", nil) storageHashTimer = metrics.NewRegisteredTimer("chain/storage/hashes", nil) storageUpdateTimer = metrics.NewRegisteredTimer("chain/storage/updates", nil) storageCommitTimer = metrics.NewRegisteredTimer("chain/storage/commits", nil) snapshotAccountReadTimer = metrics.NewRegisteredTimer("chain/snapshot/account/reads", nil) snapshotStorageReadTimer = metrics.NewRegisteredTimer("chain/snapshot/storage/reads", nil) snapshotCommitTimer = metrics.NewRegisteredTimer("chain/snapshot/commits", nil) triedbCommitTimer = metrics.NewRegisteredTimer("chain/triedb/commits", nil) blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil) blockValidationTimer = metrics.NewRegisteredTimer("chain/validation", nil) blockExecutionTimer = metrics.NewRegisteredTimer("chain/execution", nil) blockWriteTimer = metrics.NewRegisteredTimer("chain/write", nil) blockReorgMeter = metrics.NewRegisteredMeter("chain/reorg/executes", nil) blockReorgAddMeter = metrics.NewRegisteredMeter("chain/reorg/add", nil) blockReorgDropMeter = metrics.NewRegisteredMeter("chain/reorg/drop", nil) blockPrefetchExecuteTimer = metrics.NewRegisteredTimer("chain/prefetch/executes", nil) blockPrefetchInterruptMeter = metrics.NewRegisteredMeter("chain/prefetch/interrupts", nil) errInsertionInterrupted = errors.New("insertion is interrupted") errChainStopped = errors.New("blockchain is stopped") ) const ( bodyCacheLimit = 256 blockCacheLimit = 256 receiptsCacheLimit = 32 txLookupCacheLimit = 1024 maxFutureBlocks = 256 maxTimeFutureBlocks = 30 TriesInMemory = 128 // BlockChainVersion ensures that an incompatible database forces a resync from scratch. // // Changelog: // // - Version 4 // The following incompatible database changes were added: // * the `BlockNumber`, `TxHash`, `TxIndex`, `BlockHash` and `Index` fields of log are deleted // * the `Bloom` field of receipt is deleted // * the `BlockIndex` and `TxIndex` fields of txlookup are deleted // - Version 5 // The following incompatible database changes were added: // * the `TxHash`, `GasCost`, and `ContractAddress` fields are no longer stored for a receipt // * the `TxHash`, `GasCost`, and `ContractAddress` fields are computed by looking up the // receipts' corresponding block // - Version 6 // The following incompatible database changes were added: // * Transaction lookup information stores the corresponding block number instead of block hash // - Version 7 // The following incompatible database changes were added: // * Use freezer as the ancient database to maintain all ancient data // - Version 8 // The following incompatible database changes were added: // * New scheme for contract code in order to separate the codes and trie nodes BlockChainVersion uint64 = 8 ) // CacheConfig contains the configuration values for the trie database // that's resident in a blockchain. type CacheConfig struct { TrieCleanLimit int // Memory allowance (MB) to use for caching trie nodes in memory TrieCleanJournal string // Disk journal for saving clean cache entries. TrieCleanRejournal time.Duration // Time interval to dump clean cache to disk periodically TrieCleanNoPrefetch bool // Whether to disable heuristic state prefetching for followup blocks TrieDirtyLimit int // Memory limit (MB) at which to start flushing dirty trie nodes to disk TrieDirtyDisabled bool // Whether to disable trie write caching and GC altogether (archive node) TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk SnapshotLimit int // Memory allowance (MB) to use for caching snapshot entries in memory Preimages bool // Whether to store preimage of trie key to the disk SnapshotNoBuild bool // Whether the background generation is allowed SnapshotWait bool // Wait for snapshot construction on startup. TODO(karalabe): This is a dirty hack for testing, nuke it StateDiffing bool // Whether the statediffing service is running } // defaultCacheConfig are the default caching values if none are specified by the // user (also used during testing). var defaultCacheConfig = &CacheConfig{ TrieCleanLimit: 256, TrieDirtyLimit: 256, TrieTimeLimit: 5 * time.Minute, SnapshotLimit: 256, SnapshotWait: true, } // BlockChain represents the canonical chain given a database with a genesis // block. The Blockchain manages chain imports, reverts, chain reorganisations. // // Importing blocks in to the block chain happens according to the set of rules // defined by the two stage Validator. Processing of blocks is done using the // Processor which processes the included transaction. The validation of the state // is done in the second part of the Validator. Failing results in aborting of // the import. // // The BlockChain also helps in returning blocks from **any** chain included // in the database as well as blocks that represents the canonical chain. It's // important to note that GetBlock can return any block and does not need to be // included in the canonical one where as GetBlockByNumber always represents the // canonical chain. type BlockChain struct { chainConfig *params.ChainConfig // Chain & network configuration cacheConfig *CacheConfig // Cache configuration for pruning db ethdb.Database // Low level persistent database to store final content in snaps *snapshot.Tree // Snapshot tree for fast trie leaf access triegc *prque.Prque[int64, common.Hash] // Priority queue mapping block numbers to tries to gc gcproc time.Duration // Accumulates canonical block processing for trie dumping lastWrite uint64 // Last block when the state was flushed flushInterval atomic.Int64 // Time interval (processing time) after which to flush a state triedb *trie.Database // The database handler for maintaining trie nodes. stateCache state.Database // State database to reuse between imports (contains state cache) // txLookupLimit is the maximum number of blocks from head whose tx indices // are reserved: // * 0: means no limit and regenerate any missing indexes // * N: means N block limit [HEAD-N+1, HEAD] and delete extra indexes // * nil: disable tx reindexer/deleter, but still index new blocks txLookupLimit uint64 hc *HeaderChain rmLogsFeed event.Feed chainFeed event.Feed chainSideFeed event.Feed chainHeadFeed event.Feed logsFeed event.Feed blockProcFeed event.Feed scope event.SubscriptionScope genesisBlock *types.Block // This mutex synchronizes chain write operations. // Readers don't need to take it, they can just read the database. chainmu *syncx.ClosableMutex currentBlock atomic.Pointer[types.Header] // Current head of the chain currentSnapBlock atomic.Pointer[types.Header] // Current head of snap-sync currentFinalBlock atomic.Pointer[types.Header] // Latest (consensus) finalized block currentSafeBlock atomic.Pointer[types.Header] // Latest (consensus) safe block bodyCache *lru.Cache[common.Hash, *types.Body] bodyRLPCache *lru.Cache[common.Hash, rlp.RawValue] receiptsCache *lru.Cache[common.Hash, []*types.Receipt] blockCache *lru.Cache[common.Hash, *types.Block] txLookupCache *lru.Cache[common.Hash, *rawdb.LegacyTxLookupEntry] // future blocks are blocks added for later processing futureBlocks *lru.Cache[common.Hash, *types.Block] wg sync.WaitGroup // quit chan struct{} // shutdown signal, closed in Stop. stopping atomic.Bool // false if chain is running, true when stopped procInterrupt atomic.Bool // interrupt signaler for block processing engine consensus.Engine validator Validator // Block and state validator interface prefetcher Prefetcher processor Processor // Block transaction processor interface forker *ForkChoice vmConfig vm.Config // Locked roots and their mutex trieLock sync.Mutex lockedRoots map[common.Hash]bool } // NewBlockChain returns a fully initialised block chain using information // available in the database. It initialises the default Ethereum Validator // and Processor. func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, genesis *Genesis, overrides *ChainOverrides, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(header *types.Header) bool, txLookupLimit *uint64) (*BlockChain, error) { if cacheConfig == nil { cacheConfig = defaultCacheConfig } // Open trie database with provided config triedb := trie.NewDatabaseWithConfig(db, &trie.Config{ Cache: cacheConfig.TrieCleanLimit, Journal: cacheConfig.TrieCleanJournal, Preimages: cacheConfig.Preimages, }) // Setup the genesis block, commit the provided genesis specification // to database if the genesis block is not present yet, or load the // stored one from database. chainConfig, genesisHash, genesisErr := SetupGenesisBlockWithOverride(db, triedb, genesis, overrides) if _, ok := genesisErr.(*params.ConfigCompatError); genesisErr != nil && !ok { return nil, genesisErr } log.Info("") log.Info(strings.Repeat("-", 153)) for _, line := range strings.Split(chainConfig.Description(), "\n") { log.Info(line) } log.Info(strings.Repeat("-", 153)) log.Info("") bc := &BlockChain{ chainConfig: chainConfig, cacheConfig: cacheConfig, db: db, triedb: triedb, triegc: prque.New[int64, common.Hash](nil), quit: make(chan struct{}), chainmu: syncx.NewClosableMutex(), bodyCache: lru.NewCache[common.Hash, *types.Body](bodyCacheLimit), bodyRLPCache: lru.NewCache[common.Hash, rlp.RawValue](bodyCacheLimit), receiptsCache: lru.NewCache[common.Hash, []*types.Receipt](receiptsCacheLimit), blockCache: lru.NewCache[common.Hash, *types.Block](blockCacheLimit), txLookupCache: lru.NewCache[common.Hash, *rawdb.LegacyTxLookupEntry](txLookupCacheLimit), futureBlocks: lru.NewCache[common.Hash, *types.Block](maxFutureBlocks), engine: engine, vmConfig: vmConfig, lockedRoots: make(map[common.Hash]bool), } bc.flushInterval.Store(int64(cacheConfig.TrieTimeLimit)) bc.forker = NewForkChoice(bc, shouldPreserve) bc.stateCache = state.NewDatabaseWithNodeDB(bc.db, bc.triedb) bc.validator = NewBlockValidator(chainConfig, bc, engine) bc.prefetcher = newStatePrefetcher(chainConfig, bc, engine) bc.processor = NewStateProcessor(chainConfig, bc, engine) var err error bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.insertStopped) if err != nil { return nil, err } bc.genesisBlock = bc.GetBlockByNumber(0) if bc.genesisBlock == nil { return nil, ErrNoGenesis } bc.currentBlock.Store(nil) bc.currentSnapBlock.Store(nil) bc.currentFinalBlock.Store(nil) bc.currentSafeBlock.Store(nil) // If Geth is initialized with an external ancient store, re-initialize the // missing chain indexes and chain flags. This procedure can survive crash // and can be resumed in next restart since chain flags are updated in last step. if bc.empty() { rawdb.InitDatabaseFromFreezer(bc.db) } // Load blockchain states from disk if err := bc.loadLastState(); err != nil { return nil, err } // Make sure the state associated with the block is available head := bc.CurrentBlock() if !bc.HasState(head.Root) { // Head state is missing, before the state recovery, find out the // disk layer point of snapshot(if it's enabled). Make sure the // rewound point is lower than disk layer. var diskRoot common.Hash if bc.cacheConfig.SnapshotLimit > 0 { diskRoot = rawdb.ReadSnapshotRoot(bc.db) } if diskRoot != (common.Hash{}) { log.Warn("Head state missing, repairing", "number", head.Number, "hash", head.Hash(), "snaproot", diskRoot) snapDisk, err := bc.setHeadBeyondRoot(head.Number.Uint64(), 0, diskRoot, true) if err != nil { return nil, err } // Chain rewound, persist old snapshot number to indicate recovery procedure if snapDisk != 0 { rawdb.WriteSnapshotRecoveryNumber(bc.db, snapDisk) } } else { log.Warn("Head state missing, repairing", "number", head.Number, "hash", head.Hash()) if _, err := bc.setHeadBeyondRoot(head.Number.Uint64(), 0, common.Hash{}, true); err != nil { return nil, err } } } // Ensure that a previous crash in SetHead doesn't leave extra ancients if frozen, err := bc.db.Ancients(); err == nil && frozen > 0 { var ( needRewind bool low uint64 ) // The head full block may be rolled back to a very low height due to // blockchain repair. If the head full block is even lower than the ancient // chain, truncate the ancient store. fullBlock := bc.CurrentBlock() if fullBlock != nil && fullBlock.Hash() != bc.genesisBlock.Hash() && fullBlock.Number.Uint64() < frozen-1 { needRewind = true low = fullBlock.Number.Uint64() } // In fast sync, it may happen that ancient data has been written to the // ancient store, but the LastFastBlock has not been updated, truncate the // extra data here. snapBlock := bc.CurrentSnapBlock() if snapBlock != nil && snapBlock.Number.Uint64() < frozen-1 { needRewind = true if snapBlock.Number.Uint64() < low || low == 0 { low = snapBlock.Number.Uint64() } } if needRewind { log.Error("Truncating ancient chain", "from", bc.CurrentHeader().Number.Uint64(), "to", low) if err := bc.SetHead(low); err != nil { return nil, err } } } // The first thing the node will do is reconstruct the verification data for // the head block (ethash cache or clique voting snapshot). Might as well do // it in advance. bc.engine.VerifyHeader(bc, bc.CurrentHeader(), true) // Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain for hash := range BadHashes { if header := bc.GetHeaderByHash(hash); header != nil { // get the canonical block corresponding to the offending header's number headerByNumber := bc.GetHeaderByNumber(header.Number.Uint64()) // make sure the headerByNumber (if present) is in our current canonical chain if headerByNumber != nil && headerByNumber.Hash() == header.Hash() { log.Error("Found bad hash, rewinding chain", "number", header.Number, "hash", header.ParentHash) if err := bc.SetHead(header.Number.Uint64() - 1); err != nil { return nil, err } log.Error("Chain rewind was successful, resuming normal operation") } } } // Load any existing snapshot, regenerating it if loading failed if bc.cacheConfig.SnapshotLimit > 0 { // If the chain was rewound past the snapshot persistent layer (causing // a recovery block number to be persisted to disk), check if we're still // in recovery mode and in that case, don't invalidate the snapshot on a // head mismatch. var recover bool head := bc.CurrentBlock() if layer := rawdb.ReadSnapshotRecoveryNumber(bc.db); layer != nil && *layer >= head.Number.Uint64() { log.Warn("Enabling snapshot recovery", "chainhead", head.Number, "diskbase", *layer) recover = true } snapconfig := snapshot.Config{ CacheSize: bc.cacheConfig.SnapshotLimit, Recovery: recover, NoBuild: bc.cacheConfig.SnapshotNoBuild, AsyncBuild: !bc.cacheConfig.SnapshotWait, } bc.snaps, _ = snapshot.New(snapconfig, bc.db, bc.triedb, head.Root) } // Start future block processor. bc.wg.Add(1) go bc.updateFutureBlocks() // If periodic cache journal is required, spin it up. if bc.cacheConfig.TrieCleanRejournal > 0 { if bc.cacheConfig.TrieCleanRejournal < time.Minute { log.Warn("Sanitizing invalid trie cache journal time", "provided", bc.cacheConfig.TrieCleanRejournal, "updated", time.Minute) bc.cacheConfig.TrieCleanRejournal = time.Minute } bc.wg.Add(1) go func() { defer bc.wg.Done() bc.triedb.SaveCachePeriodically(bc.cacheConfig.TrieCleanJournal, bc.cacheConfig.TrieCleanRejournal, bc.quit) }() } // Rewind the chain in case of an incompatible config upgrade. if compat, ok := genesisErr.(*params.ConfigCompatError); ok { log.Warn("Rewinding chain to upgrade configuration", "err", compat) if compat.RewindToTime > 0 { bc.SetHeadWithTimestamp(compat.RewindToTime) } else { bc.SetHead(compat.RewindToBlock) } rawdb.WriteChainConfig(db, genesisHash, chainConfig) } // Start tx indexer/unindexer if required. if txLookupLimit != nil { bc.txLookupLimit = *txLookupLimit bc.wg.Add(1) go bc.maintainTxIndex() } return bc, nil } // empty returns an indicator whether the blockchain is empty. // Note, it's a special case that we connect a non-empty ancient // database with an empty node, so that we can plugin the ancient // into node seamlessly. func (bc *BlockChain) empty() bool { genesis := bc.genesisBlock.Hash() for _, hash := range []common.Hash{rawdb.ReadHeadBlockHash(bc.db), rawdb.ReadHeadHeaderHash(bc.db), rawdb.ReadHeadFastBlockHash(bc.db)} { if hash != genesis { return false } } return true } // loadLastState loads the last known chain state from the database. This method // assumes that the chain manager mutex is held. func (bc *BlockChain) loadLastState() error { // Restore the last known head block head := rawdb.ReadHeadBlockHash(bc.db) if head == (common.Hash{}) { // Corrupt or empty database, init from scratch log.Warn("Empty database, resetting chain") return bc.Reset() } // Make sure the entire head block is available headBlock := bc.GetBlockByHash(head) if headBlock == nil { // Corrupt or empty database, init from scratch log.Warn("Head block missing, resetting chain", "hash", head) return bc.Reset() } // Everything seems to be fine, set as the head block bc.currentBlock.Store(headBlock.Header()) headBlockGauge.Update(int64(headBlock.NumberU64())) // Restore the last known head header headHeader := headBlock.Header() if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) { if header := bc.GetHeaderByHash(head); header != nil { headHeader = header } } bc.hc.SetCurrentHeader(headHeader) // Restore the last known head fast block bc.currentSnapBlock.Store(headBlock.Header()) headFastBlockGauge.Update(int64(headBlock.NumberU64())) if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) { if block := bc.GetBlockByHash(head); block != nil { bc.currentSnapBlock.Store(block.Header()) headFastBlockGauge.Update(int64(block.NumberU64())) } } // Restore the last known finalized block and safe block // Note: the safe block is not stored on disk and it is set to the last // known finalized block on startup if head := rawdb.ReadFinalizedBlockHash(bc.db); head != (common.Hash{}) { if block := bc.GetBlockByHash(head); block != nil { bc.currentFinalBlock.Store(block.Header()) headFinalizedBlockGauge.Update(int64(block.NumberU64())) bc.currentSafeBlock.Store(block.Header()) headSafeBlockGauge.Update(int64(block.NumberU64())) } } // Issue a status log for the user var ( currentSnapBlock = bc.CurrentSnapBlock() currentFinalBlock = bc.CurrentFinalBlock() headerTd = bc.GetTd(headHeader.Hash(), headHeader.Number.Uint64()) blockTd = bc.GetTd(headBlock.Hash(), headBlock.NumberU64()) ) if headHeader.Hash() != headBlock.Hash() { log.Info("Loaded most recent local header", "number", headHeader.Number, "hash", headHeader.Hash(), "td", headerTd, "age", common.PrettyAge(time.Unix(int64(headHeader.Time), 0))) } log.Info("Loaded most recent local block", "number", headBlock.Number(), "hash", headBlock.Hash(), "td", blockTd, "age", common.PrettyAge(time.Unix(int64(headBlock.Time()), 0))) if headBlock.Hash() != currentSnapBlock.Hash() { fastTd := bc.GetTd(currentSnapBlock.Hash(), currentSnapBlock.Number.Uint64()) log.Info("Loaded most recent local snap block", "number", currentSnapBlock.Number, "hash", currentSnapBlock.Hash(), "td", fastTd, "age", common.PrettyAge(time.Unix(int64(currentSnapBlock.Time), 0))) } if currentFinalBlock != nil { finalTd := bc.GetTd(currentFinalBlock.Hash(), currentFinalBlock.Number.Uint64()) log.Info("Loaded most recent local finalized block", "number", currentFinalBlock.Number, "hash", currentFinalBlock.Hash(), "td", finalTd, "age", common.PrettyAge(time.Unix(int64(currentFinalBlock.Time), 0))) } if pivot := rawdb.ReadLastPivotNumber(bc.db); pivot != nil { log.Info("Loaded last fast-sync pivot marker", "number", *pivot) } return nil } // SetHead rewinds the local chain to a new head. Depending on whether the node // was fast synced or full synced and in which state, the method will try to // delete minimal data from disk whilst retaining chain consistency. func (bc *BlockChain) SetHead(head uint64) error { if _, err := bc.setHeadBeyondRoot(head, 0, common.Hash{}, false); err != nil { return err } // Send chain head event to update the transaction pool header := bc.CurrentBlock() block := bc.GetBlock(header.Hash(), header.Number.Uint64()) if block == nil { // This should never happen. In practice, previsouly currentBlock // contained the entire block whereas now only a "marker", so there // is an ever so slight chance for a race we should handle. log.Error("Current block not found in database", "block", header.Number, "hash", header.Hash()) return fmt.Errorf("current block missing: #%d [%x..]", header.Number, header.Hash().Bytes()[:4]) } bc.chainHeadFeed.Send(ChainHeadEvent{Block: block}) return nil } // SetHeadWithTimestamp rewinds the local chain to a new head that has at max // the given timestamp. Depending on whether the node was fast synced or full // synced and in which state, the method will try to delete minimal data from // disk whilst retaining chain consistency. func (bc *BlockChain) SetHeadWithTimestamp(timestamp uint64) error { if _, err := bc.setHeadBeyondRoot(0, timestamp, common.Hash{}, false); err != nil { return err } // Send chain head event to update the transaction pool header := bc.CurrentBlock() block := bc.GetBlock(header.Hash(), header.Number.Uint64()) if block == nil { // This should never happen. In practice, previsouly currentBlock // contained the entire block whereas now only a "marker", so there // is an ever so slight chance for a race we should handle. log.Error("Current block not found in database", "block", header.Number, "hash", header.Hash()) return fmt.Errorf("current block missing: #%d [%x..]", header.Number, header.Hash().Bytes()[:4]) } bc.chainHeadFeed.Send(ChainHeadEvent{Block: block}) return nil } // SetFinalized sets the finalized block. func (bc *BlockChain) SetFinalized(header *types.Header) { bc.currentFinalBlock.Store(header) if header != nil { rawdb.WriteFinalizedBlockHash(bc.db, header.Hash()) headFinalizedBlockGauge.Update(int64(header.Number.Uint64())) } else { rawdb.WriteFinalizedBlockHash(bc.db, common.Hash{}) headFinalizedBlockGauge.Update(0) } } // SetSafe sets the safe block. func (bc *BlockChain) SetSafe(header *types.Header) { bc.currentSafeBlock.Store(header) if header != nil { headSafeBlockGauge.Update(int64(header.Number.Uint64())) } else { headSafeBlockGauge.Update(0) } } // setHeadBeyondRoot rewinds the local chain to a new head with the extra condition // that the rewind must pass the specified state root. This method is meant to be // used when rewinding with snapshots enabled to ensure that we go back further than // persistent disk layer. Depending on whether the node was fast synced or full, and // in which state, the method will try to delete minimal data from disk whilst // retaining chain consistency. // // The method also works in timestamp mode if `head == 0` but `time != 0`. In that // case blocks are rolled back until the new head becomes older or equal to the // requested time. If both `head` and `time` is 0, the chain is rewound to genesis. // // The method returns the block number where the requested root cap was found. func (bc *BlockChain) setHeadBeyondRoot(head uint64, time uint64, root common.Hash, repair bool) (uint64, error) { if !bc.chainmu.TryLock() { return 0, errChainStopped } defer bc.chainmu.Unlock() // Track the block number of the requested root hash var rootNumber uint64 // (no root == always 0) // Retrieve the last pivot block to short circuit rollbacks beyond it and the // current freezer limit to start nuking id underflown pivot := rawdb.ReadLastPivotNumber(bc.db) frozen, _ := bc.db.Ancients() updateFn := func(db ethdb.KeyValueWriter, header *types.Header) (*types.Header, bool) { // Rewind the blockchain, ensuring we don't end up with a stateless head // block. Note, depth equality is permitted to allow using SetHead as a // chain reparation mechanism without deleting any data! if currentBlock := bc.CurrentBlock(); currentBlock != nil && header.Number.Uint64() <= currentBlock.Number.Uint64() { newHeadBlock := bc.GetBlock(header.Hash(), header.Number.Uint64()) if newHeadBlock == nil { log.Error("Gap in the chain, rewinding to genesis", "number", header.Number, "hash", header.Hash()) newHeadBlock = bc.genesisBlock } else { // Block exists, keep rewinding until we find one with state, // keeping rewinding until we exceed the optional threshold // root hash beyondRoot := (root == common.Hash{}) // Flag whether we're beyond the requested root (no root, always true) for { // If a root threshold was requested but not yet crossed, check if root != (common.Hash{}) && !beyondRoot && newHeadBlock.Root() == root { beyondRoot, rootNumber = true, newHeadBlock.NumberU64() } if !bc.HasState(newHeadBlock.Root()) { log.Trace("Block state missing, rewinding further", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash()) if pivot == nil || newHeadBlock.NumberU64() > *pivot { parent := bc.GetBlock(newHeadBlock.ParentHash(), newHeadBlock.NumberU64()-1) if parent != nil { newHeadBlock = parent continue } log.Error("Missing block in the middle, aiming genesis", "number", newHeadBlock.NumberU64()-1, "hash", newHeadBlock.ParentHash()) newHeadBlock = bc.genesisBlock } else { log.Trace("Rewind passed pivot, aiming genesis", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash(), "pivot", *pivot) newHeadBlock = bc.genesisBlock } } if beyondRoot || newHeadBlock.NumberU64() == 0 { if newHeadBlock.NumberU64() == 0 { // Recommit the genesis state into disk in case the rewinding destination // is genesis block and the relevant state is gone. In the future this // rewinding destination can be the earliest block stored in the chain // if the historical chain pruning is enabled. In that case the logic // needs to be improved here. if !bc.HasState(bc.genesisBlock.Root()) { if err := CommitGenesisState(bc.db, bc.triedb, bc.genesisBlock.Hash()); err != nil { log.Crit("Failed to commit genesis state", "err", err) } log.Debug("Recommitted genesis state to disk") } } log.Debug("Rewound to block with state", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash()) break } log.Debug("Skipping block with threshold state", "number", newHeadBlock.NumberU64(), "hash", newHeadBlock.Hash(), "root", newHeadBlock.Root()) newHeadBlock = bc.GetBlock(newHeadBlock.ParentHash(), newHeadBlock.NumberU64()-1) // Keep rewinding } } rawdb.WriteHeadBlockHash(db, newHeadBlock.Hash()) // Degrade the chain markers if they are explicitly reverted. // In theory we should update all in-memory markers in the // last step, however the direction of SetHead is from high // to low, so it's safe to update in-memory markers directly. bc.currentBlock.Store(newHeadBlock.Header()) headBlockGauge.Update(int64(newHeadBlock.NumberU64())) } // Rewind the fast block in a simpleton way to the target head if currentSnapBlock := bc.CurrentSnapBlock(); currentSnapBlock != nil && header.Number.Uint64() < currentSnapBlock.Number.Uint64() { newHeadSnapBlock := bc.GetBlock(header.Hash(), header.Number.Uint64()) // If either blocks reached nil, reset to the genesis state if newHeadSnapBlock == nil { newHeadSnapBlock = bc.genesisBlock } rawdb.WriteHeadFastBlockHash(db, newHeadSnapBlock.Hash()) // Degrade the chain markers if they are explicitly reverted. // In theory we should update all in-memory markers in the // last step, however the direction of SetHead is from high // to low, so it's safe the update in-memory markers directly. bc.currentSnapBlock.Store(newHeadSnapBlock.Header()) headFastBlockGauge.Update(int64(newHeadSnapBlock.NumberU64())) } var ( headHeader = bc.CurrentBlock() headNumber = headHeader.Number.Uint64() ) // If setHead underflown the freezer threshold and the block processing // intent afterwards is full block importing, delete the chain segment // between the stateful-block and the sethead target. var wipe bool if headNumber+1 < frozen { wipe = pivot == nil || headNumber >= *pivot } return headHeader, wipe // Only force wipe if full synced } // Rewind the header chain, deleting all block bodies until then delFn := func(db ethdb.KeyValueWriter, hash common.Hash, num uint64) { // Ignore the error here since light client won't hit this path frozen, _ := bc.db.Ancients() if num+1 <= frozen { // Truncate all relative data(header, total difficulty, body, receipt // and canonical hash) from ancient store. if err := bc.db.TruncateHead(num); err != nil { log.Crit("Failed to truncate ancient data", "number", num, "err", err) } // Remove the hash <-> number mapping from the active store. rawdb.DeleteHeaderNumber(db, hash) } else { // Remove relative body and receipts from the active store. // The header, total difficulty and canonical hash will be // removed in the hc.SetHead function. rawdb.DeleteBody(db, hash, num) rawdb.DeleteReceipts(db, hash, num) } // Todo(rjl493456442) txlookup, bloombits, etc } // If SetHead was only called as a chain reparation method, try to skip // touching the header chain altogether, unless the freezer is broken if repair { if target, force := updateFn(bc.db, bc.CurrentBlock()); force { bc.hc.SetHead(target.Number.Uint64(), updateFn, delFn) } } else { // Rewind the chain to the requested head and keep going backwards until a // block with a state is found or fast sync pivot is passed if time > 0 { log.Warn("Rewinding blockchain to timestamp", "target", time) bc.hc.SetHeadWithTimestamp(time, updateFn, delFn) } else { log.Warn("Rewinding blockchain to block", "target", head) bc.hc.SetHead(head, updateFn, delFn) } } // Clear out any stale content from the caches bc.bodyCache.Purge() bc.bodyRLPCache.Purge() bc.receiptsCache.Purge() bc.blockCache.Purge() bc.txLookupCache.Purge() bc.futureBlocks.Purge() // Clear safe block, finalized block if needed if safe := bc.CurrentSafeBlock(); safe != nil && head < safe.Number.Uint64() { log.Warn("SetHead invalidated safe block") bc.SetSafe(nil) } if finalized := bc.CurrentFinalBlock(); finalized != nil && head < finalized.Number.Uint64() { log.Error("SetHead invalidated finalized block") bc.SetFinalized(nil) } return rootNumber, bc.loadLastState() } // SnapSyncCommitHead sets the current head block to the one defined by the hash // irrelevant what the chain contents were prior. func (bc *BlockChain) SnapSyncCommitHead(hash common.Hash) error { // Make sure that both the block as well at its state trie exists block := bc.GetBlockByHash(hash) if block == nil { return fmt.Errorf("non existent block [%x..]", hash[:4]) } root := block.Root() if !bc.HasState(root) { return fmt.Errorf("non existent state [%x..]", root[:4]) } // If all checks out, manually set the head block. if !bc.chainmu.TryLock() { return errChainStopped } bc.currentBlock.Store(block.Header()) headBlockGauge.Update(int64(block.NumberU64())) bc.chainmu.Unlock() // Destroy any existing state snapshot and regenerate it in the background, // also resuming the normal maintenance of any previously paused snapshot. if bc.snaps != nil { bc.snaps.Rebuild(root) } log.Info("Committed new head block", "number", block.Number(), "hash", hash) return nil } // Reset purges the entire blockchain, restoring it to its genesis state. func (bc *BlockChain) Reset() error { return bc.ResetWithGenesisBlock(bc.genesisBlock) } // ResetWithGenesisBlock purges the entire blockchain, restoring it to the // specified genesis state. func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error { // Dump the entire block chain and purge the caches if err := bc.SetHead(0); err != nil { return err } if !bc.chainmu.TryLock() { return errChainStopped } defer bc.chainmu.Unlock() // Prepare the genesis block and reinitialise the chain batch := bc.db.NewBatch() rawdb.WriteTd(batch, genesis.Hash(), genesis.NumberU64(), genesis.Difficulty()) rawdb.WriteBlock(batch, genesis) if err := batch.Write(); err != nil { log.Crit("Failed to write genesis block", "err", err) } bc.writeHeadBlock(genesis) // Last update all in-memory chain markers bc.genesisBlock = genesis bc.currentBlock.Store(bc.genesisBlock.Header()) headBlockGauge.Update(int64(bc.genesisBlock.NumberU64())) bc.hc.SetGenesis(bc.genesisBlock.Header()) bc.hc.SetCurrentHeader(bc.genesisBlock.Header()) bc.currentSnapBlock.Store(bc.genesisBlock.Header()) headFastBlockGauge.Update(int64(bc.genesisBlock.NumberU64())) return nil } // Export writes the active chain to the given writer. func (bc *BlockChain) Export(w io.Writer) error { return bc.ExportN(w, uint64(0), bc.CurrentBlock().Number.Uint64()) } // ExportN writes a subset of the active chain to the given writer. func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error { if first > last { return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last) } log.Info("Exporting batch of blocks", "count", last-first+1) var ( parentHash common.Hash start = time.Now() reported = time.Now() ) for nr := first; nr <= last; nr++ { block := bc.GetBlockByNumber(nr) if block == nil { return fmt.Errorf("export failed on #%d: not found", nr) } if nr > first && block.ParentHash() != parentHash { return fmt.Errorf("export failed: chain reorg during export") } parentHash = block.Hash() if err := block.EncodeRLP(w); err != nil { return err } if time.Since(reported) >= statsReportLimit { log.Info("Exporting blocks", "exported", block.NumberU64()-first, "elapsed", common.PrettyDuration(time.Since(start))) reported = time.Now() } } return nil } // writeHeadBlock injects a new head block into the current block chain. This method // assumes that the block is indeed a true head. It will also reset the head // header and the head fast sync block to this very same block if they are older // or if they are on a different side chain. // // Note, this function assumes that the `mu` mutex is held! func (bc *BlockChain) writeHeadBlock(block *types.Block) { // Add the block to the canonical chain number scheme and mark as the head batch := bc.db.NewBatch() rawdb.WriteHeadHeaderHash(batch, block.Hash()) rawdb.WriteHeadFastBlockHash(batch, block.Hash()) rawdb.WriteCanonicalHash(batch, block.Hash(), block.NumberU64()) rawdb.WriteTxLookupEntriesByBlock(batch, block) rawdb.WriteHeadBlockHash(batch, block.Hash()) // Flush the whole batch into the disk, exit the node if failed if err := batch.Write(); err != nil { log.Crit("Failed to update chain indexes and markers", "err", err) } // Update all in-memory chain markers in the last step bc.hc.SetCurrentHeader(block.Header()) bc.currentSnapBlock.Store(block.Header()) headFastBlockGauge.Update(int64(block.NumberU64())) bc.currentBlock.Store(block.Header()) headBlockGauge.Update(int64(block.NumberU64())) } // stopWithoutSaving stops the blockchain service. If any imports are currently in progress // it will abort them using the procInterrupt. This method stops all running // goroutines, but does not do all the post-stop work of persisting data. // OBS! It is generally recommended to use the Stop method! // This method has been exposed to allow tests to stop the blockchain while simulating // a crash. func (bc *BlockChain) stopWithoutSaving() { if !bc.stopping.CompareAndSwap(false, true) { return } // Unsubscribe all subscriptions registered from blockchain. bc.scope.Close() // Signal shutdown to all goroutines. close(bc.quit) bc.StopInsert() // Now wait for all chain modifications to end and persistent goroutines to exit. // // Note: Close waits for the mutex to become available, i.e. any running chain // modification will have exited when Close returns. Since we also called StopInsert, // the mutex should become available quickly. It cannot be taken again after Close has // returned. bc.chainmu.Close() bc.wg.Wait() } // Stop stops the blockchain service. If any imports are currently in progress // it will abort them using the procInterrupt. func (bc *BlockChain) Stop() { bc.stopWithoutSaving() // Ensure that the entirety of the state snapshot is journalled to disk. var snapBase common.Hash if bc.snaps != nil { var err error if snapBase, err = bc.snaps.Journal(bc.CurrentBlock().Root); err != nil { log.Error("Failed to journal state snapshot", "err", err) } } // Ensure the state of a recent block is also stored to disk before exiting. // We're writing three different states to catch different restart scenarios: // - HEAD: So we don't need to reprocess any blocks in the general case // - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle // - HEAD-127: So we have a hard limit on the number of blocks reexecuted if !bc.cacheConfig.TrieDirtyDisabled { triedb := bc.triedb for _, offset := range []uint64{0, 1, TriesInMemory - 1} { if number := bc.CurrentBlock().Number.Uint64(); number > offset { recent := bc.GetBlockByNumber(number - offset) log.Info("Writing cached state to disk", "block", recent.Number(), "hash", recent.Hash(), "root", recent.Root()) if err := triedb.Commit(recent.Root(), true); err != nil { log.Error("Failed to commit recent state trie", "err", err) } } } if snapBase != (common.Hash{}) { log.Info("Writing snapshot state to disk", "root", snapBase) if err := triedb.Commit(snapBase, true); err != nil { log.Error("Failed to commit recent state trie", "err", err) } } for !bc.triegc.Empty() { pruneRoot := bc.triegc.PopItem() if !bc.TrieLocked(pruneRoot) { triedb.Dereference(pruneRoot) } } if size, _ := triedb.Size(); size != 0 { log.Error("Dangling trie nodes after full cleanup") } } // Flush the collected preimages to disk if err := bc.stateCache.TrieDB().CommitPreimages(); err != nil { log.Error("Failed to commit trie preimages", "err", err) } // Ensure all live cached entries be saved into disk, so that we can skip // cache warmup when node restarts. if bc.cacheConfig.TrieCleanJournal != "" { bc.triedb.SaveCache(bc.cacheConfig.TrieCleanJournal) } log.Info("Blockchain stopped") } // StopInsert interrupts all insertion methods, causing them to return // errInsertionInterrupted as soon as possible. Insertion is permanently disabled after // calling this method. func (bc *BlockChain) StopInsert() { bc.procInterrupt.Store(true) } // insertStopped returns true after StopInsert has been called. func (bc *BlockChain) insertStopped() bool { return bc.procInterrupt.Load() } func (bc *BlockChain) procFutureBlocks() { blocks := make([]*types.Block, 0, bc.futureBlocks.Len()) for _, hash := range bc.futureBlocks.Keys() { if block, exist := bc.futureBlocks.Peek(hash); exist { blocks = append(blocks, block) } } if len(blocks) > 0 { sort.Slice(blocks, func(i, j int) bool { return blocks[i].NumberU64() < blocks[j].NumberU64() }) // Insert one by one as chain insertion needs contiguous ancestry between blocks for i := range blocks { bc.InsertChain(blocks[i : i+1]) } } } // WriteStatus status of write type WriteStatus byte const ( NonStatTy WriteStatus = iota CanonStatTy SideStatTy ) // InsertReceiptChain attempts to complete an already existing header chain with // transaction and receipt data. func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts, ancientLimit uint64) (int, error) { // We don't require the chainMu here since we want to maximize the // concurrency of header insertion and receipt insertion. bc.wg.Add(1) defer bc.wg.Done() var ( ancientBlocks, liveBlocks types.Blocks ancientReceipts, liveReceipts []types.Receipts ) // Do a sanity check that the provided chain is actually ordered and linked for i := 0; i < len(blockChain); i++ { if i != 0 { if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() { log.Error("Non contiguous receipt insert", "number", blockChain[i].Number(), "hash", blockChain[i].Hash(), "parent", blockChain[i].ParentHash(), "prevnumber", blockChain[i-1].Number(), "prevhash", blockChain[i-1].Hash()) return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x..], item %d is #%d [%x..] (parent [%x..])", i-1, blockChain[i-1].NumberU64(), blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4]) } } if blockChain[i].NumberU64() <= ancientLimit { ancientBlocks, ancientReceipts = append(ancientBlocks, blockChain[i]), append(ancientReceipts, receiptChain[i]) } else { liveBlocks, liveReceipts = append(liveBlocks, blockChain[i]), append(liveReceipts, receiptChain[i]) } } var ( stats = struct{ processed, ignored int32 }{} start = time.Now() size = int64(0) ) // updateHead updates the head fast sync block if the inserted blocks are better // and returns an indicator whether the inserted blocks are canonical. updateHead := func(head *types.Block) bool { if !bc.chainmu.TryLock() { return false } defer bc.chainmu.Unlock() // Rewind may have occurred, skip in that case. if bc.CurrentHeader().Number.Cmp(head.Number()) >= 0 { reorg, err := bc.forker.ReorgNeeded(bc.CurrentSnapBlock(), head.Header()) if err != nil { log.Warn("Reorg failed", "err", err) return false } else if !reorg { return false } rawdb.WriteHeadFastBlockHash(bc.db, head.Hash()) bc.currentSnapBlock.Store(head.Header()) headFastBlockGauge.Update(int64(head.NumberU64())) return true } return false } // writeAncient writes blockchain and corresponding receipt chain into ancient store. // // this function only accepts canonical chain data. All side chain will be reverted // eventually. writeAncient := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) { first := blockChain[0] last := blockChain[len(blockChain)-1] // Ensure genesis is in ancients. if first.NumberU64() == 1 { if frozen, _ := bc.db.Ancients(); frozen == 0 { b := bc.genesisBlock td := bc.genesisBlock.Difficulty() writeSize, err := rawdb.WriteAncientBlocks(bc.db, []*types.Block{b}, []types.Receipts{nil}, td) size += writeSize if err != nil { log.Error("Error writing genesis to ancients", "err", err) return 0, err } log.Info("Wrote genesis to ancients") } } // Before writing the blocks to the ancients, we need to ensure that // they correspond to the what the headerchain 'expects'. // We only check the last block/header, since it's a contiguous chain. if !bc.HasHeader(last.Hash(), last.NumberU64()) { return 0, fmt.Errorf("containing header #%d [%x..] unknown", last.Number(), last.Hash().Bytes()[:4]) } // Write all chain data to ancients. td := bc.GetTd(first.Hash(), first.NumberU64()) writeSize, err := rawdb.WriteAncientBlocks(bc.db, blockChain, receiptChain, td) size += writeSize if err != nil { log.Error("Error importing chain data to ancients", "err", err) return 0, err } // Write tx indices if any condition is satisfied: // * If user requires to reserve all tx indices(txlookuplimit=0) // * If all ancient tx indices are required to be reserved(txlookuplimit is even higher than ancientlimit) // * If block number is large enough to be regarded as a recent block // It means blocks below the ancientLimit-txlookupLimit won't be indexed. // // But if the `TxIndexTail` is not nil, e.g. Geth is initialized with // an external ancient database, during the setup, blockchain will start // a background routine to re-indexed all indices in [ancients - txlookupLimit, ancients) // range. In this case, all tx indices of newly imported blocks should be // generated. var batch = bc.db.NewBatch() for i, block := range blockChain { if bc.txLookupLimit == 0 || ancientLimit <= bc.txLookupLimit || block.NumberU64() >= ancientLimit-bc.txLookupLimit { rawdb.WriteTxLookupEntriesByBlock(batch, block) } else if rawdb.ReadTxIndexTail(bc.db) != nil { rawdb.WriteTxLookupEntriesByBlock(batch, block) } stats.processed++ if batch.ValueSize() > ethdb.IdealBatchSize || i == len(blockChain)-1 { size += int64(batch.ValueSize()) if err = batch.Write(); err != nil { snapBlock := bc.CurrentSnapBlock().Number.Uint64() if err := bc.db.TruncateHead(snapBlock + 1); err != nil { log.Error("Can't truncate ancient store after failed insert", "err", err) } return 0, err } batch.Reset() } } // Sync the ancient store explicitly to ensure all data has been flushed to disk. if err := bc.db.Sync(); err != nil { return 0, err } // Update the current fast block because all block data is now present in DB. previousSnapBlock := bc.CurrentSnapBlock().Number.Uint64() if !updateHead(blockChain[len(blockChain)-1]) { // We end up here if the header chain has reorg'ed, and the blocks/receipts // don't match the canonical chain. if err := bc.db.TruncateHead(previousSnapBlock + 1); err != nil { log.Error("Can't truncate ancient store after failed insert", "err", err) } return 0, errSideChainReceipts } // Delete block data from the main database. batch.Reset() canonHashes := make(map[common.Hash]struct{}) for _, block := range blockChain { canonHashes[block.Hash()] = struct{}{} if block.NumberU64() == 0 { continue } rawdb.DeleteCanonicalHash(batch, block.NumberU64()) rawdb.DeleteBlockWithoutNumber(batch, block.Hash(), block.NumberU64()) } // Delete side chain hash-to-number mappings. for _, nh := range rawdb.ReadAllHashesInRange(bc.db, first.NumberU64(), last.NumberU64()) { if _, canon := canonHashes[nh.Hash]; !canon { rawdb.DeleteHeader(batch, nh.Hash, nh.Number) } } if err := batch.Write(); err != nil { return 0, err } return 0, nil } // writeLive writes blockchain and corresponding receipt chain into active store. writeLive := func(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) { skipPresenceCheck := false batch := bc.db.NewBatch() for i, block := range blockChain { // Short circuit insertion if shutting down or processing failed if bc.insertStopped() { return 0, errInsertionInterrupted } // Short circuit if the owner header is unknown if !bc.HasHeader(block.Hash(), block.NumberU64()) { return i, fmt.Errorf("containing header #%d [%x..] unknown", block.Number(), block.Hash().Bytes()[:4]) } if !skipPresenceCheck { // Ignore if the entire data is already known if bc.HasBlock(block.Hash(), block.NumberU64()) { stats.ignored++ continue } else { // If block N is not present, neither are the later blocks. // This should be true, but if we are mistaken, the shortcut // here will only cause overwriting of some existing data skipPresenceCheck = true } } // Write all the data out into the database rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body()) rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receiptChain[i]) rawdb.WriteTxLookupEntriesByBlock(batch, block) // Always write tx indices for live blocks, we assume they are needed // Write everything belongs to the blocks into the database. So that // we can ensure all components of body is completed(body, receipts, // tx indexes) if batch.ValueSize() >= ethdb.IdealBatchSize { if err := batch.Write(); err != nil { return 0, err } size += int64(batch.ValueSize()) batch.Reset() } stats.processed++ } // Write everything belongs to the blocks into the database. So that // we can ensure all components of body is completed(body, receipts, // tx indexes) if batch.ValueSize() > 0 { size += int64(batch.ValueSize()) if err := batch.Write(); err != nil { return 0, err } } updateHead(blockChain[len(blockChain)-1]) return 0, nil } // Write downloaded chain data and corresponding receipt chain data if len(ancientBlocks) > 0 { if n, err := writeAncient(ancientBlocks, ancientReceipts); err != nil { if err == errInsertionInterrupted { return 0, nil } return n, err } } // Write the tx index tail (block number from where we index) before write any live blocks if len(liveBlocks) > 0 && liveBlocks[0].NumberU64() == ancientLimit+1 { // The tx index tail can only be one of the following two options: // * 0: all ancient blocks have been indexed // * ancient-limit: the indices of blocks before ancient-limit are ignored if tail := rawdb.ReadTxIndexTail(bc.db); tail == nil { if bc.txLookupLimit == 0 || ancientLimit <= bc.txLookupLimit { rawdb.WriteTxIndexTail(bc.db, 0) } else { rawdb.WriteTxIndexTail(bc.db, ancientLimit-bc.txLookupLimit) } } } if len(liveBlocks) > 0 { if n, err := writeLive(liveBlocks, liveReceipts); err != nil { if err == errInsertionInterrupted { return 0, nil } return n, err } } head := blockChain[len(blockChain)-1] context := []interface{}{ "count", stats.processed, "elapsed", common.PrettyDuration(time.Since(start)), "number", head.Number(), "hash", head.Hash(), "age", common.PrettyAge(time.Unix(int64(head.Time()), 0)), "size", common.StorageSize(size), } if stats.ignored > 0 { context = append(context, []interface{}{"ignored", stats.ignored}...) } log.Debug("Imported new block receipts", context...) return 0, nil } // writeBlockWithoutState writes only the block and its metadata to the database, // but does not write any state. This is used to construct competing side forks // up to the point where they exceed the canonical total difficulty. func (bc *BlockChain) writeBlockWithoutState(block *types.Block, td *big.Int) (err error) { if bc.insertStopped() { return errInsertionInterrupted } batch := bc.db.NewBatch() rawdb.WriteTd(batch, block.Hash(), block.NumberU64(), td) rawdb.WriteBlock(batch, block) if err := batch.Write(); err != nil { log.Crit("Failed to write block into disk", "err", err) } return nil } // writeKnownBlock updates the head block flag with a known block // and introduces chain reorg if necessary. func (bc *BlockChain) writeKnownBlock(block *types.Block) error { current := bc.CurrentBlock() if block.ParentHash() != current.Hash() { if err := bc.reorg(current, block); err != nil { return err } } bc.writeHeadBlock(block) return nil } // writeBlockWithState writes block, metadata and corresponding state data to the // database. func (bc *BlockChain) writeBlockWithState(block *types.Block, receipts []*types.Receipt, state *state.StateDB) error { // Calculate the total difficulty of the block ptd := bc.GetTd(block.ParentHash(), block.NumberU64()-1) if ptd == nil { return consensus.ErrUnknownAncestor } // Make sure no inconsistent state is leaked during insertion externTd := new(big.Int).Add(block.Difficulty(), ptd) // Irrelevant of the canonical status, write the block itself to the database. // // Note all the components of block(td, hash->number map, header, body, receipts) // should be written atomically. BlockBatch is used for containing all components. blockBatch := bc.db.NewBatch() rawdb.WriteTd(blockBatch, block.Hash(), block.NumberU64(), externTd) rawdb.WriteBlock(blockBatch, block) rawdb.WriteReceipts(blockBatch, block.Hash(), block.NumberU64(), receipts) rawdb.WritePreimages(blockBatch, state.Preimages()) if err := blockBatch.Write(); err != nil { log.Crit("Failed to write block into disk", "err", err) } // Commit all cached state changes into underlying memory database. root, err := state.Commit(bc.chainConfig.IsEIP158(block.Number())) if err != nil { return err } // If we're running an archive node, always flush if bc.cacheConfig.TrieDirtyDisabled { return bc.triedb.Commit(root, false) } // Full but not archive node, do proper garbage collection bc.triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive bc.triegc.Push(root, -int64(block.NumberU64())) current := block.NumberU64() // Flush limits are not considered for the first TriesInMemory blocks. if current <= TriesInMemory { return nil } // If we exceeded our memory allowance, flush matured singleton nodes to disk var ( nodes, imgs = bc.triedb.Size() limit = common.StorageSize(bc.cacheConfig.TrieDirtyLimit) * 1024 * 1024 ) if nodes > limit || imgs > 4*1024*1024 { bc.triedb.Cap(limit - ethdb.IdealBatchSize) } // Find the next state trie we need to commit chosen := current - TriesInMemory flushInterval := time.Duration(bc.flushInterval.Load()) // If we exceeded time allowance, flush an entire trie to disk if bc.gcproc > flushInterval { // If the header is missing (canonical chain behind), we're reorging a low // diff sidechain. Suspend committing until this operation is completed. header := bc.GetHeaderByNumber(chosen) if header == nil { log.Warn("Reorg in progress, trie commit postponed", "number", chosen) } else { // If we're exceeding limits but haven't reached a large enough memory gap, // warn the user that the system is becoming unstable. if chosen < bc.lastWrite+TriesInMemory && bc.gcproc >= 2*flushInterval { log.Info("State in memory for too long, committing", "time", bc.gcproc, "allowance", flushInterval, "optimum", float64(chosen-bc.lastWrite)/TriesInMemory) } // Flush an entire trie and restart the counters bc.triedb.Commit(header.Root, true) bc.lastWrite = chosen bc.gcproc = 0 } } // Garbage collect anything below our required write retention for !bc.triegc.Empty() { root, number := bc.triegc.Pop() if uint64(-number) > chosen { bc.triegc.Push(root, number) break } if !bc.TrieLocked(root) { log.Debug("Dereferencing", "root", root.Hex()) bc.triedb.Dereference(root) } } return nil } // WriteBlockAndSetHead writes the given block and all associated state to the database, // and applies the block as the new chain head. func (bc *BlockChain) WriteBlockAndSetHead(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB, emitHeadEvent bool) (status WriteStatus, err error) { if !bc.chainmu.TryLock() { return NonStatTy, errChainStopped } defer bc.chainmu.Unlock() return bc.writeBlockAndSetHead(block, receipts, logs, state, emitHeadEvent) } // writeBlockAndSetHead is the internal implementation of WriteBlockAndSetHead. // This function expects the chain mutex to be held. func (bc *BlockChain) writeBlockAndSetHead(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB, emitHeadEvent bool) (status WriteStatus, err error) { if err := bc.writeBlockWithState(block, receipts, state); err != nil { return NonStatTy, err } currentBlock := bc.CurrentBlock() reorg, err := bc.forker.ReorgNeeded(currentBlock, block.Header()) if err != nil { return NonStatTy, err } if reorg { // Reorganise the chain if the parent is not the head block if block.ParentHash() != currentBlock.Hash() { if err := bc.reorg(currentBlock, block); err != nil { return NonStatTy, err } } status = CanonStatTy } else { status = SideStatTy } // Set new head. if status == CanonStatTy { bc.writeHeadBlock(block) } bc.futureBlocks.Remove(block.Hash()) if status == CanonStatTy { bc.chainFeed.Send(ChainEvent{Block: block, Hash: block.Hash(), Logs: logs}) if len(logs) > 0 { bc.logsFeed.Send(logs) } // In theory, we should fire a ChainHeadEvent when we inject // a canonical block, but sometimes we can insert a batch of // canonical blocks. Avoid firing too many ChainHeadEvents, // we will fire an accumulated ChainHeadEvent and disable fire // event here. if emitHeadEvent { bc.chainHeadFeed.Send(ChainHeadEvent{Block: block}) } } else { bc.chainSideFeed.Send(ChainSideEvent{Block: block}) } return status, nil } // addFutureBlock checks if the block is within the max allowed window to get // accepted for future processing, and returns an error if the block is too far // ahead and was not added. // // TODO after the transition, the future block shouldn't be kept. Because // it's not checked in the Geth side anymore. func (bc *BlockChain) addFutureBlock(block *types.Block) error { max := uint64(time.Now().Unix() + maxTimeFutureBlocks) if block.Time() > max { return fmt.Errorf("future block timestamp %v > allowed %v", block.Time(), max) } if block.Difficulty().Cmp(common.Big0) == 0 { // Never add PoS blocks into the future queue return nil } bc.futureBlocks.Add(block.Hash(), block) return nil } // InsertChain attempts to insert the given batch of blocks in to the canonical // chain or, otherwise, create a fork. If an error is returned it will return // the index number of the failing block as well an error describing what went // wrong. After insertion is done, all accumulated events will be fired. func (bc *BlockChain) InsertChain(chain types.Blocks) (int, error) { // Sanity check that we have something meaningful to import if len(chain) == 0 { return 0, nil } bc.blockProcFeed.Send(true) defer bc.blockProcFeed.Send(false) // Do a sanity check that the provided chain is actually ordered and linked. for i := 1; i < len(chain); i++ { block, prev := chain[i], chain[i-1] if block.NumberU64() != prev.NumberU64()+1 || block.ParentHash() != prev.Hash() { log.Error("Non contiguous block insert", "number", block.Number(), "hash", block.Hash(), "parent", block.ParentHash(), "prevnumber", prev.Number(), "prevhash", prev.Hash(), ) return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x..], item %d is #%d [%x..] (parent [%x..])", i-1, prev.NumberU64(), prev.Hash().Bytes()[:4], i, block.NumberU64(), block.Hash().Bytes()[:4], block.ParentHash().Bytes()[:4]) } } // Pre-checks passed, start the full block imports if !bc.chainmu.TryLock() { return 0, errChainStopped } defer bc.chainmu.Unlock() return bc.insertChain(chain, true, true) } // insertChain is the internal implementation of InsertChain, which assumes that // 1) chains are contiguous, and 2) The chain mutex is held. // // This method is split out so that import batches that require re-injecting // historical blocks can do so without releasing the lock, which could lead to // racey behaviour. If a sidechain import is in progress, and the historic state // is imported, but then new canon-head is added before the actual sidechain // completes, then the historic state could be pruned again func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals, setHead bool) (int, error) { // If the chain is terminating, don't even bother starting up. if bc.insertStopped() { return 0, nil } // Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss) SenderCacher.RecoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain) var ( stats = insertStats{startTime: mclock.Now()} lastCanon *types.Block ) // Fire a single chain head event if we've progressed the chain defer func() { if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() { bc.chainHeadFeed.Send(ChainHeadEvent{lastCanon}) } }() // Start the parallel header verifier headers := make([]*types.Header, len(chain)) seals := make([]bool, len(chain)) for i, block := range chain { headers[i] = block.Header() seals[i] = verifySeals } abort, results := bc.engine.VerifyHeaders(bc, headers, seals) defer close(abort) // Peek the error for the first block to decide the directing import logic it := newInsertIterator(chain, results, bc.validator) block, err := it.next() // Left-trim all the known blocks that don't need to build snapshot if bc.skipBlock(err, it) { // First block (and state) is known // 1. We did a roll-back, and should now do a re-import // 2. The block is stored as a sidechain, and is lying about it's stateroot, and passes a stateroot // from the canonical chain, which has not been verified. // Skip all known blocks that are behind us. var ( reorg bool current = bc.CurrentBlock() ) for block != nil && bc.skipBlock(err, it) { reorg, err = bc.forker.ReorgNeeded(current, block.Header()) if err != nil { return it.index, err } if reorg { // Switch to import mode if the forker says the reorg is necessary // and also the block is not on the canonical chain. // In eth2 the forker always returns true for reorg decision (blindly trusting // the external consensus engine), but in order to prevent the unnecessary // reorgs when importing known blocks, the special case is handled here. if block.NumberU64() > current.Number.Uint64() || bc.GetCanonicalHash(block.NumberU64()) != block.Hash() { break } } log.Debug("Ignoring already known block", "number", block.Number(), "hash", block.Hash()) stats.ignored++ block, err = it.next() } // The remaining blocks are still known blocks, the only scenario here is: // During the fast sync, the pivot point is already submitted but rollback // happens. Then node resets the head full block to a lower height via `rollback` // and leaves a few known blocks in the database. // // When node runs a fast sync again, it can re-import a batch of known blocks via // `insertChain` while a part of them have higher total difficulty than current // head full block(new pivot point). for block != nil && bc.skipBlock(err, it) { log.Debug("Writing previously known block", "number", block.Number(), "hash", block.Hash()) if err := bc.writeKnownBlock(block); err != nil { return it.index, err } lastCanon = block block, err = it.next() } // Falls through to the block import } switch { // First block is pruned case errors.Is(err, consensus.ErrPrunedAncestor): if setHead { // First block is pruned, insert as sidechain and reorg only if TD grows enough log.Debug("Pruned ancestor, inserting as sidechain", "number", block.Number(), "hash", block.Hash()) return bc.insertSideChain(block, it) } else { // We're post-merge and the parent is pruned, try to recover the parent state log.Debug("Pruned ancestor", "number", block.Number(), "hash", block.Hash()) _, err := bc.recoverAncestors(block) return it.index, err } // First block is future, shove it (and all children) to the future queue (unknown ancestor) case errors.Is(err, consensus.ErrFutureBlock) || (errors.Is(err, consensus.ErrUnknownAncestor) && bc.futureBlocks.Contains(it.first().ParentHash())): for block != nil && (it.index == 0 || errors.Is(err, consensus.ErrUnknownAncestor)) { log.Debug("Future block, postponing import", "number", block.Number(), "hash", block.Hash()) if err := bc.addFutureBlock(block); err != nil { return it.index, err } block, err = it.next() } stats.queued += it.processed() stats.ignored += it.remaining() // If there are any still remaining, mark as ignored return it.index, err // Some other error(except ErrKnownBlock) occurred, abort. // ErrKnownBlock is allowed here since some known blocks // still need re-execution to generate snapshots that are missing case err != nil && !errors.Is(err, ErrKnownBlock): bc.futureBlocks.Remove(block.Hash()) stats.ignored += len(it.chain) bc.reportBlock(block, nil, err) return it.index, err } // No validation errors for the first block (or chain prefix skipped) var activeState *state.StateDB defer func() { // The chain importer is starting and stopping trie prefetchers. If a bad // block or other error is hit however, an early return may not properly // terminate the background threads. This defer ensures that we clean up // and dangling prefetcher, without defering each and holding on live refs. if activeState != nil { activeState.StopPrefetcher() } }() for ; block != nil && err == nil || errors.Is(err, ErrKnownBlock); block, err = it.next() { // If the chain is terminating, stop processing blocks if bc.insertStopped() { log.Debug("Abort during block processing") break } // If the header is a banned one, straight out abort if BadHashes[block.Hash()] { bc.reportBlock(block, nil, ErrBannedHash) return it.index, ErrBannedHash } // If the block is known (in the middle of the chain), it's a special case for // Clique blocks where they can share state among each other, so importing an // older block might complete the state of the subsequent one. In this case, // just skip the block (we already validated it once fully (and crashed), since // its header and body was already in the database). But if the corresponding // snapshot layer is missing, forcibly rerun the execution to build it. if bc.skipBlock(err, it) { logger := log.Debug if bc.chainConfig.Clique == nil { logger = log.Warn } logger("Inserted known block", "number", block.Number(), "hash", block.Hash(), "uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(), "root", block.Root()) // Special case. Commit the empty receipt slice if we meet the known // block in the middle. It can only happen in the clique chain. Whenever // we insert blocks via `insertSideChain`, we only commit `td`, `header` // and `body` if it's non-existent. Since we don't have receipts without // reexecution, so nothing to commit. But if the sidechain will be adopted // as the canonical chain eventually, it needs to be reexecuted for missing // state, but if it's this special case here(skip reexecution) we will lose // the empty receipt entry. if len(block.Transactions()) == 0 { rawdb.WriteReceipts(bc.db, block.Hash(), block.NumberU64(), nil) } else { log.Error("Please file an issue, skip known block execution without receipt", "hash", block.Hash(), "number", block.NumberU64()) } if err := bc.writeKnownBlock(block); err != nil { return it.index, err } stats.processed++ // We can assume that logs are empty here, since the only way for consecutive // Clique blocks to have the same state is if there are no transactions. lastCanon = block continue } // Retrieve the parent block and it's state to execute on top start := time.Now() parent := it.previous() if parent == nil { parent = bc.GetHeader(block.ParentHash(), block.NumberU64()-1) } statedb, err := state.New(parent.Root, bc.stateCache, bc.snaps) if err != nil { return it.index, err } // Enable prefetching to pull in trie node paths while processing transactions statedb.StartPrefetcher("chain") activeState = statedb // If we have a followup block, run that against the current state to pre-cache // transactions and probabilistically some of the account/storage trie nodes. var followupInterrupt atomic.Bool if !bc.cacheConfig.TrieCleanNoPrefetch { if followup, err := it.peek(); followup != nil && err == nil { throwaway, _ := state.New(parent.Root, bc.stateCache, bc.snaps) go func(start time.Time, followup *types.Block, throwaway *state.StateDB) { bc.prefetcher.Prefetch(followup, throwaway, bc.vmConfig, &followupInterrupt) blockPrefetchExecuteTimer.Update(time.Since(start)) if followupInterrupt.Load() { blockPrefetchInterruptMeter.Mark(1) } }(time.Now(), followup, throwaway) } } // Process block using the parent state as reference point pstart := time.Now() receipts, logs, usedGas, err := bc.processor.Process(block, statedb, bc.vmConfig) if err != nil { bc.reportBlock(block, receipts, err) followupInterrupt.Store(true) return it.index, err } ptime := time.Since(pstart) vstart := time.Now() if err := bc.validator.ValidateState(block, statedb, receipts, usedGas); err != nil { bc.reportBlock(block, receipts, err) followupInterrupt.Store(true) return it.index, err } vtime := time.Since(vstart) proctime := time.Since(start) // processing + validation // Update the metrics touched during block processing and validation accountReadTimer.Update(statedb.AccountReads) // Account reads are complete(in processing) storageReadTimer.Update(statedb.StorageReads) // Storage reads are complete(in processing) snapshotAccountReadTimer.Update(statedb.SnapshotAccountReads) // Account reads are complete(in processing) snapshotStorageReadTimer.Update(statedb.SnapshotStorageReads) // Storage reads are complete(in processing) accountUpdateTimer.Update(statedb.AccountUpdates) // Account updates are complete(in validation) storageUpdateTimer.Update(statedb.StorageUpdates) // Storage updates are complete(in validation) accountHashTimer.Update(statedb.AccountHashes) // Account hashes are complete(in validation) storageHashTimer.Update(statedb.StorageHashes) // Storage hashes are complete(in validation) triehash := statedb.AccountHashes + statedb.StorageHashes // The time spent on tries hashing trieUpdate := statedb.AccountUpdates + statedb.StorageUpdates // The time spent on tries update trieRead := statedb.SnapshotAccountReads + statedb.AccountReads // The time spent on account read trieRead += statedb.SnapshotStorageReads + statedb.StorageReads // The time spent on storage read blockExecutionTimer.Update(ptime - trieRead) // The time spent on EVM processing blockValidationTimer.Update(vtime - (triehash + trieUpdate)) // The time spent on block validation // Write the block to the chain and get the status. var ( wstart = time.Now() status WriteStatus ) if !setHead { // Don't set the head, only insert the block err = bc.writeBlockWithState(block, receipts, statedb) } else { status, err = bc.writeBlockAndSetHead(block, receipts, logs, statedb, false) } followupInterrupt.Store(true) if err != nil { return it.index, err } // Update the metrics touched during block commit accountCommitTimer.Update(statedb.AccountCommits) // Account commits are complete, we can mark them storageCommitTimer.Update(statedb.StorageCommits) // Storage commits are complete, we can mark them snapshotCommitTimer.Update(statedb.SnapshotCommits) // Snapshot commits are complete, we can mark them triedbCommitTimer.Update(statedb.TrieDBCommits) // Trie database commits are complete, we can mark them blockWriteTimer.Update(time.Since(wstart) - statedb.AccountCommits - statedb.StorageCommits - statedb.SnapshotCommits - statedb.TrieDBCommits) blockInsertTimer.UpdateSince(start) // Report the import stats before returning the various results stats.processed++ stats.usedGas += usedGas dirty, _ := bc.triedb.Size() stats.report(chain, it.index, dirty, setHead) if !setHead { // After merge we expect few side chains. Simply count // all blocks the CL gives us for GC processing time bc.gcproc += proctime return it.index, nil // Direct block insertion of a single block } switch status { case CanonStatTy: log.Debug("Inserted new block", "number", block.Number(), "hash", block.Hash(), "uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(), "elapsed", common.PrettyDuration(time.Since(start)), "root", block.Root()) lastCanon = block // Only count canonical blocks for GC processing time bc.gcproc += proctime case SideStatTy: log.Debug("Inserted forked block", "number", block.Number(), "hash", block.Hash(), "diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)), "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()), "root", block.Root()) default: // This in theory is impossible, but lets be nice to our future selves and leave // a log, instead of trying to track down blocks imports that don't emit logs. log.Warn("Inserted block with unknown status", "number", block.Number(), "hash", block.Hash(), "diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)), "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()), "root", block.Root()) } } // Any blocks remaining here? The only ones we care about are the future ones if block != nil && errors.Is(err, consensus.ErrFutureBlock) { if err := bc.addFutureBlock(block); err != nil { return it.index, err } block, err = it.next() for ; block != nil && errors.Is(err, consensus.ErrUnknownAncestor); block, err = it.next() { if err := bc.addFutureBlock(block); err != nil { return it.index, err } stats.queued++ } } stats.ignored += it.remaining() return it.index, err } // insertSideChain is called when an import batch hits upon a pruned ancestor // error, which happens when a sidechain with a sufficiently old fork-block is // found. // // The method writes all (header-and-body-valid) blocks to disk, then tries to // switch over to the new chain if the TD exceeded the current chain. // insertSideChain is only used pre-merge. func (bc *BlockChain) insertSideChain(block *types.Block, it *insertIterator) (int, error) { var ( externTd *big.Int lastBlock = block current = bc.CurrentBlock() ) // The first sidechain block error is already verified to be ErrPrunedAncestor. // Since we don't import them here, we expect ErrUnknownAncestor for the remaining // ones. Any other errors means that the block is invalid, and should not be written // to disk. err := consensus.ErrPrunedAncestor for ; block != nil && errors.Is(err, consensus.ErrPrunedAncestor); block, err = it.next() { // Check the canonical state root for that number if number := block.NumberU64(); current.Number.Uint64() >= number { canonical := bc.GetBlockByNumber(number) if canonical != nil && canonical.Hash() == block.Hash() { // Not a sidechain block, this is a re-import of a canon block which has it's state pruned // Collect the TD of the block. Since we know it's a canon one, // we can get it directly, and not (like further below) use // the parent and then add the block on top externTd = bc.GetTd(block.Hash(), block.NumberU64()) continue } if canonical != nil && canonical.Root() == block.Root() { // This is most likely a shadow-state attack. When a fork is imported into the // database, and it eventually reaches a block height which is not pruned, we // just found that the state already exist! This means that the sidechain block // refers to a state which already exists in our canon chain. // // If left unchecked, we would now proceed importing the blocks, without actually // having verified the state of the previous blocks. log.Warn("Sidechain ghost-state attack detected", "number", block.NumberU64(), "sideroot", block.Root(), "canonroot", canonical.Root()) // If someone legitimately side-mines blocks, they would still be imported as usual. However, // we cannot risk writing unverified blocks to disk when they obviously target the pruning // mechanism. return it.index, errors.New("sidechain ghost-state attack") } } if externTd == nil { externTd = bc.GetTd(block.ParentHash(), block.NumberU64()-1) } externTd = new(big.Int).Add(externTd, block.Difficulty()) if !bc.HasBlock(block.Hash(), block.NumberU64()) { start := time.Now() if err := bc.writeBlockWithoutState(block, externTd); err != nil { return it.index, err } log.Debug("Injected sidechain block", "number", block.Number(), "hash", block.Hash(), "diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)), "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()), "root", block.Root()) } lastBlock = block } // At this point, we've written all sidechain blocks to database. Loop ended // either on some other error or all were processed. If there was some other // error, we can ignore the rest of those blocks. // // If the externTd was larger than our local TD, we now need to reimport the previous // blocks to regenerate the required state reorg, err := bc.forker.ReorgNeeded(current, lastBlock.Header()) if err != nil { return it.index, err } if !reorg { localTd := bc.GetTd(current.Hash(), current.Number.Uint64()) log.Info("Sidechain written to disk", "start", it.first().NumberU64(), "end", it.previous().Number, "sidetd", externTd, "localtd", localTd) return it.index, err } // Gather all the sidechain hashes (full blocks may be memory heavy) var ( hashes []common.Hash numbers []uint64 ) parent := it.previous() for parent != nil && !bc.HasState(parent.Root) { hashes = append(hashes, parent.Hash()) numbers = append(numbers, parent.Number.Uint64()) parent = bc.GetHeader(parent.ParentHash, parent.Number.Uint64()-1) } if parent == nil { return it.index, errors.New("missing parent") } // Import all the pruned blocks to make the state available var ( blocks []*types.Block memory uint64 ) for i := len(hashes) - 1; i >= 0; i-- { // Append the next block to our batch block := bc.GetBlock(hashes[i], numbers[i]) blocks = append(blocks, block) memory += block.Size() // If memory use grew too large, import and continue. Sadly we need to discard // all raised events and logs from notifications since we're too heavy on the // memory here. if len(blocks) >= 2048 || memory > 64*1024*1024 { log.Info("Importing heavy sidechain segment", "blocks", len(blocks), "start", blocks[0].NumberU64(), "end", block.NumberU64()) if _, err := bc.insertChain(blocks, false, true); err != nil { return 0, err } blocks, memory = blocks[:0], 0 // If the chain is terminating, stop processing blocks if bc.insertStopped() { log.Debug("Abort during blocks processing") return 0, nil } } } if len(blocks) > 0 { log.Info("Importing sidechain segment", "start", blocks[0].NumberU64(), "end", blocks[len(blocks)-1].NumberU64()) return bc.insertChain(blocks, false, true) } return 0, nil } // recoverAncestors finds the closest ancestor with available state and re-execute // all the ancestor blocks since that. // recoverAncestors is only used post-merge. // We return the hash of the latest block that we could correctly validate. func (bc *BlockChain) recoverAncestors(block *types.Block) (common.Hash, error) { // Gather all the sidechain hashes (full blocks may be memory heavy) var ( hashes []common.Hash numbers []uint64 parent = block ) for parent != nil && !bc.HasState(parent.Root()) { hashes = append(hashes, parent.Hash()) numbers = append(numbers, parent.NumberU64()) parent = bc.GetBlock(parent.ParentHash(), parent.NumberU64()-1) // If the chain is terminating, stop iteration if bc.insertStopped() { log.Debug("Abort during blocks iteration") return common.Hash{}, errInsertionInterrupted } } if parent == nil { return common.Hash{}, errors.New("missing parent") } // Import all the pruned blocks to make the state available for i := len(hashes) - 1; i >= 0; i-- { // If the chain is terminating, stop processing blocks if bc.insertStopped() { log.Debug("Abort during blocks processing") return common.Hash{}, errInsertionInterrupted } var b *types.Block if i == 0 { b = block } else { b = bc.GetBlock(hashes[i], numbers[i]) } if _, err := bc.insertChain(types.Blocks{b}, false, false); err != nil { return b.ParentHash(), err } } return block.Hash(), nil } // collectLogs collects the logs that were generated or removed during // the processing of a block. These logs are later announced as deleted or reborn. func (bc *BlockChain) collectLogs(b *types.Block, removed bool) []*types.Log { receipts := rawdb.ReadRawReceipts(bc.db, b.Hash(), b.NumberU64()) receipts.DeriveFields(bc.chainConfig, b.Hash(), b.NumberU64(), b.BaseFee(), b.Transactions()) var logs []*types.Log for _, receipt := range receipts { for _, log := range receipt.Logs { l := *log if removed { l.Removed = true } logs = append(logs, &l) } } return logs } // reorg takes two blocks, an old chain and a new chain and will reconstruct the // blocks and inserts them to be part of the new canonical chain and accumulates // potential missing transactions and post an event about them. // Note the new head block won't be processed here, callers need to handle it // externally. func (bc *BlockChain) reorg(oldHead *types.Header, newHead *types.Block) error { var ( newChain types.Blocks oldChain types.Blocks commonBlock *types.Block deletedTxs []common.Hash addedTxs []common.Hash ) oldBlock := bc.GetBlock(oldHead.Hash(), oldHead.Number.Uint64()) if oldBlock == nil { return errors.New("current head block missing") } newBlock := newHead // Reduce the longer chain to the same number as the shorter one if oldBlock.NumberU64() > newBlock.NumberU64() { // Old chain is longer, gather all transactions and logs as deleted ones for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) { oldChain = append(oldChain, oldBlock) for _, tx := range oldBlock.Transactions() { deletedTxs = append(deletedTxs, tx.Hash()) } } } else { // New chain is longer, stash all blocks away for subsequent insertion for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) { newChain = append(newChain, newBlock) } } if oldBlock == nil { return errors.New("invalid old chain") } if newBlock == nil { return errors.New("invalid new chain") } // Both sides of the reorg are at the same number, reduce both until the common // ancestor is found for { // If the common ancestor was found, bail out if oldBlock.Hash() == newBlock.Hash() { commonBlock = oldBlock break } // Remove an old block as well as stash away a new block oldChain = append(oldChain, oldBlock) for _, tx := range oldBlock.Transactions() { deletedTxs = append(deletedTxs, tx.Hash()) } newChain = append(newChain, newBlock) // Step back with both chains oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) if oldBlock == nil { return fmt.Errorf("invalid old chain") } newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) if newBlock == nil { return fmt.Errorf("invalid new chain") } } // Ensure the user sees large reorgs if len(oldChain) > 0 && len(newChain) > 0 { logFn := log.Info msg := "Chain reorg detected" if len(oldChain) > 63 { msg = "Large chain reorg detected" logFn = log.Warn } logFn(msg, "number", commonBlock.Number(), "hash", commonBlock.Hash(), "drop", len(oldChain), "dropfrom", oldChain[0].Hash(), "add", len(newChain), "addfrom", newChain[0].Hash()) blockReorgAddMeter.Mark(int64(len(newChain))) blockReorgDropMeter.Mark(int64(len(oldChain))) blockReorgMeter.Mark(1) } else if len(newChain) > 0 { // Special case happens in the post merge stage that current head is // the ancestor of new head while these two blocks are not consecutive log.Info("Extend chain", "add", len(newChain), "number", newChain[0].Number(), "hash", newChain[0].Hash()) blockReorgAddMeter.Mark(int64(len(newChain))) } else { // len(newChain) == 0 && len(oldChain) > 0 // rewind the canonical chain to a lower point. log.Error("Impossible reorg, please file an issue", "oldnum", oldBlock.Number(), "oldhash", oldBlock.Hash(), "oldblocks", len(oldChain), "newnum", newBlock.Number(), "newhash", newBlock.Hash(), "newblocks", len(newChain)) } // Insert the new chain(except the head block(reverse order)), // taking care of the proper incremental order. for i := len(newChain) - 1; i >= 1; i-- { // Insert the block in the canonical way, re-writing history bc.writeHeadBlock(newChain[i]) // Collect the new added transactions. for _, tx := range newChain[i].Transactions() { addedTxs = append(addedTxs, tx.Hash()) } } // Delete useless indexes right now which includes the non-canonical // transaction indexes, canonical chain indexes which above the head. indexesBatch := bc.db.NewBatch() for _, tx := range types.HashDifference(deletedTxs, addedTxs) { rawdb.DeleteTxLookupEntry(indexesBatch, tx) } // Delete all hash markers that are not part of the new canonical chain. // Because the reorg function does not handle new chain head, all hash // markers greater than or equal to new chain head should be deleted. number := commonBlock.NumberU64() if len(newChain) > 1 { number = newChain[1].NumberU64() } for i := number + 1; ; i++ { hash := rawdb.ReadCanonicalHash(bc.db, i) if hash == (common.Hash{}) { break } rawdb.DeleteCanonicalHash(indexesBatch, i) } if err := indexesBatch.Write(); err != nil { log.Crit("Failed to delete useless indexes", "err", err) } // Send out events for logs from the old canon chain, and 'reborn' // logs from the new canon chain. The number of logs can be very // high, so the events are sent in batches of size around 512. // Deleted logs + blocks: var deletedLogs []*types.Log for i := len(oldChain) - 1; i >= 0; i-- { // Also send event for blocks removed from the canon chain. bc.chainSideFeed.Send(ChainSideEvent{Block: oldChain[i]}) // Collect deleted logs for notification if logs := bc.collectLogs(oldChain[i], true); len(logs) > 0 { deletedLogs = append(deletedLogs, logs...) } if len(deletedLogs) > 512 { bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs}) deletedLogs = nil } } if len(deletedLogs) > 0 { bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs}) } // New logs: var rebirthLogs []*types.Log for i := len(newChain) - 1; i >= 1; i-- { if logs := bc.collectLogs(newChain[i], false); len(logs) > 0 { rebirthLogs = append(rebirthLogs, logs...) } if len(rebirthLogs) > 512 { bc.logsFeed.Send(rebirthLogs) rebirthLogs = nil } } if len(rebirthLogs) > 0 { bc.logsFeed.Send(rebirthLogs) } return nil } // InsertBlockWithoutSetHead executes the block, runs the necessary verification // upon it and then persist the block and the associate state into the database. // The key difference between the InsertChain is it won't do the canonical chain // updating. It relies on the additional SetCanonical call to finalize the entire // procedure. func (bc *BlockChain) InsertBlockWithoutSetHead(block *types.Block) error { if !bc.chainmu.TryLock() { return errChainStopped } defer bc.chainmu.Unlock() _, err := bc.insertChain(types.Blocks{block}, true, false) return err } // SetCanonical rewinds the chain to set the new head block as the specified // block. It's possible that the state of the new head is missing, and it will // be recovered in this function as well. func (bc *BlockChain) SetCanonical(head *types.Block) (common.Hash, error) { if !bc.chainmu.TryLock() { return common.Hash{}, errChainStopped } defer bc.chainmu.Unlock() // Re-execute the reorged chain in case the head state is missing. if !bc.HasState(head.Root()) { if latestValidHash, err := bc.recoverAncestors(head); err != nil { return latestValidHash, err } log.Info("Recovered head state", "number", head.Number(), "hash", head.Hash()) } // Run the reorg if necessary and set the given block as new head. start := time.Now() if head.ParentHash() != bc.CurrentBlock().Hash() { if err := bc.reorg(bc.CurrentBlock(), head); err != nil { return common.Hash{}, err } } bc.writeHeadBlock(head) // Emit events logs := bc.collectLogs(head, false) bc.chainFeed.Send(ChainEvent{Block: head, Hash: head.Hash(), Logs: logs}) if len(logs) > 0 { bc.logsFeed.Send(logs) } bc.chainHeadFeed.Send(ChainHeadEvent{Block: head}) context := []interface{}{ "number", head.Number(), "hash", head.Hash(), "root", head.Root(), "elapsed", time.Since(start), } if timestamp := time.Unix(int64(head.Time()), 0); time.Since(timestamp) > time.Minute { context = append(context, []interface{}{"age", common.PrettyAge(timestamp)}...) } log.Info("Chain head was updated", context...) return head.Hash(), nil } func (bc *BlockChain) updateFutureBlocks() { futureTimer := time.NewTicker(5 * time.Second) defer futureTimer.Stop() defer bc.wg.Done() for { select { case <-futureTimer.C: bc.procFutureBlocks() case <-bc.quit: return } } } // skipBlock returns 'true', if the block being imported can be skipped over, meaning // that the block does not need to be processed but can be considered already fully 'done'. func (bc *BlockChain) skipBlock(err error, it *insertIterator) bool { // We can only ever bypass processing if the only error returned by the validator // is ErrKnownBlock, which means all checks passed, but we already have the block // and state. if !errors.Is(err, ErrKnownBlock) { return false } // If we're not using snapshots, we can skip this, since we have both block // and (trie-) state if bc.snaps == nil { return true } var ( header = it.current() // header can't be nil parentRoot common.Hash ) // If we also have the snapshot-state, we can skip the processing. if bc.snaps.Snapshot(header.Root) != nil { return true } // In this case, we have the trie-state but not snapshot-state. If the parent // snapshot-state exists, we need to process this in order to not get a gap // in the snapshot layers. // Resolve parent block if parent := it.previous(); parent != nil { parentRoot = parent.Root } else if parent = bc.GetHeaderByHash(header.ParentHash); parent != nil { parentRoot = parent.Root } if parentRoot == (common.Hash{}) { return false // Theoretically impossible case } // Parent is also missing snapshot: we can skip this. Otherwise process. if bc.snaps.Snapshot(parentRoot) == nil { return true } return false } // indexBlocks reindexes or unindexes transactions depending on user configuration func (bc *BlockChain) indexBlocks(tail *uint64, head uint64, done chan struct{}) { defer func() { close(done) }() // The tail flag is not existent, it means the node is just initialized // and all blocks(may from ancient store) are not indexed yet. if tail == nil { from := uint64(0) if bc.txLookupLimit != 0 && head >= bc.txLookupLimit { from = head - bc.txLookupLimit + 1 } rawdb.IndexTransactions(bc.db, from, head+1, bc.quit) return } // The tail flag is existent, but the whole chain is required to be indexed. if bc.txLookupLimit == 0 || head < bc.txLookupLimit { if *tail > 0 { // It can happen when chain is rewound to a historical point which // is even lower than the indexes tail, recap the indexing target // to new head to avoid reading non-existent block bodies. end := *tail if end > head+1 { end = head + 1 } rawdb.IndexTransactions(bc.db, 0, end, bc.quit) } return } // Update the transaction index to the new chain state if head-bc.txLookupLimit+1 < *tail { // Reindex a part of missing indices and rewind index tail to HEAD-limit rawdb.IndexTransactions(bc.db, head-bc.txLookupLimit+1, *tail, bc.quit) } else { // Unindex a part of stale indices and forward index tail to HEAD-limit rawdb.UnindexTransactions(bc.db, *tail, head-bc.txLookupLimit+1, bc.quit) } } // maintainTxIndex is responsible for the construction and deletion of the // transaction index. // // User can use flag `txlookuplimit` to specify a "recentness" block, below // which ancient tx indices get deleted. If `txlookuplimit` is 0, it means // all tx indices will be reserved. // // The user can adjust the txlookuplimit value for each launch after sync, // Geth will automatically construct the missing indices or delete the extra // indices. func (bc *BlockChain) maintainTxIndex() { defer bc.wg.Done() // Listening to chain events and manipulate the transaction indexes. var ( done chan struct{} // Non-nil if background unindexing or reindexing routine is active. headCh = make(chan ChainHeadEvent, 1) // Buffered to avoid locking up the event feed ) sub := bc.SubscribeChainHeadEvent(headCh) if sub == nil { return } defer sub.Unsubscribe() for { select { case head := <-headCh: if done == nil { done = make(chan struct{}) go bc.indexBlocks(rawdb.ReadTxIndexTail(bc.db), head.Block.NumberU64(), done) } case <-done: done = nil case <-bc.quit: if done != nil { log.Info("Waiting background transaction indexer to exit") <-done } return } } } // reportBlock logs a bad block error. func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) { rawdb.WriteBadBlock(bc.db, block) log.Error(summarizeBadBlock(block, receipts, bc.Config(), err)) } // summarizeBadBlock returns a string summarizing the bad block and other // relevant information. func summarizeBadBlock(block *types.Block, receipts []*types.Receipt, config *params.ChainConfig, err error) string { var receiptString string for i, receipt := range receipts { receiptString += fmt.Sprintf("\n %d: cumulative: %v gas: %v contract: %v status: %v tx: %v logs: %v bloom: %x state: %x", i, receipt.CumulativeGasUsed, receipt.GasUsed, receipt.ContractAddress.Hex(), receipt.Status, receipt.TxHash.Hex(), receipt.Logs, receipt.Bloom, receipt.PostState) } version, vcs := version.Info() platform := fmt.Sprintf("%s %s %s %s", version, runtime.Version(), runtime.GOARCH, runtime.GOOS) if vcs != "" { vcs = fmt.Sprintf("\nVCS: %s", vcs) } return fmt.Sprintf(` ########## BAD BLOCK ######### Block: %v (%#x) Error: %v Platform: %v%v Chain config: %#v Receipts: %v ############################## `, block.Number(), block.Hash(), err, platform, vcs, config, receiptString) } // InsertHeaderChain attempts to insert the given header chain in to the local // chain, possibly creating a reorg. If an error is returned, it will return the // index number of the failing header as well an error describing what went wrong. // // The verify parameter can be used to fine tune whether nonce verification // should be done or not. The reason behind the optional check is because some // of the header retrieval mechanisms already need to verify nonces, as well as // because nonces can be verified sparsely, not needing to check each. func (bc *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) { if len(chain) == 0 { return 0, nil } start := time.Now() if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil { return i, err } if !bc.chainmu.TryLock() { return 0, errChainStopped } defer bc.chainmu.Unlock() _, err := bc.hc.InsertHeaderChain(chain, start, bc.forker) return 0, err } // SetBlockValidatorAndProcessorForTesting sets the current validator and processor. // This method can be used to force an invalid blockchain to be verified for tests. // This method is unsafe and should only be used before block import starts. func (bc *BlockChain) SetBlockValidatorAndProcessorForTesting(v Validator, p Processor) { bc.validator = v bc.processor = p } // SetTrieFlushInterval configures how often in-memory tries are persisted to disk. // The interval is in terms of block processing time, not wall clock. // It is thread-safe and can be called repeatedly without side effects. func (bc *BlockChain) SetTrieFlushInterval(interval time.Duration) { bc.flushInterval.Store(int64(interval)) } // TrieLocked returns whether the trie associated with the provided root is locked for use func (bc *BlockChain) TrieLocked(root common.Hash) bool { bc.trieLock.Lock() locked, ok := bc.lockedRoots[root] bc.trieLock.Unlock() if !ok { return false } return locked } // LockTrie prevents dereferencing of the provided root func (bc *BlockChain) LockTrie(root common.Hash) { bc.trieLock.Lock() bc.lockedRoots[root] = true bc.trieLock.Unlock() } // UnlockTrie allows dereferencing of the provided root- provided it was previously locked func (bc *BlockChain) UnlockTrie(root common.Hash) { bc.trieLock.Lock() bc.lockedRoots[root] = false bc.trieLock.Unlock() }