Patch for concurrent iterator & others (onto v1.11.6) #386

Closed
roysc wants to merge 1565 commits from v1.11.6-statediff-v5 into master
7 changed files with 480 additions and 229 deletions
Showing only changes of commit 7194c847b6 - Show all commits

127
p2p/rlpx/buffer.go Normal file
View File

@ -0,0 +1,127 @@
// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rlpx
import (
"io"
)
// readBuffer implements buffering for network reads. This type is similar to bufio.Reader,
// with two crucial differences: the buffer slice is exposed, and the buffer keeps all
// read data available until reset.
//
// How to use this type:
//
// Keep a readBuffer b alongside the underlying network connection. When reading a packet
// from the connection, first call b.reset(). This empties b.data. Now perform reads
// through b.read() until the end of the packet is reached. The complete packet data is
// now available in b.data.
type readBuffer struct {
data []byte
end int
}
// reset removes all processed data which was read since the last call to reset.
// After reset, len(b.data) is zero.
func (b *readBuffer) reset() {
unprocessed := b.end - len(b.data)
copy(b.data[:unprocessed], b.data[len(b.data):b.end])
b.end = unprocessed
b.data = b.data[:0]
}
// read reads at least n bytes from r, returning the bytes.
// The returned slice is valid until the next call to reset.
func (b *readBuffer) read(r io.Reader, n int) ([]byte, error) {
offset := len(b.data)
have := b.end - len(b.data)
// If n bytes are available in the buffer, there is no need to read from r at all.
if have >= n {
b.data = b.data[:offset+n]
return b.data[offset : offset+n], nil
}
// Make buffer space available.
need := n - have
b.grow(need)
// Read.
rn, err := io.ReadAtLeast(r, b.data[b.end:cap(b.data)], need)
if err != nil {
return nil, err
}
b.end += rn
b.data = b.data[:offset+n]
return b.data[offset : offset+n], nil
}
// grow ensures the buffer has at least n bytes of unused space.
func (b *readBuffer) grow(n int) {
if cap(b.data)-b.end >= n {
return
}
need := n - (cap(b.data) - b.end)
offset := len(b.data)
b.data = append(b.data[:cap(b.data)], make([]byte, need)...)
b.data = b.data[:offset]
}
// writeBuffer implements buffering for network writes. This is essentially
// a convenience wrapper around a byte slice.
type writeBuffer struct {
data []byte
}
func (b *writeBuffer) reset() {
b.data = b.data[:0]
}
func (b *writeBuffer) appendZero(n int) []byte {
offset := len(b.data)
b.data = append(b.data, make([]byte, n)...)
return b.data[offset : offset+n]
}
func (b *writeBuffer) Write(data []byte) (int, error) {
b.data = append(b.data, data...)
return len(data), nil
}
const maxUint24 = int(^uint32(0) >> 8)
func readUint24(b []byte) uint32 {
return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
}
func putUint24(v uint32, b []byte) {
b[0] = byte(v >> 16)
b[1] = byte(v >> 8)
b[2] = byte(v)
}
// growslice ensures b has the wanted length by either expanding it to its capacity
// or allocating a new slice if b has insufficient capacity.
func growslice(b []byte, wantLength int) []byte {
if len(b) >= wantLength {
return b
}
if cap(b) >= wantLength {
return b[:cap(b)]
}
return make([]byte, wantLength)
}

51
p2p/rlpx/buffer_test.go Normal file
View File

@ -0,0 +1,51 @@
// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rlpx
import (
"bytes"
"testing"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/stretchr/testify/assert"
)
func TestReadBufferReset(t *testing.T) {
reader := bytes.NewReader(hexutil.MustDecode("0x010202030303040505"))
var b readBuffer
s1, _ := b.read(reader, 1)
s2, _ := b.read(reader, 2)
s3, _ := b.read(reader, 3)
assert.Equal(t, []byte{1}, s1)
assert.Equal(t, []byte{2, 2}, s2)
assert.Equal(t, []byte{3, 3, 3}, s3)
b.reset()
s4, _ := b.read(reader, 1)
s5, _ := b.read(reader, 2)
assert.Equal(t, []byte{4}, s4)
assert.Equal(t, []byte{5, 5}, s5)
s6, err := b.read(reader, 2)
assert.EqualError(t, err, "EOF")
assert.Nil(t, s6)
}

View File

@ -50,17 +50,43 @@ import (
type Conn struct {
dialDest *ecdsa.PublicKey
conn net.Conn
handshake *handshakeState
snappy bool
session *sessionState
// These are the buffers for snappy compression.
// Compression is enabled if they are non-nil.
snappyReadBuffer []byte
snappyWriteBuffer []byte
}
type handshakeState struct {
// sessionState contains the session keys.
type sessionState struct {
enc cipher.Stream
dec cipher.Stream
macCipher cipher.Block
egressMAC hash.Hash
ingressMAC hash.Hash
egressMAC hashMAC
ingressMAC hashMAC
rbuf readBuffer
wbuf writeBuffer
}
// hashMAC holds the state of the RLPx v4 MAC contraption.
type hashMAC struct {
cipher cipher.Block
hash hash.Hash
aesBuffer [16]byte
hashBuffer [32]byte
seedBuffer [32]byte
}
func newHashMAC(cipher cipher.Block, h hash.Hash) hashMAC {
m := hashMAC{cipher: cipher, hash: h}
if cipher.BlockSize() != len(m.aesBuffer) {
panic(fmt.Errorf("invalid MAC cipher block size %d", cipher.BlockSize()))
}
if h.Size() != len(m.hashBuffer) {
panic(fmt.Errorf("invalid MAC digest size %d", h.Size()))
}
return m
}
// NewConn wraps the given network connection. If dialDest is non-nil, the connection
@ -76,7 +102,13 @@ func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn {
// after the devp2p Hello message exchange when the negotiated version indicates that
// compression is available on both ends of the connection.
func (c *Conn) SetSnappy(snappy bool) {
c.snappy = snappy
if snappy {
c.snappyReadBuffer = []byte{}
c.snappyWriteBuffer = []byte{}
} else {
c.snappyReadBuffer = nil
c.snappyWriteBuffer = nil
}
}
// SetReadDeadline sets the deadline for all future read operations.
@ -95,12 +127,13 @@ func (c *Conn) SetDeadline(time time.Time) error {
}
// Read reads a message from the connection.
// The returned data buffer is valid until the next call to Read.
func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) {
if c.handshake == nil {
if c.session == nil {
panic("can't ReadMsg before handshake")
}
frame, err := c.handshake.readFrame(c.conn)
frame, err := c.session.readFrame(c.conn)
if err != nil {
return 0, nil, 0, err
}
@ -111,7 +144,7 @@ func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) {
wireSize = len(data)
// If snappy is enabled, verify and decompress message.
if c.snappy {
if c.snappyReadBuffer != nil {
var actualSize int
actualSize, err = snappy.DecodedLen(data)
if err != nil {
@ -120,51 +153,55 @@ func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) {
if actualSize > maxUint24 {
return code, nil, 0, errPlainMessageTooLarge
}
data, err = snappy.Decode(nil, data)
c.snappyReadBuffer = growslice(c.snappyReadBuffer, actualSize)
data, err = snappy.Decode(c.snappyReadBuffer, data)
}
return code, data, wireSize, err
}
func (h *handshakeState) readFrame(conn io.Reader) ([]byte, error) {
// read the header
headbuf := make([]byte, 32)
if _, err := io.ReadFull(conn, headbuf); err != nil {
func (h *sessionState) readFrame(conn io.Reader) ([]byte, error) {
h.rbuf.reset()
// Read the frame header.
header, err := h.rbuf.read(conn, 32)
if err != nil {
return nil, err
}
// verify header mac
shouldMAC := updateMAC(h.ingressMAC, h.macCipher, headbuf[:16])
if !hmac.Equal(shouldMAC, headbuf[16:]) {
// Verify header MAC.
wantHeaderMAC := h.ingressMAC.computeHeader(header[:16])
if !hmac.Equal(wantHeaderMAC, header[16:]) {
return nil, errors.New("bad header MAC")
}
h.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
fsize := readInt24(headbuf)
// ignore protocol type for now
// read the frame content
var rsize = fsize // frame size rounded up to 16 byte boundary
// Decrypt the frame header to get the frame size.
h.dec.XORKeyStream(header[:16], header[:16])
fsize := readUint24(header[:16])
// Frame size rounded up to 16 byte boundary for padding.
rsize := fsize
if padding := fsize % 16; padding > 0 {
rsize += 16 - padding
}
framebuf := make([]byte, rsize)
if _, err := io.ReadFull(conn, framebuf); err != nil {
// Read the frame content.
frame, err := h.rbuf.read(conn, int(rsize))
if err != nil {
return nil, err
}
// read and validate frame MAC. we can re-use headbuf for that.
h.ingressMAC.Write(framebuf)
fmacseed := h.ingressMAC.Sum(nil)
if _, err := io.ReadFull(conn, headbuf[:16]); err != nil {
// Validate frame MAC.
frameMAC, err := h.rbuf.read(conn, 16)
if err != nil {
return nil, err
}
shouldMAC = updateMAC(h.ingressMAC, h.macCipher, fmacseed)
if !hmac.Equal(shouldMAC, headbuf[:16]) {
wantFrameMAC := h.ingressMAC.computeFrame(frame)
if !hmac.Equal(wantFrameMAC, frameMAC) {
return nil, errors.New("bad frame MAC")
}
// decrypt frame content
h.dec.XORKeyStream(framebuf, framebuf)
return framebuf[:fsize], nil
// Decrypt the frame data.
h.dec.XORKeyStream(frame, frame)
return frame[:fsize], nil
}
// Write writes a message to the connection.
@ -172,83 +209,90 @@ func (h *handshakeState) readFrame(conn io.Reader) ([]byte, error) {
// Write returns the written size of the message data. This may be less than or equal to
// len(data) depending on whether snappy compression is enabled.
func (c *Conn) Write(code uint64, data []byte) (uint32, error) {
if c.handshake == nil {
if c.session == nil {
panic("can't WriteMsg before handshake")
}
if len(data) > maxUint24 {
return 0, errPlainMessageTooLarge
}
if c.snappy {
data = snappy.Encode(nil, data)
if c.snappyWriteBuffer != nil {
// Ensure the buffer has sufficient size.
// Package snappy will allocate its own buffer if the provided
// one is smaller than MaxEncodedLen.
c.snappyWriteBuffer = growslice(c.snappyWriteBuffer, snappy.MaxEncodedLen(len(data)))
data = snappy.Encode(c.snappyWriteBuffer, data)
}
wireSize := uint32(len(data))
err := c.handshake.writeFrame(c.conn, code, data)
err := c.session.writeFrame(c.conn, code, data)
return wireSize, err
}
func (h *handshakeState) writeFrame(conn io.Writer, code uint64, data []byte) error {
ptype, _ := rlp.EncodeToBytes(code)
func (h *sessionState) writeFrame(conn io.Writer, code uint64, data []byte) error {
h.wbuf.reset()
// write header
headbuf := make([]byte, 32)
fsize := len(ptype) + len(data)
// Write header.
fsize := rlp.IntSize(code) + len(data)
if fsize > maxUint24 {
return errPlainMessageTooLarge
}
putInt24(uint32(fsize), headbuf)
copy(headbuf[3:], zeroHeader)
h.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
header := h.wbuf.appendZero(16)
putUint24(uint32(fsize), header)
copy(header[3:], zeroHeader)
h.enc.XORKeyStream(header, header)
// write header MAC
copy(headbuf[16:], updateMAC(h.egressMAC, h.macCipher, headbuf[:16]))
if _, err := conn.Write(headbuf); err != nil {
return err
}
// Write header MAC.
h.wbuf.Write(h.egressMAC.computeHeader(header))
// write encrypted frame, updating the egress MAC hash with
// the data written to conn.
tee := cipher.StreamWriter{S: h.enc, W: io.MultiWriter(conn, h.egressMAC)}
if _, err := tee.Write(ptype); err != nil {
return err
}
if _, err := tee.Write(data); err != nil {
return err
}
// Encode and encrypt the frame data.
offset := len(h.wbuf.data)
h.wbuf.data = rlp.AppendUint64(h.wbuf.data, code)
h.wbuf.Write(data)
if padding := fsize % 16; padding > 0 {
if _, err := tee.Write(zero16[:16-padding]); err != nil {
return err
}
h.wbuf.appendZero(16 - padding)
}
framedata := h.wbuf.data[offset:]
h.enc.XORKeyStream(framedata, framedata)
// write frame MAC. egress MAC hash is up to date because
// frame content was written to it as well.
fmacseed := h.egressMAC.Sum(nil)
mac := updateMAC(h.egressMAC, h.macCipher, fmacseed)
_, err := conn.Write(mac)
// Write frame MAC.
h.wbuf.Write(h.egressMAC.computeFrame(framedata))
_, err := conn.Write(h.wbuf.data)
return err
}
func readInt24(b []byte) uint32 {
return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
// computeHeader computes the MAC of a frame header.
func (m *hashMAC) computeHeader(header []byte) []byte {
sum1 := m.hash.Sum(m.hashBuffer[:0])
return m.compute(sum1, header)
}
func putInt24(v uint32, b []byte) {
b[0] = byte(v >> 16)
b[1] = byte(v >> 8)
b[2] = byte(v)
// computeFrame computes the MAC of framedata.
func (m *hashMAC) computeFrame(framedata []byte) []byte {
m.hash.Write(framedata)
seed := m.hash.Sum(m.seedBuffer[:0])
return m.compute(seed, seed[:16])
}
// updateMAC reseeds the given hash with encrypted seed.
// it returns the first 16 bytes of the hash sum after seeding.
func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
aesbuf := make([]byte, aes.BlockSize)
block.Encrypt(aesbuf, mac.Sum(nil))
for i := range aesbuf {
aesbuf[i] ^= seed[i]
// compute computes the MAC of a 16-byte 'seed'.
//
// To do this, it encrypts the current value of the hash state, then XORs the ciphertext
// with seed. The obtained value is written back into the hash state and hash output is
// taken again. The first 16 bytes of the resulting sum are the MAC value.
//
// This MAC construction is a horrible, legacy thing.
func (m *hashMAC) compute(sum1, seed []byte) []byte {
if len(seed) != len(m.aesBuffer) {
panic("invalid MAC seed")
}
mac.Write(aesbuf)
return mac.Sum(nil)[:16]
m.cipher.Encrypt(m.aesBuffer[:], sum1)
for i := range m.aesBuffer {
m.aesBuffer[i] ^= seed[i]
}
m.hash.Write(m.aesBuffer[:])
sum2 := m.hash.Sum(m.hashBuffer[:0])
return sum2[:16]
}
// Handshake performs the handshake. This must be called before any data is written
@ -257,23 +301,26 @@ func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) {
var (
sec Secrets
err error
h handshakeState
)
if c.dialDest != nil {
sec, err = initiatorEncHandshake(c.conn, prv, c.dialDest)
sec, err = h.runInitiator(c.conn, prv, c.dialDest)
} else {
sec, err = receiverEncHandshake(c.conn, prv)
sec, err = h.runRecipient(c.conn, prv)
}
if err != nil {
return nil, err
}
c.InitWithSecrets(sec)
c.session.rbuf = h.rbuf
c.session.wbuf = h.wbuf
return sec.remote, err
}
// InitWithSecrets injects connection secrets as if a handshake had
// been performed. This cannot be called after the handshake.
func (c *Conn) InitWithSecrets(sec Secrets) {
if c.handshake != nil {
if c.session != nil {
panic("can't handshake twice")
}
macc, err := aes.NewCipher(sec.MAC)
@ -287,12 +334,11 @@ func (c *Conn) InitWithSecrets(sec Secrets) {
// we use an all-zeroes IV for AES because the key used
// for encryption is ephemeral.
iv := make([]byte, encc.BlockSize())
c.handshake = &handshakeState{
c.session = &sessionState{
enc: cipher.NewCTR(encc, iv),
dec: cipher.NewCTR(encc, iv),
macCipher: macc,
egressMAC: sec.EgressMAC,
ingressMAC: sec.IngressMAC,
egressMAC: newHashMAC(macc, sec.EgressMAC),
ingressMAC: newHashMAC(macc, sec.IngressMAC),
}
}
@ -303,28 +349,18 @@ func (c *Conn) Close() error {
// Constants for the handshake.
const (
maxUint24 = int(^uint32(0) >> 8)
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
sigLen = crypto.SignatureLength // elliptic S256
pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
shaLen = 32 // hash length (for nonce etc)
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
authRespLen = pubLen + shaLen + 1
eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake
encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply
)
var (
// this is used in place of actual frame header data.
// TODO: replace this when Msg contains the protocol type code.
zeroHeader = []byte{0xC2, 0x80, 0x80}
// sixteen zero bytes
zero16 = make([]byte, 16)
// errPlainMessageTooLarge is returned if a decompressed message length exceeds
// the allowed 24 bits (i.e. length >= 16MB).
@ -338,19 +374,20 @@ type Secrets struct {
remote *ecdsa.PublicKey
}
// encHandshake contains the state of the encryption handshake.
type encHandshake struct {
// handshakeState contains the state of the encryption handshake.
type handshakeState struct {
initiator bool
remote *ecies.PublicKey // remote-pubk
initNonce, respNonce []byte // nonce
randomPrivKey *ecies.PrivateKey // ecdhe-random
remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
rbuf readBuffer
wbuf writeBuffer
}
// RLPx v4 handshake auth (defined in EIP-8).
type authMsgV4 struct {
gotPlain bool // whether read packet had plain format.
Signature [sigLen]byte
InitiatorPubkey [pubLen]byte
Nonce [shaLen]byte
@ -370,17 +407,16 @@ type authRespV4 struct {
Rest []rlp.RawValue `rlp:"tail"`
}
// receiverEncHandshake negotiates a session token on conn.
// runRecipient negotiates a session token on conn.
// it should be called on the listening side of the connection.
//
// prv is the local client's private key.
func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) {
func (h *handshakeState) runRecipient(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) {
authMsg := new(authMsgV4)
authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn)
authPacket, err := h.readMsg(authMsg, prv, conn)
if err != nil {
return s, err
}
h := new(encHandshake)
if err := h.handleAuthMsg(authMsg, prv); err != nil {
return s, err
}
@ -389,22 +425,18 @@ func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets,
if err != nil {
return s, err
}
var authRespPacket []byte
if authMsg.gotPlain {
authRespPacket, err = authRespMsg.sealPlain(h)
} else {
authRespPacket, err = sealEIP8(authRespMsg, h)
}
authRespPacket, err := h.sealEIP8(authRespMsg)
if err != nil {
return s, err
}
if _, err = conn.Write(authRespPacket); err != nil {
return s, err
}
return h.secrets(authPacket, authRespPacket)
}
func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
func (h *handshakeState) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
// Import the remote identity.
rpub, err := importPublicKey(msg.InitiatorPubkey[:])
if err != nil {
@ -438,7 +470,7 @@ func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) erro
// secrets is called after the handshake is completed.
// It extracts the connection secrets from the handshake values.
func (h *encHandshake) secrets(auth, authResp []byte) (Secrets, error) {
func (h *handshakeState) secrets(auth, authResp []byte) (Secrets, error) {
ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
if err != nil {
return Secrets{}, err
@ -471,21 +503,23 @@ func (h *encHandshake) secrets(auth, authResp []byte) (Secrets, error) {
// staticSharedSecret returns the static shared secret, the result
// of key agreement between the local and remote static node key.
func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
func (h *handshakeState) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen)
}
// initiatorEncHandshake negotiates a session token on conn.
// runInitiator negotiates a session token on conn.
// it should be called on the dialing side of the connection.
//
// prv is the local client's private key.
func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) {
h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)}
func (h *handshakeState) runInitiator(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) {
h.initiator = true
h.remote = ecies.ImportECDSAPublic(remote)
authMsg, err := h.makeAuthMsg(prv)
if err != nil {
return s, err
}
authPacket, err := sealEIP8(authMsg, h)
authPacket, err := h.sealEIP8(authMsg)
if err != nil {
return s, err
}
@ -495,18 +529,19 @@ func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ec
}
authRespMsg := new(authRespV4)
authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
authRespPacket, err := h.readMsg(authRespMsg, prv, conn)
if err != nil {
return s, err
}
if err := h.handleAuthResp(authRespMsg); err != nil {
return s, err
}
return h.secrets(authPacket, authRespPacket)
}
// makeAuthMsg creates the initiator handshake message.
func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
func (h *handshakeState) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
// Generate random initiator nonce.
h.initNonce = make([]byte, shaLen)
_, err := rand.Read(h.initNonce)
@ -538,13 +573,13 @@ func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
return msg, nil
}
func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
func (h *handshakeState) handleAuthResp(msg *authRespV4) (err error) {
h.respNonce = msg.Nonce[:]
h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
return err
}
func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
func (h *handshakeState) makeAuthResp() (msg *authRespV4, err error) {
// Generate random nonce.
h.respNonce = make([]byte, shaLen)
if _, err = rand.Read(h.respNonce); err != nil {
@ -558,79 +593,51 @@ func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
return msg, nil
}
func (msg *authMsgV4) decodePlain(input []byte) {
n := copy(msg.Signature[:], input)
n += shaLen // skip sha3(initiator-ephemeral-pubk)
n += copy(msg.InitiatorPubkey[:], input[n:])
copy(msg.Nonce[:], input[n:])
msg.Version = 4
msg.gotPlain = true
}
// readMsg reads an encrypted handshake message, decoding it into msg.
func (h *handshakeState) readMsg(msg interface{}, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
h.rbuf.reset()
h.rbuf.grow(512)
func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) {
buf := make([]byte, authRespLen)
n := copy(buf, msg.RandomPubkey[:])
copy(buf[n:], msg.Nonce[:])
return ecies.Encrypt(rand.Reader, hs.remote, buf, nil, nil)
}
func (msg *authRespV4) decodePlain(input []byte) {
n := copy(msg.RandomPubkey[:], input)
copy(msg.Nonce[:], input[n:])
msg.Version = 4
}
var padSpace = make([]byte, 300)
func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) {
buf := new(bytes.Buffer)
if err := rlp.Encode(buf, msg); err != nil {
// Read the size prefix.
prefix, err := h.rbuf.read(r, 2)
if err != nil {
return nil, err
}
// pad with random amount of data. the amount needs to be at least 100 bytes to make
// the message distinguishable from pre-EIP-8 handshakes.
pad := padSpace[:mrand.Intn(len(padSpace)-100)+100]
buf.Write(pad)
prefix := make([]byte, 2)
binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead))
enc, err := ecies.Encrypt(rand.Reader, h.remote, buf.Bytes(), nil, prefix)
return append(prefix, enc...), err
}
type plainDecoder interface {
decodePlain([]byte)
}
func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
buf := make([]byte, plainSize)
if _, err := io.ReadFull(r, buf); err != nil {
return buf, err
}
// Attempt decoding pre-EIP-8 "plain" format.
key := ecies.ImportECDSA(prv)
if dec, err := key.Decrypt(buf, nil, nil); err == nil {
msg.decodePlain(dec)
return buf, nil
}
// Could be EIP-8 format, try that.
prefix := buf[:2]
size := binary.BigEndian.Uint16(prefix)
if size < uint16(plainSize) {
return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize)
}
buf = append(buf, make([]byte, size-uint16(plainSize)+2)...)
if _, err := io.ReadFull(r, buf[plainSize:]); err != nil {
return buf, err
}
dec, err := key.Decrypt(buf[2:], nil, prefix)
// Read the handshake packet.
packet, err := h.rbuf.read(r, int(size))
if err != nil {
return buf, err
return nil, err
}
dec, err := ecies.ImportECDSA(prv).Decrypt(packet, nil, prefix)
if err != nil {
return nil, err
}
// Can't use rlp.DecodeBytes here because it rejects
// trailing data (forward-compatibility).
s := rlp.NewStream(bytes.NewReader(dec), 0)
return buf, s.Decode(msg)
err = s.Decode(msg)
return h.rbuf.data[:len(prefix)+len(packet)], err
}
// sealEIP8 encrypts a handshake message.
func (h *handshakeState) sealEIP8(msg interface{}) ([]byte, error) {
h.wbuf.reset()
// Write the message plaintext.
if err := rlp.Encode(&h.wbuf, msg); err != nil {
return nil, err
}
// Pad with random amount of data. the amount needs to be at least 100 bytes to make
// the message distinguishable from pre-EIP-8 handshakes.
h.wbuf.appendZero(mrand.Intn(100) + 100)
prefix := make([]byte, 2)
binary.BigEndian.PutUint16(prefix, uint16(len(h.wbuf.data)+eciesOverhead))
enc, err := ecies.Encrypt(rand.Reader, h.remote, h.wbuf.data, nil, prefix)
return append(prefix, enc...), err
}
// importPublicKey unmarshals 512 bit public keys.

View File

@ -22,6 +22,7 @@ import (
"encoding/hex"
"fmt"
"io"
"math/rand"
"net"
"reflect"
"strings"
@ -30,6 +31,7 @@ import (
"github.com/davecgh/go-spew/spew"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/p2p/simulations/pipes"
"github.com/ethereum/go-ethereum/rlp"
"github.com/stretchr/testify/assert"
)
@ -124,7 +126,7 @@ func TestFrameReadWrite(t *testing.T) {
IngressMAC: hash,
EgressMAC: hash,
})
h := conn.handshake
h := conn.session
golden := unhex(`
00828ddae471818bb0bfa6b551d1cb42
@ -166,27 +168,11 @@ func (h fakeHash) Sum(b []byte) []byte { return append(b, h...) }
type handshakeAuthTest struct {
input string
isPlain bool
wantVersion uint
wantRest []rlp.RawValue
}
var eip8HandshakeAuthTests = []handshakeAuthTest{
// (Auth₁) RLPx v4 plain encoding
{
input: `
048ca79ad18e4b0659fab4853fe5bc58eb83992980f4c9cc147d2aa31532efd29a3d3dc6a3d89eaf
913150cfc777ce0ce4af2758bf4810235f6e6ceccfee1acc6b22c005e9e3a49d6448610a58e98744
ba3ac0399e82692d67c1f58849050b3024e21a52c9d3b01d871ff5f210817912773e610443a9ef14
2e91cdba0bd77b5fdf0769b05671fc35f83d83e4d3b0b000c6b2a1b1bba89e0fc51bf4e460df3105
c444f14be226458940d6061c296350937ffd5e3acaceeaaefd3c6f74be8e23e0f45163cc7ebd7622
0f0128410fd05250273156d548a414444ae2f7dea4dfca2d43c057adb701a715bf59f6fb66b2d1d2
0f2c703f851cbf5ac47396d9ca65b6260bd141ac4d53e2de585a73d1750780db4c9ee4cd4d225173
a4592ee77e2bd94d0be3691f3b406f9bba9b591fc63facc016bfa8
`,
isPlain: true,
wantVersion: 4,
},
// (Auth₂) EIP-8 encoding
{
input: `
@ -233,18 +219,6 @@ type handshakeAckTest struct {
}
var eip8HandshakeRespTests = []handshakeAckTest{
// (Ack₁) RLPx v4 plain encoding
{
input: `
049f8abcfa9c0dc65b982e98af921bc0ba6e4243169348a236abe9df5f93aa69d99cadddaa387662
b0ff2c08e9006d5a11a278b1b3331e5aaabf0a32f01281b6f4ede0e09a2d5f585b26513cb794d963
5a57563921c04a9090b4f14ee42be1a5461049af4ea7a7f49bf4c97a352d39c8d02ee4acc416388c
1c66cec761d2bc1c72da6ba143477f049c9d2dde846c252c111b904f630ac98e51609b3b1f58168d
dca6505b7196532e5f85b259a20c45e1979491683fee108e9660edbf38f3add489ae73e3dda2c71b
d1497113d5c755e942d1
`,
wantVersion: 4,
},
// (Ack₂) EIP-8 encoding
{
input: `
@ -287,10 +261,13 @@ var eip8HandshakeRespTests = []handshakeAckTest{
},
}
func TestHandshakeForwardCompatibility(t *testing.T) {
var (
keyA, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee")
keyB, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
)
func TestHandshakeForwardCompatibility(t *testing.T) {
var (
pubA = crypto.FromECDSAPub(&keyA.PublicKey)[1:]
pubB = crypto.FromECDSAPub(&keyB.PublicKey)[1:]
ephA, _ = crypto.HexToECDSA("869d6ecf5211f1cc60418a13b9d870b22959d0c16f02bec714c960dd2298a32d")
@ -304,7 +281,7 @@ func TestHandshakeForwardCompatibility(t *testing.T) {
_ = authSignature
)
makeAuth := func(test handshakeAuthTest) *authMsgV4 {
msg := &authMsgV4{Version: test.wantVersion, Rest: test.wantRest, gotPlain: test.isPlain}
msg := &authMsgV4{Version: test.wantVersion, Rest: test.wantRest}
copy(msg.Signature[:], authSignature)
copy(msg.InitiatorPubkey[:], pubA)
copy(msg.Nonce[:], nonceA)
@ -319,9 +296,10 @@ func TestHandshakeForwardCompatibility(t *testing.T) {
// check auth msg parsing
for _, test := range eip8HandshakeAuthTests {
var h handshakeState
r := bytes.NewReader(unhex(test.input))
msg := new(authMsgV4)
ciphertext, err := readHandshakeMsg(msg, encAuthMsgLen, keyB, r)
ciphertext, err := h.readMsg(msg, keyB, r)
if err != nil {
t.Errorf("error for input %x:\n %v", unhex(test.input), err)
continue
@ -337,10 +315,11 @@ func TestHandshakeForwardCompatibility(t *testing.T) {
// check auth resp parsing
for _, test := range eip8HandshakeRespTests {
var h handshakeState
input := unhex(test.input)
r := bytes.NewReader(input)
msg := new(authRespV4)
ciphertext, err := readHandshakeMsg(msg, encAuthRespLen, keyA, r)
ciphertext, err := h.readMsg(msg, keyA, r)
if err != nil {
t.Errorf("error for input %x:\n %v", input, err)
continue
@ -356,14 +335,14 @@ func TestHandshakeForwardCompatibility(t *testing.T) {
// check derivation for (Auth₂, Ack₂) on recipient side
var (
hs = &encHandshake{
hs = &handshakeState{
initiator: false,
respNonce: nonceB,
randomPrivKey: ecies.ImportECDSA(ephB),
}
authCiphertext = unhex(eip8HandshakeAuthTests[1].input)
authRespCiphertext = unhex(eip8HandshakeRespTests[1].input)
authMsg = makeAuth(eip8HandshakeAuthTests[1])
authCiphertext = unhex(eip8HandshakeAuthTests[0].input)
authRespCiphertext = unhex(eip8HandshakeRespTests[0].input)
authMsg = makeAuth(eip8HandshakeAuthTests[0])
wantAES = unhex("80e8632c05fed6fc2a13b0f8d31a3cf645366239170ea067065aba8e28bac487")
wantMAC = unhex("2ea74ec5dae199227dff1af715362700e989d889d7a493cb0639691efb8e5f98")
wantFooIngressHash = unhex("0c7ec6340062cc46f5e9f1e3cf86f8c8c403c5a0964f5df0ebd34a75ddc86db5")
@ -388,6 +367,74 @@ func TestHandshakeForwardCompatibility(t *testing.T) {
}
}
func BenchmarkHandshakeRead(b *testing.B) {
var input = unhex(eip8HandshakeAuthTests[0].input)
for i := 0; i < b.N; i++ {
var (
h handshakeState
r = bytes.NewReader(input)
msg = new(authMsgV4)
)
if _, err := h.readMsg(msg, keyB, r); err != nil {
b.Fatal(err)
}
}
}
func BenchmarkThroughput(b *testing.B) {
pipe1, pipe2, err := pipes.TCPPipe()
if err != nil {
b.Fatal(err)
}
var (
conn1, conn2 = NewConn(pipe1, nil), NewConn(pipe2, &keyA.PublicKey)
handshakeDone = make(chan error, 1)
msgdata = make([]byte, 1024)
rand = rand.New(rand.NewSource(1337))
)
rand.Read(msgdata)
// Server side.
go func() {
defer conn1.Close()
// Perform handshake.
_, err := conn1.Handshake(keyA)
handshakeDone <- err
if err != nil {
return
}
conn1.SetSnappy(true)
// Keep sending messages until connection closed.
for {
if _, err := conn1.Write(0, msgdata); err != nil {
return
}
}
}()
// Set up client side.
defer conn2.Close()
if _, err := conn2.Handshake(keyB); err != nil {
b.Fatal("client handshake error:", err)
}
conn2.SetSnappy(true)
if err := <-handshakeDone; err != nil {
b.Fatal("server hanshake error:", err)
}
// Read N messages.
b.SetBytes(int64(len(msgdata)))
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_, _, _, err := conn2.Read()
if err != nil {
b.Fatal("read error:", err)
}
}
}
func unhex(str string) []byte {
r := strings.NewReplacer("\t", "", " ", "", "\n", "")
b, err := hex.DecodeString(r.Replace(str))

View File

@ -25,6 +25,7 @@ import (
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/bitutil"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/p2p/rlpx"
@ -62,6 +63,10 @@ func (t *rlpxTransport) ReadMsg() (Msg, error) {
t.conn.SetReadDeadline(time.Now().Add(frameReadTimeout))
code, data, wireSize, err := t.conn.Read()
if err == nil {
// Protocol messages are dispatched to subprotocol handlers asynchronously,
// but package rlpx may reuse the returned 'data' buffer on the next call
// to Read. Copy the message data to avoid this being an issue.
data = common.CopyBytes(data)
msg = Msg{
ReceivedAt: time.Now(),
Code: code,

View File

@ -34,6 +34,14 @@ func ListSize(contentSize uint64) uint64 {
return uint64(headsize(contentSize)) + contentSize
}
// IntSize returns the encoded size of the integer x.
func IntSize(x uint64) int {
if x < 0x80 {
return 1
}
return 1 + intsize(x)
}
// Split returns the content of first RLP value and any
// bytes after the value as subslices of b.
func Split(b []byte) (k Kind, content, rest []byte, err error) {

View File

@ -263,6 +263,12 @@ func TestAppendUint64(t *testing.T) {
if !bytes.Equal(x, unhex(test.output)) {
t.Errorf("AppendUint64(%v, %d): got %x, want %s", test.slice, test.input, x, test.output)
}
// Check that IntSize returns the appended size.
length := len(x) - len(test.slice)
if s := IntSize(test.input); s != length {
t.Errorf("IntSize(%d): got %d, want %d", test.input, s, length)
}
}
}