typedef struct {
- uint32_t s[32];
+ uint32_t s[8];
uint32_t buf[16]; /* In big endian */
size_t bytes;
} secp256k1_sha256_t;
diff --git a/crypto/secp256k1/libsecp256k1/src/hash_impl.h b/crypto/secp256k1/libsecp256k1/src/hash_impl.h
index ae55df6d8..b47e65f83 100644
--- a/crypto/secp256k1/libsecp256k1/src/hash_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/hash_impl.h
@@ -269,15 +269,13 @@ static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256
rng->retry = 0;
}
-
+#undef BE32
#undef Round
-#undef sigma0
#undef sigma1
-#undef Sigma0
+#undef sigma0
#undef Sigma1
-#undef Ch
+#undef Sigma0
#undef Maj
-#undef ReadBE32
-#undef WriteBE32
+#undef Ch
#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java
index 90a498eaa..1c67802fb 100644
--- a/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java
+++ b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1.java
@@ -1,60 +1,446 @@
+/*
+ * Copyright 2013 Google Inc.
+ * Copyright 2014-2016 the libsecp256k1 contributors
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
package org.bitcoin;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
+import java.math.BigInteger;
import com.google.common.base.Preconditions;
-
+import java.util.concurrent.locks.Lock;
+import java.util.concurrent.locks.ReentrantReadWriteLock;
+import static org.bitcoin.NativeSecp256k1Util.*;
/**
- * This class holds native methods to handle ECDSA verification.
- * You can find an example library that can be used for this at
- * https://github.com/sipa/secp256k1
+ * This class holds native methods to handle ECDSA verification.
+ *
+ * You can find an example library that can be used for this at https://github.com/bitcoin/secp256k1
+ *
+ * To build secp256k1 for use with bitcoinj, run
+ * `./configure --enable-jni --enable-experimental --enable-module-ecdh`
+ * and `make` then copy `.libs/libsecp256k1.so` to your system library path
+ * or point the JVM to the folder containing it with -Djava.library.path
+ *
*/
public class NativeSecp256k1 {
- public static final boolean enabled;
- static {
- boolean isEnabled = true;
- try {
- System.loadLibrary("javasecp256k1");
- } catch (UnsatisfiedLinkError e) {
- isEnabled = false;
- }
- enabled = isEnabled;
- }
-
+
+ private static final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
+ private static final Lock r = rwl.readLock();
+ private static final Lock w = rwl.writeLock();
private static ThreadLocal nativeECDSABuffer = new ThreadLocal();
/**
* Verifies the given secp256k1 signature in native code.
* Calling when enabled == false is undefined (probably library not loaded)
- *
+ *
* @param data The data which was signed, must be exactly 32 bytes
* @param signature The signature
* @param pub The public key which did the signing
*/
- public static boolean verify(byte[] data, byte[] signature, byte[] pub) {
+ public static boolean verify(byte[] data, byte[] signature, byte[] pub) throws AssertFailException{
Preconditions.checkArgument(data.length == 32 && signature.length <= 520 && pub.length <= 520);
ByteBuffer byteBuff = nativeECDSABuffer.get();
- if (byteBuff == null) {
- byteBuff = ByteBuffer.allocateDirect(32 + 8 + 520 + 520);
+ if (byteBuff == null || byteBuff.capacity() < 520) {
+ byteBuff = ByteBuffer.allocateDirect(520);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
- byteBuff.putInt(signature.length);
- byteBuff.putInt(pub.length);
byteBuff.put(signature);
byteBuff.put(pub);
- return secp256k1_ecdsa_verify(byteBuff) == 1;
+
+ byte[][] retByteArray;
+
+ r.lock();
+ try {
+ return secp256k1_ecdsa_verify(byteBuff, Secp256k1Context.getContext(), signature.length, pub.length) == 1;
+ } finally {
+ r.unlock();
+ }
}
/**
- * @param byteBuff signature format is byte[32] data,
- * native-endian int signatureLength, native-endian int pubkeyLength,
- * byte[signatureLength] signature, byte[pubkeyLength] pub
- * @returns 1 for valid signature, anything else for invalid
+ * libsecp256k1 Create an ECDSA signature.
+ *
+ * @param data Message hash, 32 bytes
+ * @param key Secret key, 32 bytes
+ *
+ * Return values
+ * @param sig byte array of signature
*/
- private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff);
+ public static byte[] sign(byte[] data, byte[] sec) throws AssertFailException{
+ Preconditions.checkArgument(data.length == 32 && sec.length <= 32);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null || byteBuff.capacity() < 32 + 32) {
+ byteBuff = ByteBuffer.allocateDirect(32 + 32);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(data);
+ byteBuff.put(sec);
+
+ byte[][] retByteArray;
+
+ r.lock();
+ try {
+ retByteArray = secp256k1_ecdsa_sign(byteBuff, Secp256k1Context.getContext());
+ } finally {
+ r.unlock();
+ }
+
+ byte[] sigArr = retByteArray[0];
+ int sigLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
+ int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
+
+ assertEquals(sigArr.length, sigLen, "Got bad signature length.");
+
+ return retVal == 0 ? new byte[0] : sigArr;
+ }
+
+ /**
+ * libsecp256k1 Seckey Verify - returns 1 if valid, 0 if invalid
+ *
+ * @param seckey ECDSA Secret key, 32 bytes
+ */
+ public static boolean secKeyVerify(byte[] seckey) {
+ Preconditions.checkArgument(seckey.length == 32);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null || byteBuff.capacity() < seckey.length) {
+ byteBuff = ByteBuffer.allocateDirect(seckey.length);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(seckey);
+
+ r.lock();
+ try {
+ return secp256k1_ec_seckey_verify(byteBuff,Secp256k1Context.getContext()) == 1;
+ } finally {
+ r.unlock();
+ }
+ }
+
+
+ /**
+ * libsecp256k1 Compute Pubkey - computes public key from secret key
+ *
+ * @param seckey ECDSA Secret key, 32 bytes
+ *
+ * Return values
+ * @param pubkey ECDSA Public key, 33 or 65 bytes
+ */
+ //TODO add a 'compressed' arg
+ public static byte[] computePubkey(byte[] seckey) throws AssertFailException{
+ Preconditions.checkArgument(seckey.length == 32);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null || byteBuff.capacity() < seckey.length) {
+ byteBuff = ByteBuffer.allocateDirect(seckey.length);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(seckey);
+
+ byte[][] retByteArray;
+
+ r.lock();
+ try {
+ retByteArray = secp256k1_ec_pubkey_create(byteBuff, Secp256k1Context.getContext());
+ } finally {
+ r.unlock();
+ }
+
+ byte[] pubArr = retByteArray[0];
+ int pubLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
+ int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
+
+ assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
+
+ return retVal == 0 ? new byte[0]: pubArr;
+ }
+
+ /**
+ * libsecp256k1 Cleanup - This destroys the secp256k1 context object
+ * This should be called at the end of the program for proper cleanup of the context.
+ */
+ public static synchronized void cleanup() {
+ w.lock();
+ try {
+ secp256k1_destroy_context(Secp256k1Context.getContext());
+ } finally {
+ w.unlock();
+ }
+ }
+
+ public static long cloneContext() {
+ r.lock();
+ try {
+ return secp256k1_ctx_clone(Secp256k1Context.getContext());
+ } finally { r.unlock(); }
+ }
+
+ /**
+ * libsecp256k1 PrivKey Tweak-Mul - Tweak privkey by multiplying to it
+ *
+ * @param tweak some bytes to tweak with
+ * @param seckey 32-byte seckey
+ */
+ public static byte[] privKeyTweakMul(byte[] privkey, byte[] tweak) throws AssertFailException{
+ Preconditions.checkArgument(privkey.length == 32);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) {
+ byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(privkey);
+ byteBuff.put(tweak);
+
+ byte[][] retByteArray;
+ r.lock();
+ try {
+ retByteArray = secp256k1_privkey_tweak_mul(byteBuff,Secp256k1Context.getContext());
+ } finally {
+ r.unlock();
+ }
+
+ byte[] privArr = retByteArray[0];
+
+ int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
+ int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
+
+ assertEquals(privArr.length, privLen, "Got bad pubkey length.");
+
+ assertEquals(retVal, 1, "Failed return value check.");
+
+ return privArr;
+ }
+
+ /**
+ * libsecp256k1 PrivKey Tweak-Add - Tweak privkey by adding to it
+ *
+ * @param tweak some bytes to tweak with
+ * @param seckey 32-byte seckey
+ */
+ public static byte[] privKeyTweakAdd(byte[] privkey, byte[] tweak) throws AssertFailException{
+ Preconditions.checkArgument(privkey.length == 32);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) {
+ byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(privkey);
+ byteBuff.put(tweak);
+
+ byte[][] retByteArray;
+ r.lock();
+ try {
+ retByteArray = secp256k1_privkey_tweak_add(byteBuff,Secp256k1Context.getContext());
+ } finally {
+ r.unlock();
+ }
+
+ byte[] privArr = retByteArray[0];
+
+ int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
+ int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
+
+ assertEquals(privArr.length, privLen, "Got bad pubkey length.");
+
+ assertEquals(retVal, 1, "Failed return value check.");
+
+ return privArr;
+ }
+
+ /**
+ * libsecp256k1 PubKey Tweak-Add - Tweak pubkey by adding to it
+ *
+ * @param tweak some bytes to tweak with
+ * @param pubkey 32-byte seckey
+ */
+ public static byte[] pubKeyTweakAdd(byte[] pubkey, byte[] tweak) throws AssertFailException{
+ Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) {
+ byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(pubkey);
+ byteBuff.put(tweak);
+
+ byte[][] retByteArray;
+ r.lock();
+ try {
+ retByteArray = secp256k1_pubkey_tweak_add(byteBuff,Secp256k1Context.getContext(), pubkey.length);
+ } finally {
+ r.unlock();
+ }
+
+ byte[] pubArr = retByteArray[0];
+
+ int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
+ int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
+
+ assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
+
+ assertEquals(retVal, 1, "Failed return value check.");
+
+ return pubArr;
+ }
+
+ /**
+ * libsecp256k1 PubKey Tweak-Mul - Tweak pubkey by multiplying to it
+ *
+ * @param tweak some bytes to tweak with
+ * @param pubkey 32-byte seckey
+ */
+ public static byte[] pubKeyTweakMul(byte[] pubkey, byte[] tweak) throws AssertFailException{
+ Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) {
+ byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(pubkey);
+ byteBuff.put(tweak);
+
+ byte[][] retByteArray;
+ r.lock();
+ try {
+ retByteArray = secp256k1_pubkey_tweak_mul(byteBuff,Secp256k1Context.getContext(), pubkey.length);
+ } finally {
+ r.unlock();
+ }
+
+ byte[] pubArr = retByteArray[0];
+
+ int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
+ int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
+
+ assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
+
+ assertEquals(retVal, 1, "Failed return value check.");
+
+ return pubArr;
+ }
+
+ /**
+ * libsecp256k1 create ECDH secret - constant time ECDH calculation
+ *
+ * @param seckey byte array of secret key used in exponentiaion
+ * @param pubkey byte array of public key used in exponentiaion
+ */
+ public static byte[] createECDHSecret(byte[] seckey, byte[] pubkey) throws AssertFailException{
+ Preconditions.checkArgument(seckey.length <= 32 && pubkey.length <= 65);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null || byteBuff.capacity() < 32 + pubkey.length) {
+ byteBuff = ByteBuffer.allocateDirect(32 + pubkey.length);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(seckey);
+ byteBuff.put(pubkey);
+
+ byte[][] retByteArray;
+ r.lock();
+ try {
+ retByteArray = secp256k1_ecdh(byteBuff, Secp256k1Context.getContext(), pubkey.length);
+ } finally {
+ r.unlock();
+ }
+
+ byte[] resArr = retByteArray[0];
+ int retVal = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
+
+ assertEquals(resArr.length, 32, "Got bad result length.");
+ assertEquals(retVal, 1, "Failed return value check.");
+
+ return resArr;
+ }
+
+ /**
+ * libsecp256k1 randomize - updates the context randomization
+ *
+ * @param seed 32-byte random seed
+ */
+ public static synchronized boolean randomize(byte[] seed) throws AssertFailException{
+ Preconditions.checkArgument(seed.length == 32 || seed == null);
+
+ ByteBuffer byteBuff = nativeECDSABuffer.get();
+ if (byteBuff == null || byteBuff.capacity() < seed.length) {
+ byteBuff = ByteBuffer.allocateDirect(seed.length);
+ byteBuff.order(ByteOrder.nativeOrder());
+ nativeECDSABuffer.set(byteBuff);
+ }
+ byteBuff.rewind();
+ byteBuff.put(seed);
+
+ w.lock();
+ try {
+ return secp256k1_context_randomize(byteBuff, Secp256k1Context.getContext()) == 1;
+ } finally {
+ w.unlock();
+ }
+ }
+
+ private static native long secp256k1_ctx_clone(long context);
+
+ private static native int secp256k1_context_randomize(ByteBuffer byteBuff, long context);
+
+ private static native byte[][] secp256k1_privkey_tweak_add(ByteBuffer byteBuff, long context);
+
+ private static native byte[][] secp256k1_privkey_tweak_mul(ByteBuffer byteBuff, long context);
+
+ private static native byte[][] secp256k1_pubkey_tweak_add(ByteBuffer byteBuff, long context, int pubLen);
+
+ private static native byte[][] secp256k1_pubkey_tweak_mul(ByteBuffer byteBuff, long context, int pubLen);
+
+ private static native void secp256k1_destroy_context(long context);
+
+ private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff, long context, int sigLen, int pubLen);
+
+ private static native byte[][] secp256k1_ecdsa_sign(ByteBuffer byteBuff, long context);
+
+ private static native int secp256k1_ec_seckey_verify(ByteBuffer byteBuff, long context);
+
+ private static native byte[][] secp256k1_ec_pubkey_create(ByteBuffer byteBuff, long context);
+
+ private static native byte[][] secp256k1_ec_pubkey_parse(ByteBuffer byteBuff, long context, int inputLen);
+
+ private static native byte[][] secp256k1_ecdh(ByteBuffer byteBuff, long context, int inputLen);
+
}
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java
new file mode 100644
index 000000000..c00d08899
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Test.java
@@ -0,0 +1,226 @@
+package org.bitcoin;
+
+import com.google.common.io.BaseEncoding;
+import java.util.Arrays;
+import java.math.BigInteger;
+import javax.xml.bind.DatatypeConverter;
+import static org.bitcoin.NativeSecp256k1Util.*;
+
+/**
+ * This class holds test cases defined for testing this library.
+ */
+public class NativeSecp256k1Test {
+
+ //TODO improve comments/add more tests
+ /**
+ * This tests verify() for a valid signature
+ */
+ public static void testVerifyPos() throws AssertFailException{
+ boolean result = false;
+ byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
+ byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase());
+ byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
+
+ result = NativeSecp256k1.verify( data, sig, pub);
+ assertEquals( result, true , "testVerifyPos");
+ }
+
+ /**
+ * This tests verify() for a non-valid signature
+ */
+ public static void testVerifyNeg() throws AssertFailException{
+ boolean result = false;
+ byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A91".toLowerCase()); //sha256hash of "testing"
+ byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase());
+ byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
+
+ result = NativeSecp256k1.verify( data, sig, pub);
+ //System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
+ assertEquals( result, false , "testVerifyNeg");
+ }
+
+ /**
+ * This tests secret key verify() for a valid secretkey
+ */
+ public static void testSecKeyVerifyPos() throws AssertFailException{
+ boolean result = false;
+ byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
+
+ result = NativeSecp256k1.secKeyVerify( sec );
+ //System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
+ assertEquals( result, true , "testSecKeyVerifyPos");
+ }
+
+ /**
+ * This tests secret key verify() for a invalid secretkey
+ */
+ public static void testSecKeyVerifyNeg() throws AssertFailException{
+ boolean result = false;
+ byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
+
+ result = NativeSecp256k1.secKeyVerify( sec );
+ //System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
+ assertEquals( result, false , "testSecKeyVerifyNeg");
+ }
+
+ /**
+ * This tests public key create() for a valid secretkey
+ */
+ public static void testPubKeyCreatePos() throws AssertFailException{
+ byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
+
+ byte[] resultArr = NativeSecp256k1.computePubkey( sec);
+ String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
+ assertEquals( pubkeyString , "04C591A8FF19AC9C4E4E5793673B83123437E975285E7B442F4EE2654DFFCA5E2D2103ED494718C697AC9AEBCFD19612E224DB46661011863ED2FC54E71861E2A6" , "testPubKeyCreatePos");
+ }
+
+ /**
+ * This tests public key create() for a invalid secretkey
+ */
+ public static void testPubKeyCreateNeg() throws AssertFailException{
+ byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
+
+ byte[] resultArr = NativeSecp256k1.computePubkey( sec);
+ String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
+ assertEquals( pubkeyString, "" , "testPubKeyCreateNeg");
+ }
+
+ /**
+ * This tests sign() for a valid secretkey
+ */
+ public static void testSignPos() throws AssertFailException{
+
+ byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
+ byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
+
+ byte[] resultArr = NativeSecp256k1.sign(data, sec);
+ String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
+ assertEquals( sigString, "30440220182A108E1448DC8F1FB467D06A0F3BB8EA0533584CB954EF8DA112F1D60E39A202201C66F36DA211C087F3AF88B50EDF4F9BDAA6CF5FD6817E74DCA34DB12390C6E9" , "testSignPos");
+ }
+
+ /**
+ * This tests sign() for a invalid secretkey
+ */
+ public static void testSignNeg() throws AssertFailException{
+ byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
+ byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
+
+ byte[] resultArr = NativeSecp256k1.sign(data, sec);
+ String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
+ assertEquals( sigString, "" , "testSignNeg");
+ }
+
+ /**
+ * This tests private key tweak-add
+ */
+ public static void testPrivKeyTweakAdd_1() throws AssertFailException {
+ byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
+ byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
+
+ byte[] resultArr = NativeSecp256k1.privKeyTweakAdd( sec , data );
+ String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
+ assertEquals( sigString , "A168571E189E6F9A7E2D657A4B53AE99B909F7E712D1C23CED28093CD57C88F3" , "testPrivKeyAdd_1");
+ }
+
+ /**
+ * This tests private key tweak-mul
+ */
+ public static void testPrivKeyTweakMul_1() throws AssertFailException {
+ byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
+ byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
+
+ byte[] resultArr = NativeSecp256k1.privKeyTweakMul( sec , data );
+ String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
+ assertEquals( sigString , "97F8184235F101550F3C71C927507651BD3F1CDB4A5A33B8986ACF0DEE20FFFC" , "testPrivKeyMul_1");
+ }
+
+ /**
+ * This tests private key tweak-add uncompressed
+ */
+ public static void testPrivKeyTweakAdd_2() throws AssertFailException {
+ byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
+ byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
+
+ byte[] resultArr = NativeSecp256k1.pubKeyTweakAdd( pub , data );
+ String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
+ assertEquals( sigString , "0411C6790F4B663CCE607BAAE08C43557EDC1A4D11D88DFCB3D841D0C6A941AF525A268E2A863C148555C48FB5FBA368E88718A46E205FABC3DBA2CCFFAB0796EF" , "testPrivKeyAdd_2");
+ }
+
+ /**
+ * This tests private key tweak-mul uncompressed
+ */
+ public static void testPrivKeyTweakMul_2() throws AssertFailException {
+ byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
+ byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
+
+ byte[] resultArr = NativeSecp256k1.pubKeyTweakMul( pub , data );
+ String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
+ assertEquals( sigString , "04E0FE6FE55EBCA626B98A807F6CAF654139E14E5E3698F01A9A658E21DC1D2791EC060D4F412A794D5370F672BC94B722640B5F76914151CFCA6E712CA48CC589" , "testPrivKeyMul_2");
+ }
+
+ /**
+ * This tests seed randomization
+ */
+ public static void testRandomize() throws AssertFailException {
+ byte[] seed = BaseEncoding.base16().lowerCase().decode("A441B15FE9A3CF56661190A0B93B9DEC7D04127288CC87250967CF3B52894D11".toLowerCase()); //sha256hash of "random"
+ boolean result = NativeSecp256k1.randomize(seed);
+ assertEquals( result, true, "testRandomize");
+ }
+
+ public static void testCreateECDHSecret() throws AssertFailException{
+
+ byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
+ byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
+
+ byte[] resultArr = NativeSecp256k1.createECDHSecret(sec, pub);
+ String ecdhString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
+ assertEquals( ecdhString, "2A2A67007A926E6594AF3EB564FC74005B37A9C8AEF2033C4552051B5C87F043" , "testCreateECDHSecret");
+ }
+
+ public static void main(String[] args) throws AssertFailException{
+
+
+ System.out.println("\n libsecp256k1 enabled: " + Secp256k1Context.isEnabled() + "\n");
+
+ assertEquals( Secp256k1Context.isEnabled(), true, "isEnabled" );
+
+ //Test verify() success/fail
+ testVerifyPos();
+ testVerifyNeg();
+
+ //Test secKeyVerify() success/fail
+ testSecKeyVerifyPos();
+ testSecKeyVerifyNeg();
+
+ //Test computePubkey() success/fail
+ testPubKeyCreatePos();
+ testPubKeyCreateNeg();
+
+ //Test sign() success/fail
+ testSignPos();
+ testSignNeg();
+
+ //Test privKeyTweakAdd() 1
+ testPrivKeyTweakAdd_1();
+
+ //Test privKeyTweakMul() 2
+ testPrivKeyTweakMul_1();
+
+ //Test privKeyTweakAdd() 3
+ testPrivKeyTweakAdd_2();
+
+ //Test privKeyTweakMul() 4
+ testPrivKeyTweakMul_2();
+
+ //Test randomize()
+ testRandomize();
+
+ //Test ECDH
+ testCreateECDHSecret();
+
+ NativeSecp256k1.cleanup();
+
+ System.out.println(" All tests passed." );
+
+ }
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Util.java b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Util.java
new file mode 100644
index 000000000..04732ba04
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/NativeSecp256k1Util.java
@@ -0,0 +1,45 @@
+/*
+ * Copyright 2014-2016 the libsecp256k1 contributors
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.bitcoin;
+
+public class NativeSecp256k1Util{
+
+ public static void assertEquals( int val, int val2, String message ) throws AssertFailException{
+ if( val != val2 )
+ throw new AssertFailException("FAIL: " + message);
+ }
+
+ public static void assertEquals( boolean val, boolean val2, String message ) throws AssertFailException{
+ if( val != val2 )
+ throw new AssertFailException("FAIL: " + message);
+ else
+ System.out.println("PASS: " + message);
+ }
+
+ public static void assertEquals( String val, String val2, String message ) throws AssertFailException{
+ if( !val.equals(val2) )
+ throw new AssertFailException("FAIL: " + message);
+ else
+ System.out.println("PASS: " + message);
+ }
+
+ public static class AssertFailException extends Exception {
+ public AssertFailException(String message) {
+ super( message );
+ }
+ }
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/Secp256k1Context.java b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/Secp256k1Context.java
new file mode 100644
index 000000000..216c986a8
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/java/org/bitcoin/Secp256k1Context.java
@@ -0,0 +1,51 @@
+/*
+ * Copyright 2014-2016 the libsecp256k1 contributors
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.bitcoin;
+
+/**
+ * This class holds the context reference used in native methods
+ * to handle ECDSA operations.
+ */
+public class Secp256k1Context {
+ private static final boolean enabled; //true if the library is loaded
+ private static final long context; //ref to pointer to context obj
+
+ static { //static initializer
+ boolean isEnabled = true;
+ long contextRef = -1;
+ try {
+ System.loadLibrary("secp256k1");
+ contextRef = secp256k1_init_context();
+ } catch (UnsatisfiedLinkError e) {
+ System.out.println("UnsatisfiedLinkError: " + e.toString());
+ isEnabled = false;
+ }
+ enabled = isEnabled;
+ context = contextRef;
+ }
+
+ public static boolean isEnabled() {
+ return enabled;
+ }
+
+ public static long getContext() {
+ if(!enabled) return -1; //sanity check
+ return context;
+ }
+
+ private static native long secp256k1_init_context();
+}
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c
index bb4cd7072..bcef7b32c 100644
--- a/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c
+++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.c
@@ -1,23 +1,377 @@
+#include
+#include
+#include
#include "org_bitcoin_NativeSecp256k1.h"
#include "include/secp256k1.h"
+#include "include/secp256k1_ecdh.h"
+#include "include/secp256k1_recovery.h"
-JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
- (JNIEnv* env, jclass classObject, jobject byteBufferObject)
+
+SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone
+ (JNIEnv* env, jclass classObject, jlong ctx_l)
{
- unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
- int sigLen = *((int*)(data + 32));
- int pubLen = *((int*)(data + 32 + 4));
+ const secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+
+ jlong ctx_clone_l = (uintptr_t) secp256k1_context_clone(ctx);
+
+ (void)classObject;(void)env;
+
+ return ctx_clone_l;
- return secp256k1_ecdsa_verify(data, 32, data+32+8, sigLen, data+32+8+sigLen, pubLen);
}
-static void __javasecp256k1_attach(void) __attribute__((constructor));
-static void __javasecp256k1_detach(void) __attribute__((destructor));
+SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+
+ const unsigned char* seed = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
+
+ (void)classObject;
+
+ return secp256k1_context_randomize(ctx, seed);
-static void __javasecp256k1_attach(void) {
- secp256k1_start(SECP256K1_START_VERIFY);
}
-static void __javasecp256k1_detach(void) {
- secp256k1_stop();
+SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context
+ (JNIEnv* env, jclass classObject, jlong ctx_l)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+
+ secp256k1_context_destroy(ctx);
+
+ (void)classObject;(void)env;
+}
+
+SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint siglen, jint publen)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+
+ unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
+ const unsigned char* sigdata = { (unsigned char*) (data + 32) };
+ const unsigned char* pubdata = { (unsigned char*) (data + siglen + 32) };
+
+ secp256k1_ecdsa_signature sig;
+ secp256k1_pubkey pubkey;
+
+ int ret = secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigdata, siglen);
+
+ if( ret ) {
+ ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen);
+
+ if( ret ) {
+ ret = secp256k1_ecdsa_verify(ctx, &sig, data, &pubkey);
+ }
+ }
+
+ (void)classObject;
+
+ return ret;
+}
+
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+ unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
+ unsigned char* secKey = (unsigned char*) (data + 32);
+
+ jobjectArray retArray;
+ jbyteArray sigArray, intsByteArray;
+ unsigned char intsarray[2];
+
+ secp256k1_ecdsa_signature sig[72];
+
+ int ret = secp256k1_ecdsa_sign(ctx, sig, data, secKey, NULL, NULL );
+
+ unsigned char outputSer[72];
+ size_t outputLen = 72;
+
+ if( ret ) {
+ int ret2 = secp256k1_ecdsa_signature_serialize_der(ctx,outputSer, &outputLen, sig ); (void)ret2;
+ }
+
+ intsarray[0] = outputLen;
+ intsarray[1] = ret;
+
+ retArray = (*env)->NewObjectArray(env, 2,
+ (*env)->FindClass(env, "[B"),
+ (*env)->NewByteArray(env, 1));
+
+ sigArray = (*env)->NewByteArray(env, outputLen);
+ (*env)->SetByteArrayRegion(env, sigArray, 0, outputLen, (jbyte*)outputSer);
+ (*env)->SetObjectArrayElement(env, retArray, 0, sigArray);
+
+ intsByteArray = (*env)->NewByteArray(env, 2);
+ (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
+ (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
+
+ (void)classObject;
+
+ return retArray;
+}
+
+SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+ unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
+
+ (void)classObject;
+
+ return secp256k1_ec_seckey_verify(ctx, secKey);
+}
+
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+ const unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
+
+ secp256k1_pubkey pubkey;
+
+ jobjectArray retArray;
+ jbyteArray pubkeyArray, intsByteArray;
+ unsigned char intsarray[2];
+
+ int ret = secp256k1_ec_pubkey_create(ctx, &pubkey, secKey);
+
+ unsigned char outputSer[65];
+ size_t outputLen = 65;
+
+ if( ret ) {
+ int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
+ }
+
+ intsarray[0] = outputLen;
+ intsarray[1] = ret;
+
+ retArray = (*env)->NewObjectArray(env, 2,
+ (*env)->FindClass(env, "[B"),
+ (*env)->NewByteArray(env, 1));
+
+ pubkeyArray = (*env)->NewByteArray(env, outputLen);
+ (*env)->SetByteArrayRegion(env, pubkeyArray, 0, outputLen, (jbyte*)outputSer);
+ (*env)->SetObjectArrayElement(env, retArray, 0, pubkeyArray);
+
+ intsByteArray = (*env)->NewByteArray(env, 2);
+ (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
+ (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
+
+ (void)classObject;
+
+ return retArray;
+
+}
+
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+ unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
+ const unsigned char* tweak = (unsigned char*) (privkey + 32);
+
+ jobjectArray retArray;
+ jbyteArray privArray, intsByteArray;
+ unsigned char intsarray[2];
+
+ int privkeylen = 32;
+
+ int ret = secp256k1_ec_privkey_tweak_add(ctx, privkey, tweak);
+
+ intsarray[0] = privkeylen;
+ intsarray[1] = ret;
+
+ retArray = (*env)->NewObjectArray(env, 2,
+ (*env)->FindClass(env, "[B"),
+ (*env)->NewByteArray(env, 1));
+
+ privArray = (*env)->NewByteArray(env, privkeylen);
+ (*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey);
+ (*env)->SetObjectArrayElement(env, retArray, 0, privArray);
+
+ intsByteArray = (*env)->NewByteArray(env, 2);
+ (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
+ (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
+
+ (void)classObject;
+
+ return retArray;
+}
+
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+ unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
+ const unsigned char* tweak = (unsigned char*) (privkey + 32);
+
+ jobjectArray retArray;
+ jbyteArray privArray, intsByteArray;
+ unsigned char intsarray[2];
+
+ int privkeylen = 32;
+
+ int ret = secp256k1_ec_privkey_tweak_mul(ctx, privkey, tweak);
+
+ intsarray[0] = privkeylen;
+ intsarray[1] = ret;
+
+ retArray = (*env)->NewObjectArray(env, 2,
+ (*env)->FindClass(env, "[B"),
+ (*env)->NewByteArray(env, 1));
+
+ privArray = (*env)->NewByteArray(env, privkeylen);
+ (*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey);
+ (*env)->SetObjectArrayElement(env, retArray, 0, privArray);
+
+ intsByteArray = (*env)->NewByteArray(env, 2);
+ (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
+ (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
+
+ (void)classObject;
+
+ return retArray;
+}
+
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+/* secp256k1_pubkey* pubkey = (secp256k1_pubkey*) (*env)->GetDirectBufferAddress(env, byteBufferObject);*/
+ unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject);
+ const unsigned char* tweak = (unsigned char*) (pkey + publen);
+
+ jobjectArray retArray;
+ jbyteArray pubArray, intsByteArray;
+ unsigned char intsarray[2];
+ unsigned char outputSer[65];
+ size_t outputLen = 65;
+
+ secp256k1_pubkey pubkey;
+ int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen);
+
+ if( ret ) {
+ ret = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, tweak);
+ }
+
+ if( ret ) {
+ int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
+ }
+
+ intsarray[0] = outputLen;
+ intsarray[1] = ret;
+
+ retArray = (*env)->NewObjectArray(env, 2,
+ (*env)->FindClass(env, "[B"),
+ (*env)->NewByteArray(env, 1));
+
+ pubArray = (*env)->NewByteArray(env, outputLen);
+ (*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer);
+ (*env)->SetObjectArrayElement(env, retArray, 0, pubArray);
+
+ intsByteArray = (*env)->NewByteArray(env, 2);
+ (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
+ (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
+
+ (void)classObject;
+
+ return retArray;
+}
+
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+ unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject);
+ const unsigned char* tweak = (unsigned char*) (pkey + publen);
+
+ jobjectArray retArray;
+ jbyteArray pubArray, intsByteArray;
+ unsigned char intsarray[2];
+ unsigned char outputSer[65];
+ size_t outputLen = 65;
+
+ secp256k1_pubkey pubkey;
+ int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen);
+
+ if ( ret ) {
+ ret = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, tweak);
+ }
+
+ if( ret ) {
+ int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
+ }
+
+ intsarray[0] = outputLen;
+ intsarray[1] = ret;
+
+ retArray = (*env)->NewObjectArray(env, 2,
+ (*env)->FindClass(env, "[B"),
+ (*env)->NewByteArray(env, 1));
+
+ pubArray = (*env)->NewByteArray(env, outputLen);
+ (*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer);
+ (*env)->SetObjectArrayElement(env, retArray, 0, pubArray);
+
+ intsByteArray = (*env)->NewByteArray(env, 2);
+ (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
+ (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
+
+ (void)classObject;
+
+ return retArray;
+}
+
+SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1pubkey_1combine
+ (JNIEnv * env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint numkeys)
+{
+ (void)classObject;(void)env;(void)byteBufferObject;(void)ctx_l;(void)numkeys;
+
+ return 0;
+}
+
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
+{
+ secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
+ const unsigned char* secdata = (*env)->GetDirectBufferAddress(env, byteBufferObject);
+ const unsigned char* pubdata = (const unsigned char*) (secdata + 32);
+
+ jobjectArray retArray;
+ jbyteArray outArray, intsByteArray;
+ unsigned char intsarray[1];
+ secp256k1_pubkey pubkey;
+ unsigned char nonce_res[32];
+ size_t outputLen = 32;
+
+ int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen);
+
+ if (ret) {
+ ret = secp256k1_ecdh(
+ ctx,
+ nonce_res,
+ &pubkey,
+ secdata
+ );
+ }
+
+ intsarray[0] = ret;
+
+ retArray = (*env)->NewObjectArray(env, 2,
+ (*env)->FindClass(env, "[B"),
+ (*env)->NewByteArray(env, 1));
+
+ outArray = (*env)->NewByteArray(env, outputLen);
+ (*env)->SetByteArrayRegion(env, outArray, 0, 32, (jbyte*)nonce_res);
+ (*env)->SetObjectArrayElement(env, retArray, 0, outArray);
+
+ intsByteArray = (*env)->NewByteArray(env, 1);
+ (*env)->SetByteArrayRegion(env, intsByteArray, 0, 1, (jbyte*)intsarray);
+ (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
+
+ (void)classObject;
+
+ return retArray;
}
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h
index d7fb004fa..fe613c9e9 100644
--- a/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h
+++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_NativeSecp256k1.h
@@ -1,5 +1,6 @@
/* DO NOT EDIT THIS FILE - it is machine generated */
#include
+#include "include/secp256k1.h"
/* Header for class org_bitcoin_NativeSecp256k1 */
#ifndef _Included_org_bitcoin_NativeSecp256k1
@@ -9,11 +10,108 @@ extern "C" {
#endif
/*
* Class: org_bitcoin_NativeSecp256k1
- * Method: secp256k1_ecdsa_verify
- * Signature: (Ljava/nio/ByteBuffer;)I
+ * Method: secp256k1_ctx_clone
+ * Signature: (J)J
*/
-JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
- (JNIEnv *, jclass, jobject);
+SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone
+ (JNIEnv *, jclass, jlong);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_context_randomize
+ * Signature: (Ljava/nio/ByteBuffer;J)I
+ */
+SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize
+ (JNIEnv *, jclass, jobject, jlong);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_privkey_tweak_add
+ * Signature: (Ljava/nio/ByteBuffer;J)[[B
+ */
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add
+ (JNIEnv *, jclass, jobject, jlong);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_privkey_tweak_mul
+ * Signature: (Ljava/nio/ByteBuffer;J)[[B
+ */
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul
+ (JNIEnv *, jclass, jobject, jlong);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_pubkey_tweak_add
+ * Signature: (Ljava/nio/ByteBuffer;JI)[[B
+ */
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add
+ (JNIEnv *, jclass, jobject, jlong, jint);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_pubkey_tweak_mul
+ * Signature: (Ljava/nio/ByteBuffer;JI)[[B
+ */
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul
+ (JNIEnv *, jclass, jobject, jlong, jint);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_destroy_context
+ * Signature: (J)V
+ */
+SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context
+ (JNIEnv *, jclass, jlong);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_ecdsa_verify
+ * Signature: (Ljava/nio/ByteBuffer;JII)I
+ */
+SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
+ (JNIEnv *, jclass, jobject, jlong, jint, jint);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_ecdsa_sign
+ * Signature: (Ljava/nio/ByteBuffer;J)[[B
+ */
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign
+ (JNIEnv *, jclass, jobject, jlong);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_ec_seckey_verify
+ * Signature: (Ljava/nio/ByteBuffer;J)I
+ */
+SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify
+ (JNIEnv *, jclass, jobject, jlong);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_ec_pubkey_create
+ * Signature: (Ljava/nio/ByteBuffer;J)[[B
+ */
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create
+ (JNIEnv *, jclass, jobject, jlong);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_ec_pubkey_parse
+ * Signature: (Ljava/nio/ByteBuffer;JI)[[B
+ */
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1parse
+ (JNIEnv *, jclass, jobject, jlong, jint);
+
+/*
+ * Class: org_bitcoin_NativeSecp256k1
+ * Method: secp256k1_ecdh
+ * Signature: (Ljava/nio/ByteBuffer;JI)[[B
+ */
+SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh
+ (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen);
+
#ifdef __cplusplus
}
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.c b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.c
new file mode 100644
index 000000000..a52939e7e
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.c
@@ -0,0 +1,15 @@
+#include
+#include
+#include "org_bitcoin_Secp256k1Context.h"
+#include "include/secp256k1.h"
+
+SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context
+ (JNIEnv* env, jclass classObject)
+{
+ secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+
+ (void)classObject;(void)env;
+
+ return (uintptr_t)ctx;
+}
+
diff --git a/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.h b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.h
new file mode 100644
index 000000000..0d2bc84b7
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/java/org_bitcoin_Secp256k1Context.h
@@ -0,0 +1,22 @@
+/* DO NOT EDIT THIS FILE - it is machine generated */
+#include
+#include "include/secp256k1.h"
+/* Header for class org_bitcoin_Secp256k1Context */
+
+#ifndef _Included_org_bitcoin_Secp256k1Context
+#define _Included_org_bitcoin_Secp256k1Context
+#ifdef __cplusplus
+extern "C" {
+#endif
+/*
+ * Class: org_bitcoin_Secp256k1Context
+ * Method: secp256k1_init_context
+ * Signature: ()J
+ */
+SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context
+ (JNIEnv *, jclass);
+
+#ifdef __cplusplus
+}
+#endif
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include
index 8ef3aff92..e3088b469 100644
--- a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include
+++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/Makefile.am.include
@@ -4,6 +4,5 @@ noinst_HEADERS += src/modules/ecdh/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_ecdh
bench_ecdh_SOURCES = src/bench_ecdh.c
-bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS)
-bench_ecdh_LDFLAGS = -static
+bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h
index c23e4f82f..9e30fb73d 100644
--- a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/main_impl.h
@@ -16,10 +16,10 @@ int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const se
secp256k1_gej res;
secp256k1_ge pt;
secp256k1_scalar s;
+ VERIFY_CHECK(ctx != NULL);
ARG_CHECK(result != NULL);
ARG_CHECK(point != NULL);
ARG_CHECK(scalar != NULL);
- (void)ctx;
secp256k1_pubkey_load(ctx, &pt, point);
secp256k1_scalar_set_b32(&s, scalar, &overflow);
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h
index 7badc9033..85a5d0a9a 100644
--- a/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/modules/ecdh/tests_impl.h
@@ -7,6 +7,35 @@
#ifndef _SECP256K1_MODULE_ECDH_TESTS_
#define _SECP256K1_MODULE_ECDH_TESTS_
+void test_ecdh_api(void) {
+ /* Setup context that just counts errors */
+ secp256k1_context *tctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ secp256k1_pubkey point;
+ unsigned char res[32];
+ unsigned char s_one[32] = { 0 };
+ int32_t ecount = 0;
+ s_one[31] = 1;
+
+ secp256k1_context_set_error_callback(tctx, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(tctx, counting_illegal_callback_fn, &ecount);
+ CHECK(secp256k1_ec_pubkey_create(tctx, &point, s_one) == 1);
+
+ /* Check all NULLs are detected */
+ CHECK(secp256k1_ecdh(tctx, res, &point, s_one) == 1);
+ CHECK(ecount == 0);
+ CHECK(secp256k1_ecdh(tctx, NULL, &point, s_one) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ecdh(tctx, res, NULL, s_one) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdh(tctx, res, &point, NULL) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_ecdh(tctx, res, &point, s_one) == 1);
+ CHECK(ecount == 3);
+
+ /* Cleanup */
+ secp256k1_context_destroy(tctx);
+}
+
void test_ecdh_generator_basepoint(void) {
unsigned char s_one[32] = { 0 };
secp256k1_pubkey point[2];
@@ -68,6 +97,7 @@ void test_bad_scalar(void) {
}
void run_ecdh_tests(void) {
+ test_ecdh_api();
test_ecdh_generator_basepoint();
test_bad_scalar();
}
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include
index 754469eeb..bf23c26e7 100644
--- a/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include
+++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/Makefile.am.include
@@ -4,6 +4,5 @@ noinst_HEADERS += src/modules/recovery/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_recover
bench_recover_SOURCES = src/bench_recover.c
-bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS)
-bench_recover_LDFLAGS = -static
+bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h
old mode 100644
new mode 100755
index 75b695894..c6fbe2398
--- a/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/main_impl.h
@@ -63,6 +63,7 @@ int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_cont
(void)ctx;
ARG_CHECK(output64 != NULL);
ARG_CHECK(sig != NULL);
+ ARG_CHECK(recid != NULL);
secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, recid, sig);
secp256k1_scalar_get_b32(&output64[0], &r);
@@ -83,6 +84,42 @@ int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context* ctx,
return 1;
}
+static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) {
+ unsigned char brx[32];
+ secp256k1_fe fx;
+ secp256k1_ge x;
+ secp256k1_gej xj;
+ secp256k1_scalar rn, u1, u2;
+ secp256k1_gej qj;
+ int r;
+
+ if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
+ return 0;
+ }
+
+ secp256k1_scalar_get_b32(brx, sigr);
+ r = secp256k1_fe_set_b32(&fx, brx);
+ (void)r;
+ VERIFY_CHECK(r); /* brx comes from a scalar, so is less than the order; certainly less than p */
+ if (recid & 2) {
+ if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
+ return 0;
+ }
+ secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe);
+ }
+ if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) {
+ return 0;
+ }
+ secp256k1_gej_set_ge(&xj, &x);
+ secp256k1_scalar_inverse_var(&rn, sigr);
+ secp256k1_scalar_mul(&u1, &rn, message);
+ secp256k1_scalar_negate(&u1, &u1);
+ secp256k1_scalar_mul(&u2, &rn, sigs);
+ secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
+ secp256k1_ge_set_gej_var(pubkey, &qj);
+ return !secp256k1_gej_is_infinity(&qj);
+}
+
int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
secp256k1_scalar r, s;
secp256k1_scalar sec, non, msg;
@@ -101,16 +138,15 @@ int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecd
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
/* Fail if the secret key is invalid. */
if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
+ unsigned char nonce32[32];
unsigned int count = 0;
secp256k1_scalar_set_b32(&msg, msg32, NULL);
while (1) {
- unsigned char nonce32[32];
- ret = noncefp(nonce32, seckey, msg32, NULL, (void*)noncedata, count);
+ ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count);
if (!ret) {
break;
}
secp256k1_scalar_set_b32(&non, nonce32, &overflow);
- memset(nonce32, 0, 32);
if (!secp256k1_scalar_is_zero(&non) && !overflow) {
if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, &recid)) {
break;
@@ -118,6 +154,7 @@ int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecd
}
count++;
}
+ memset(nonce32, 0, 32);
secp256k1_scalar_clear(&msg);
secp256k1_scalar_clear(&non);
secp256k1_scalar_clear(&sec);
@@ -142,7 +179,7 @@ int secp256k1_ecdsa_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubk
ARG_CHECK(pubkey != NULL);
secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, signature);
- ARG_CHECK(recid >= 0 && recid < 4);
+ VERIFY_CHECK(recid >= 0 && recid < 4); /* should have been caught in parse_compact */
secp256k1_scalar_set_b32(&m, msg32, NULL);
if (secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &r, &s, &q, &m, recid)) {
secp256k1_pubkey_save(pubkey, &q);
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h
index 5a78fae92..765c7dd81 100644
--- a/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/modules/recovery/tests_impl.h
@@ -7,6 +7,146 @@
#ifndef _SECP256K1_MODULE_RECOVERY_TESTS_
#define _SECP256K1_MODULE_RECOVERY_TESTS_
+static int recovery_test_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
+ (void) msg32;
+ (void) key32;
+ (void) algo16;
+ (void) data;
+
+ /* On the first run, return 0 to force a second run */
+ if (counter == 0) {
+ memset(nonce32, 0, 32);
+ return 1;
+ }
+ /* On the second run, return an overflow to force a third run */
+ if (counter == 1) {
+ memset(nonce32, 0xff, 32);
+ return 1;
+ }
+ /* On the next run, return a valid nonce, but flip a coin as to whether or not to fail signing. */
+ memset(nonce32, 1, 32);
+ return secp256k1_rand_bits(1);
+}
+
+void test_ecdsa_recovery_api(void) {
+ /* Setup contexts that just count errors */
+ secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
+ secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
+ secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+ secp256k1_pubkey pubkey;
+ secp256k1_pubkey recpubkey;
+ secp256k1_ecdsa_signature normal_sig;
+ secp256k1_ecdsa_recoverable_signature recsig;
+ unsigned char privkey[32] = { 1 };
+ unsigned char message[32] = { 2 };
+ int32_t ecount = 0;
+ int recid = 0;
+ unsigned char sig[74];
+ unsigned char zero_privkey[32] = { 0 };
+ unsigned char over_privkey[32] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
+
+ secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount);
+
+ /* Construct and verify corresponding public key. */
+ CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
+
+ /* Check bad contexts and NULLs for signing */
+ ecount = 0;
+ CHECK(secp256k1_ecdsa_sign_recoverable(none, &recsig, message, privkey, NULL, NULL) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ecdsa_sign_recoverable(sign, &recsig, message, privkey, NULL, NULL) == 1);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ecdsa_sign_recoverable(vrfy, &recsig, message, privkey, NULL, NULL) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, privkey, NULL, NULL) == 1);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdsa_sign_recoverable(both, NULL, message, privkey, NULL, NULL) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, NULL, privkey, NULL, NULL) == 0);
+ CHECK(ecount == 4);
+ CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, NULL, NULL, NULL) == 0);
+ CHECK(ecount == 5);
+ /* This will fail or succeed randomly, and in either case will not ARG_CHECK failure */
+ secp256k1_ecdsa_sign_recoverable(both, &recsig, message, privkey, recovery_test_nonce_function, NULL);
+ CHECK(ecount == 5);
+ /* These will all fail, but not in ARG_CHECK way */
+ CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, zero_privkey, NULL, NULL) == 0);
+ CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, over_privkey, NULL, NULL) == 0);
+ /* This one will succeed. */
+ CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, privkey, NULL, NULL) == 1);
+ CHECK(ecount == 5);
+
+ /* Check signing with a goofy nonce function */
+
+ /* Check bad contexts and NULLs for recovery */
+ ecount = 0;
+ CHECK(secp256k1_ecdsa_recover(none, &recpubkey, &recsig, message) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ecdsa_recover(sign, &recpubkey, &recsig, message) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdsa_recover(vrfy, &recpubkey, &recsig, message) == 1);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdsa_recover(both, &recpubkey, &recsig, message) == 1);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdsa_recover(both, NULL, &recsig, message) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_ecdsa_recover(both, &recpubkey, NULL, message) == 0);
+ CHECK(ecount == 4);
+ CHECK(secp256k1_ecdsa_recover(both, &recpubkey, &recsig, NULL) == 0);
+ CHECK(ecount == 5);
+
+ /* Check NULLs for conversion */
+ CHECK(secp256k1_ecdsa_sign(both, &normal_sig, message, privkey, NULL, NULL) == 1);
+ ecount = 0;
+ CHECK(secp256k1_ecdsa_recoverable_signature_convert(both, NULL, &recsig) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_convert(both, &normal_sig, NULL) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdsa_recoverable_signature_convert(both, &normal_sig, &recsig) == 1);
+
+ /* Check NULLs for de/serialization */
+ CHECK(secp256k1_ecdsa_sign_recoverable(both, &recsig, message, privkey, NULL, NULL) == 1);
+ ecount = 0;
+ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(both, NULL, &recid, &recsig) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(both, sig, NULL, &recsig) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(both, sig, &recid, NULL) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(both, sig, &recid, &recsig) == 1);
+
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, NULL, sig, recid) == 0);
+ CHECK(ecount == 4);
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, &recsig, NULL, recid) == 0);
+ CHECK(ecount == 5);
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, &recsig, sig, -1) == 0);
+ CHECK(ecount == 6);
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, &recsig, sig, 5) == 0);
+ CHECK(ecount == 7);
+ /* overflow in signature will fail but not affect ecount */
+ memcpy(sig, over_privkey, 32);
+ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(both, &recsig, sig, recid) == 0);
+ CHECK(ecount == 7);
+
+ /* cleanup */
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(vrfy);
+ secp256k1_context_destroy(both);
+}
+
void test_ecdsa_recovery_end_to_end(void) {
unsigned char extra[32] = {0x00};
unsigned char privkey[32];
@@ -34,6 +174,7 @@ void test_ecdsa_recovery_end_to_end(void) {
/* Serialize/parse compact and verify/recover. */
extra[0] = 0;
CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[0], message, privkey, NULL, NULL) == 1);
+ CHECK(secp256k1_ecdsa_sign(ctx, &signature[0], message, privkey, NULL, NULL) == 1);
CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[4], message, privkey, NULL, NULL) == 1);
CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[1], message, privkey, NULL, extra) == 1);
extra[31] = 1;
@@ -43,6 +184,7 @@ void test_ecdsa_recovery_end_to_end(void) {
CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[3], message, privkey, NULL, extra) == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
+ CHECK(memcmp(&signature[4], &signature[0], 64) == 0);
CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1);
memset(&rsignature[4], 0, sizeof(rsignature[4]));
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
@@ -54,7 +196,7 @@ void test_ecdsa_recovery_end_to_end(void) {
CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
/* Serialize/destroy/parse signature and verify again. */
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1);
- sig[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
+ sig[secp256k1_rand_bits(6)] += 1 + secp256k1_rand_int(255);
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 0);
@@ -161,25 +303,24 @@ void test_ecdsa_recovery_edge_cases(void) {
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsig, sigb64, recid2) == 1);
CHECK(secp256k1_ecdsa_recover(ctx, &pubkey2b, &rsig, msg32) == 1);
/* Verifying with (order + r,4) should always fail. */
- CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderlong, sizeof(sigbderlong)) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderlong, sizeof(sigbderlong)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0);
}
/* DER parsing tests. */
/* Zero length r/s. */
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zr, sizeof(sigcder_zr)) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zs, sizeof(sigcder_zs)) == 0);
/* Leading zeros. */
- CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt1, sizeof(sigbderalt1)) == 1);
- CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
- CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt2, sizeof(sigbderalt2)) == 1);
- CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
- CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 1);
- CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
- CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 1);
- CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 1);
- sigbderalt3[4] = 1;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt1, sizeof(sigbderalt1)) == 0);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt2, sizeof(sigbderalt2)) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 0);
- sigbderalt4[7] = 1;
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 0);
+ sigbderalt3[4] = 1;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0);
+ sigbderalt4[7] = 1;
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg32, &pubkeyb) == 0);
/* Damage signature. */
sigbder[7]++;
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1);
@@ -240,6 +381,9 @@ void test_ecdsa_recovery_edge_cases(void) {
void run_recovery_tests(void) {
int i;
+ for (i = 0; i < count; i++) {
+ test_ecdsa_recovery_api();
+ }
for (i = 0; i < 64*count; i++) {
test_ecdsa_recovery_end_to_end();
}
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include
deleted file mode 100644
index bad4cb7c5..000000000
--- a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/Makefile.am.include
+++ /dev/null
@@ -1,11 +0,0 @@
-include_HEADERS += include/secp256k1_schnorr.h
-noinst_HEADERS += src/modules/schnorr/main_impl.h
-noinst_HEADERS += src/modules/schnorr/schnorr.h
-noinst_HEADERS += src/modules/schnorr/schnorr_impl.h
-noinst_HEADERS += src/modules/schnorr/tests_impl.h
-if USE_BENCHMARK
-noinst_PROGRAMS += bench_schnorr_verify
-bench_schnorr_verify_SOURCES = src/bench_schnorr_verify.c
-bench_schnorr_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
-bench_schnorr_verify_LDFLAGS = -static
-endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h
deleted file mode 100644
index c10fd259f..000000000
--- a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/main_impl.h
+++ /dev/null
@@ -1,164 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2014-2015 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef SECP256K1_MODULE_SCHNORR_MAIN
-#define SECP256K1_MODULE_SCHNORR_MAIN
-
-#include "include/secp256k1_schnorr.h"
-#include "modules/schnorr/schnorr_impl.h"
-
-static void secp256k1_schnorr_msghash_sha256(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32) {
- secp256k1_sha256_t sha;
- secp256k1_sha256_initialize(&sha);
- secp256k1_sha256_write(&sha, r32, 32);
- secp256k1_sha256_write(&sha, msg32, 32);
- secp256k1_sha256_finalize(&sha, h32);
-}
-
-static const unsigned char secp256k1_schnorr_algo16[17] = "Schnorr+SHA256 ";
-
-int secp256k1_schnorr_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
- secp256k1_scalar sec, non;
- int ret = 0;
- int overflow = 0;
- unsigned int count = 0;
- VERIFY_CHECK(ctx != NULL);
- ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
- ARG_CHECK(msg32 != NULL);
- ARG_CHECK(sig64 != NULL);
- ARG_CHECK(seckey != NULL);
- if (noncefp == NULL) {
- noncefp = secp256k1_nonce_function_default;
- }
-
- secp256k1_scalar_set_b32(&sec, seckey, NULL);
- while (1) {
- unsigned char nonce32[32];
- ret = noncefp(nonce32, msg32, seckey, secp256k1_schnorr_algo16, (void*)noncedata, count);
- if (!ret) {
- break;
- }
- secp256k1_scalar_set_b32(&non, nonce32, &overflow);
- memset(nonce32, 0, 32);
- if (!secp256k1_scalar_is_zero(&non) && !overflow) {
- if (secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, NULL, secp256k1_schnorr_msghash_sha256, msg32)) {
- break;
- }
- }
- count++;
- }
- if (!ret) {
- memset(sig64, 0, 64);
- }
- secp256k1_scalar_clear(&non);
- secp256k1_scalar_clear(&sec);
- return ret;
-}
-
-int secp256k1_schnorr_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
- secp256k1_ge q;
- VERIFY_CHECK(ctx != NULL);
- ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
- ARG_CHECK(msg32 != NULL);
- ARG_CHECK(sig64 != NULL);
- ARG_CHECK(pubkey != NULL);
-
- secp256k1_pubkey_load(ctx, &q, pubkey);
- return secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32);
-}
-
-int secp256k1_schnorr_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *sig64, const unsigned char *msg32) {
- secp256k1_ge q;
-
- VERIFY_CHECK(ctx != NULL);
- ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
- ARG_CHECK(msg32 != NULL);
- ARG_CHECK(sig64 != NULL);
- ARG_CHECK(pubkey != NULL);
-
- if (secp256k1_schnorr_sig_recover(&ctx->ecmult_ctx, sig64, &q, secp256k1_schnorr_msghash_sha256, msg32)) {
- secp256k1_pubkey_save(pubkey, &q);
- return 1;
- } else {
- memset(pubkey, 0, sizeof(*pubkey));
- return 0;
- }
-}
-
-int secp256k1_schnorr_generate_nonce_pair(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, unsigned char *privnonce32, const unsigned char *sec32, const unsigned char *msg32, secp256k1_nonce_function noncefp, const void* noncedata) {
- int count = 0;
- int ret = 1;
- secp256k1_gej Qj;
- secp256k1_ge Q;
- secp256k1_scalar sec;
-
- VERIFY_CHECK(ctx != NULL);
- ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
- ARG_CHECK(msg32 != NULL);
- ARG_CHECK(sec32 != NULL);
- ARG_CHECK(pubnonce != NULL);
- ARG_CHECK(privnonce32 != NULL);
-
- if (noncefp == NULL) {
- noncefp = secp256k1_nonce_function_default;
- }
-
- do {
- int overflow;
- ret = noncefp(privnonce32, sec32, msg32, secp256k1_schnorr_algo16, (void*)noncedata, count++);
- if (!ret) {
- break;
- }
- secp256k1_scalar_set_b32(&sec, privnonce32, &overflow);
- if (overflow || secp256k1_scalar_is_zero(&sec)) {
- continue;
- }
- secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &Qj, &sec);
- secp256k1_ge_set_gej(&Q, &Qj);
-
- secp256k1_pubkey_save(pubnonce, &Q);
- break;
- } while(1);
-
- secp256k1_scalar_clear(&sec);
- if (!ret) {
- memset(pubnonce, 0, sizeof(*pubnonce));
- }
- return ret;
-}
-
-int secp256k1_schnorr_partial_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const unsigned char *sec32, const secp256k1_pubkey *pubnonce_others, const unsigned char *secnonce32) {
- int overflow = 0;
- secp256k1_scalar sec, non;
- secp256k1_ge pubnon;
- VERIFY_CHECK(ctx != NULL);
- ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
- ARG_CHECK(msg32 != NULL);
- ARG_CHECK(sig64 != NULL);
- ARG_CHECK(sec32 != NULL);
- ARG_CHECK(secnonce32 != NULL);
- ARG_CHECK(pubnonce_others != NULL);
-
- secp256k1_scalar_set_b32(&sec, sec32, &overflow);
- if (overflow || secp256k1_scalar_is_zero(&sec)) {
- return -1;
- }
- secp256k1_scalar_set_b32(&non, secnonce32, &overflow);
- if (overflow || secp256k1_scalar_is_zero(&non)) {
- return -1;
- }
- secp256k1_pubkey_load(ctx, &pubnon, pubnonce_others);
- return secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, &pubnon, secp256k1_schnorr_msghash_sha256, msg32);
-}
-
-int secp256k1_schnorr_partial_combine(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char * const *sig64sin, int n) {
- ARG_CHECK(sig64 != NULL);
- ARG_CHECK(n >= 1);
- ARG_CHECK(sig64sin != NULL);
- return secp256k1_schnorr_sig_combine(sig64, n, sig64sin);
-}
-
-#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h
deleted file mode 100644
index d227433d4..000000000
--- a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr.h
+++ /dev/null
@@ -1,20 +0,0 @@
-/***********************************************************************
- * Copyright (c) 2014-2015 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php. *
- ***********************************************************************/
-
-#ifndef _SECP256K1_MODULE_SCHNORR_H_
-#define _SECP256K1_MODULE_SCHNORR_H_
-
-#include "scalar.h"
-#include "group.h"
-
-typedef void (*secp256k1_schnorr_msghash)(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32);
-
-static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
-static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
-static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
-static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins);
-
-#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h
deleted file mode 100644
index ed70390bb..000000000
--- a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/schnorr_impl.h
+++ /dev/null
@@ -1,207 +0,0 @@
-/***********************************************************************
- * Copyright (c) 2014-2015 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php. *
- ***********************************************************************/
-
-#ifndef _SECP256K1_SCHNORR_IMPL_H_
-#define _SECP256K1_SCHNORR_IMPL_H_
-
-#include
-
-#include "schnorr.h"
-#include "num.h"
-#include "field.h"
-#include "group.h"
-#include "ecmult.h"
-#include "ecmult_gen.h"
-
-/**
- * Custom Schnorr-based signature scheme. They support multiparty signing, public key
- * recovery and batch validation.
- *
- * Rationale for verifying R's y coordinate:
- * In order to support batch validation and public key recovery, the full R point must
- * be known to verifiers, rather than just its x coordinate. In order to not risk
- * being more strict in batch validation than normal validation, validators must be
- * required to reject signatures with incorrect y coordinate. This is only possible
- * by including a (relatively slow) field inverse, or a field square root. However,
- * batch validation offers potentially much higher benefits than this cost.
- *
- * Rationale for having an implicit y coordinate oddness:
- * If we commit to having the full R point known to verifiers, there are two mechanism.
- * Either include its oddness in the signature, or give it an implicit fixed value.
- * As the R y coordinate can be flipped by a simple negation of the nonce, we choose the
- * latter, as it comes with nearly zero impact on signing or validation performance, and
- * saves a byte in the signature.
- *
- * Signing:
- * Inputs: 32-byte message m, 32-byte scalar key x (!=0), 32-byte scalar nonce k (!=0)
- *
- * Compute point R = k * G. Reject nonce if R's y coordinate is odd (or negate nonce).
- * Compute 32-byte r, the serialization of R's x coordinate.
- * Compute scalar h = Hash(r || m). Reject nonce if h == 0 or h >= order.
- * Compute scalar s = k - h * x.
- * The signature is (r, s).
- *
- *
- * Verification:
- * Inputs: 32-byte message m, public key point Q, signature: (32-byte r, scalar s)
- *
- * Signature is invalid if s >= order.
- * Signature is invalid if r >= p.
- * Compute scalar h = Hash(r || m). Signature is invalid if h == 0 or h >= order.
- * Option 1 (faster for single verification):
- * Compute point R = h * Q + s * G. Signature is invalid if R is infinity or R's y coordinate is odd.
- * Signature is valid if the serialization of R's x coordinate equals r.
- * Option 2 (allows batch validation and pubkey recovery):
- * Decompress x coordinate r into point R, with odd y coordinate. Fail if R is not on the curve.
- * Signature is valid if R + h * Q + s * G == 0.
- */
-
-static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
- secp256k1_gej Rj;
- secp256k1_ge Ra;
- unsigned char h32[32];
- secp256k1_scalar h, s;
- int overflow;
- secp256k1_scalar n;
-
- if (secp256k1_scalar_is_zero(key) || secp256k1_scalar_is_zero(nonce)) {
- return 0;
- }
- n = *nonce;
-
- secp256k1_ecmult_gen(ctx, &Rj, &n);
- if (pubnonce != NULL) {
- secp256k1_gej_add_ge(&Rj, &Rj, pubnonce);
- }
- secp256k1_ge_set_gej(&Ra, &Rj);
- secp256k1_fe_normalize(&Ra.y);
- if (secp256k1_fe_is_odd(&Ra.y)) {
- /* R's y coordinate is odd, which is not allowed (see rationale above).
- Force it to be even by negating the nonce. Note that this even works
- for multiparty signing, as the R point is known to all participants,
- which can all decide to flip the sign in unison, resulting in the
- overall R point to be negated too. */
- secp256k1_scalar_negate(&n, &n);
- }
- secp256k1_fe_normalize(&Ra.x);
- secp256k1_fe_get_b32(sig64, &Ra.x);
- hash(h32, sig64, msg32);
- overflow = 0;
- secp256k1_scalar_set_b32(&h, h32, &overflow);
- if (overflow || secp256k1_scalar_is_zero(&h)) {
- secp256k1_scalar_clear(&n);
- return 0;
- }
- secp256k1_scalar_mul(&s, &h, key);
- secp256k1_scalar_negate(&s, &s);
- secp256k1_scalar_add(&s, &s, &n);
- secp256k1_scalar_clear(&n);
- secp256k1_scalar_get_b32(sig64 + 32, &s);
- return 1;
-}
-
-static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
- secp256k1_gej Qj, Rj;
- secp256k1_ge Ra;
- secp256k1_fe Rx;
- secp256k1_scalar h, s;
- unsigned char hh[32];
- int overflow;
-
- if (secp256k1_ge_is_infinity(pubkey)) {
- return 0;
- }
- hash(hh, sig64, msg32);
- overflow = 0;
- secp256k1_scalar_set_b32(&h, hh, &overflow);
- if (overflow || secp256k1_scalar_is_zero(&h)) {
- return 0;
- }
- overflow = 0;
- secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow);
- if (overflow) {
- return 0;
- }
- if (!secp256k1_fe_set_b32(&Rx, sig64)) {
- return 0;
- }
- secp256k1_gej_set_ge(&Qj, pubkey);
- secp256k1_ecmult(ctx, &Rj, &Qj, &h, &s);
- if (secp256k1_gej_is_infinity(&Rj)) {
- return 0;
- }
- secp256k1_ge_set_gej_var(&Ra, &Rj);
- secp256k1_fe_normalize_var(&Ra.y);
- if (secp256k1_fe_is_odd(&Ra.y)) {
- return 0;
- }
- return secp256k1_fe_equal_var(&Rx, &Ra.x);
-}
-
-static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32) {
- secp256k1_gej Qj, Rj;
- secp256k1_ge Ra;
- secp256k1_fe Rx;
- secp256k1_scalar h, s;
- unsigned char hh[32];
- int overflow;
-
- hash(hh, sig64, msg32);
- overflow = 0;
- secp256k1_scalar_set_b32(&h, hh, &overflow);
- if (overflow || secp256k1_scalar_is_zero(&h)) {
- return 0;
- }
- overflow = 0;
- secp256k1_scalar_set_b32(&s, sig64 + 32, &overflow);
- if (overflow) {
- return 0;
- }
- if (!secp256k1_fe_set_b32(&Rx, sig64)) {
- return 0;
- }
- if (!secp256k1_ge_set_xo_var(&Ra, &Rx, 0)) {
- return 0;
- }
- secp256k1_gej_set_ge(&Rj, &Ra);
- secp256k1_scalar_inverse_var(&h, &h);
- secp256k1_scalar_negate(&s, &s);
- secp256k1_scalar_mul(&s, &s, &h);
- secp256k1_ecmult(ctx, &Qj, &Rj, &h, &s);
- if (secp256k1_gej_is_infinity(&Qj)) {
- return 0;
- }
- secp256k1_ge_set_gej(pubkey, &Qj);
- return 1;
-}
-
-static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins) {
- secp256k1_scalar s = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
- int i;
- for (i = 0; i < n; i++) {
- secp256k1_scalar si;
- int overflow;
- secp256k1_scalar_set_b32(&si, sig64ins[i] + 32, &overflow);
- if (overflow) {
- return -1;
- }
- if (i) {
- if (memcmp(sig64ins[i - 1], sig64ins[i], 32) != 0) {
- return -1;
- }
- }
- secp256k1_scalar_add(&s, &s, &si);
- }
- if (secp256k1_scalar_is_zero(&s)) {
- return 0;
- }
- memcpy(sig64, sig64ins[0], 32);
- secp256k1_scalar_get_b32(sig64 + 32, &s);
- secp256k1_scalar_clear(&s);
- return 1;
-}
-
-#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h b/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h
deleted file mode 100644
index 79737f748..000000000
--- a/crypto/secp256k1/libsecp256k1/src/modules/schnorr/tests_impl.h
+++ /dev/null
@@ -1,175 +0,0 @@
-/**********************************************************************
- * Copyright (c) 2014-2015 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
-
-#ifndef SECP256K1_MODULE_SCHNORR_TESTS
-#define SECP256K1_MODULE_SCHNORR_TESTS
-
-#include "include/secp256k1_schnorr.h"
-
-void test_schnorr_end_to_end(void) {
- unsigned char privkey[32];
- unsigned char message[32];
- unsigned char schnorr_signature[64];
- secp256k1_pubkey pubkey, recpubkey;
-
- /* Generate a random key and message. */
- {
- secp256k1_scalar key;
- random_scalar_order_test(&key);
- secp256k1_scalar_get_b32(privkey, &key);
- secp256k1_rand256_test(message);
- }
-
- /* Construct and verify corresponding public key. */
- CHECK(secp256k1_ec_seckey_verify(ctx, privkey) == 1);
- CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
-
- /* Schnorr sign. */
- CHECK(secp256k1_schnorr_sign(ctx, schnorr_signature, message, privkey, NULL, NULL) == 1);
- CHECK(secp256k1_schnorr_verify(ctx, schnorr_signature, message, &pubkey) == 1);
- CHECK(secp256k1_schnorr_recover(ctx, &recpubkey, schnorr_signature, message) == 1);
- CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
- /* Destroy signature and verify again. */
- schnorr_signature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
- CHECK(secp256k1_schnorr_verify(ctx, schnorr_signature, message, &pubkey) == 0);
- CHECK(secp256k1_schnorr_recover(ctx, &recpubkey, schnorr_signature, message) != 1 ||
- memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0);
-}
-
-/** Horribly broken hash function. Do not use for anything but tests. */
-void test_schnorr_hash(unsigned char *h32, const unsigned char *r32, const unsigned char *msg32) {
- int i;
- for (i = 0; i < 32; i++) {
- h32[i] = r32[i] ^ msg32[i];
- }
-}
-
-void test_schnorr_sign_verify(void) {
- unsigned char msg32[32];
- unsigned char sig64[3][64];
- secp256k1_gej pubkeyj[3];
- secp256k1_ge pubkey[3];
- secp256k1_scalar nonce[3], key[3];
- int i = 0;
- int k;
-
- secp256k1_rand256_test(msg32);
-
- for (k = 0; k < 3; k++) {
- random_scalar_order_test(&key[k]);
-
- do {
- random_scalar_order_test(&nonce[k]);
- if (secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64[k], &key[k], &nonce[k], NULL, &test_schnorr_hash, msg32)) {
- break;
- }
- } while(1);
-
- secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubkeyj[k], &key[k]);
- secp256k1_ge_set_gej_var(&pubkey[k], &pubkeyj[k]);
- CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64[k], &pubkey[k], &test_schnorr_hash, msg32));
-
- for (i = 0; i < 4; i++) {
- int pos = secp256k1_rand32() % 64;
- int mod = 1 + (secp256k1_rand32() % 255);
- sig64[k][pos] ^= mod;
- CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64[k], &pubkey[k], &test_schnorr_hash, msg32) == 0);
- sig64[k][pos] ^= mod;
- }
- }
-}
-
-void test_schnorr_threshold(void) {
- unsigned char msg[32];
- unsigned char sec[5][32];
- secp256k1_pubkey pub[5];
- unsigned char nonce[5][32];
- secp256k1_pubkey pubnonce[5];
- unsigned char sig[5][64];
- const unsigned char* sigs[5];
- unsigned char allsig[64];
- const secp256k1_pubkey* pubs[5];
- secp256k1_pubkey allpub;
- int n, i;
- int damage;
- int ret = 0;
-
- damage = (secp256k1_rand32() % 2) ? (1 + (secp256k1_rand32() % 4)) : 0;
- secp256k1_rand256_test(msg);
- n = 2 + (secp256k1_rand32() % 4);
- for (i = 0; i < n; i++) {
- do {
- secp256k1_rand256_test(sec[i]);
- } while (!secp256k1_ec_seckey_verify(ctx, sec[i]));
- CHECK(secp256k1_ec_pubkey_create(ctx, &pub[i], sec[i]));
- CHECK(secp256k1_schnorr_generate_nonce_pair(ctx, &pubnonce[i], nonce[i], msg, sec[i], NULL, NULL));
- pubs[i] = &pub[i];
- }
- if (damage == 1) {
- nonce[secp256k1_rand32() % n][secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
- } else if (damage == 2) {
- sec[secp256k1_rand32() % n][secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
- }
- for (i = 0; i < n; i++) {
- secp256k1_pubkey allpubnonce;
- const secp256k1_pubkey *pubnonces[4];
- int j;
- for (j = 0; j < i; j++) {
- pubnonces[j] = &pubnonce[j];
- }
- for (j = i + 1; j < n; j++) {
- pubnonces[j - 1] = &pubnonce[j];
- }
- CHECK(secp256k1_ec_pubkey_combine(ctx, &allpubnonce, pubnonces, n - 1));
- ret |= (secp256k1_schnorr_partial_sign(ctx, sig[i], msg, sec[i], &allpubnonce, nonce[i]) != 1) * 1;
- sigs[i] = sig[i];
- }
- if (damage == 3) {
- sig[secp256k1_rand32() % n][secp256k1_rand32() % 64] ^= 1 + (secp256k1_rand32() % 255);
- }
- ret |= (secp256k1_ec_pubkey_combine(ctx, &allpub, pubs, n) != 1) * 2;
- if ((ret & 1) == 0) {
- ret |= (secp256k1_schnorr_partial_combine(ctx, allsig, sigs, n) != 1) * 4;
- }
- if (damage == 4) {
- allsig[secp256k1_rand32() % 32] ^= 1 + (secp256k1_rand32() % 255);
- }
- if ((ret & 7) == 0) {
- ret |= (secp256k1_schnorr_verify(ctx, allsig, msg, &allpub) != 1) * 8;
- }
- CHECK((ret == 0) == (damage == 0));
-}
-
-void test_schnorr_recovery(void) {
- unsigned char msg32[32];
- unsigned char sig64[64];
- secp256k1_ge Q;
-
- secp256k1_rand256_test(msg32);
- secp256k1_rand256_test(sig64);
- secp256k1_rand256_test(sig64 + 32);
- if (secp256k1_schnorr_sig_recover(&ctx->ecmult_ctx, sig64, &Q, &test_schnorr_hash, msg32) == 1) {
- CHECK(secp256k1_schnorr_sig_verify(&ctx->ecmult_ctx, sig64, &Q, &test_schnorr_hash, msg32) == 1);
- }
-}
-
-void run_schnorr_tests(void) {
- int i;
- for (i = 0; i < 32*count; i++) {
- test_schnorr_end_to_end();
- }
- for (i = 0; i < 32 * count; i++) {
- test_schnorr_sign_verify();
- }
- for (i = 0; i < 16 * count; i++) {
- test_schnorr_recovery();
- }
- for (i = 0; i < 10 * count; i++) {
- test_schnorr_threshold();
- }
-}
-
-#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/num.h b/crypto/secp256k1/libsecp256k1/src/num.h
index ebfa71eb4..7bb9c5be8 100644
--- a/crypto/secp256k1/libsecp256k1/src/num.h
+++ b/crypto/secp256k1/libsecp256k1/src/num.h
@@ -32,6 +32,9 @@ static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsi
/** Compute a modular inverse. The input must be less than the modulus. */
static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m);
+/** Compute the jacobi symbol (a|b). b must be positive and odd. */
+static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b);
+
/** Compare the absolute value of two numbers. */
static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b);
@@ -57,6 +60,9 @@ static void secp256k1_num_shift(secp256k1_num *r, int bits);
/** Check whether a number is zero. */
static int secp256k1_num_is_zero(const secp256k1_num *a);
+/** Check whether a number is one. */
+static int secp256k1_num_is_one(const secp256k1_num *a);
+
/** Check whether a number is strictly negative. */
static int secp256k1_num_is_neg(const secp256k1_num *a);
diff --git a/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h b/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h
index f43e7a56c..3a46495ee 100644
--- a/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/num_gmp_impl.h
@@ -70,6 +70,7 @@ static void secp256k1_num_add_abs(secp256k1_num *r, const secp256k1_num *a, cons
static void secp256k1_num_sub_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) {
mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs);
+ (void)c;
VERIFY_CHECK(c == 0);
r->limbs = a->limbs;
while (r->limbs > 1 && r->data[r->limbs-1]==0) {
@@ -125,6 +126,7 @@ static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a,
}
sn = NUM_LIMBS+1;
gn = mpn_gcdext(g, r->data, &sn, u, m->limbs, v, m->limbs);
+ (void)gn;
VERIFY_CHECK(gn == 1);
VERIFY_CHECK(g[0] == 1);
r->neg = a->neg ^ m->neg;
@@ -142,6 +144,32 @@ static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a,
memset(v, 0, sizeof(v));
}
+static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b) {
+ int ret;
+ mpz_t ga, gb;
+ secp256k1_num_sanity(a);
+ secp256k1_num_sanity(b);
+ VERIFY_CHECK(!b->neg && (b->limbs > 0) && (b->data[0] & 1));
+
+ mpz_inits(ga, gb, NULL);
+
+ mpz_import(gb, b->limbs, -1, sizeof(mp_limb_t), 0, 0, b->data);
+ mpz_import(ga, a->limbs, -1, sizeof(mp_limb_t), 0, 0, a->data);
+ if (a->neg) {
+ mpz_neg(ga, ga);
+ }
+
+ ret = mpz_jacobi(ga, gb);
+
+ mpz_clears(ga, gb, NULL);
+
+ return ret;
+}
+
+static int secp256k1_num_is_one(const secp256k1_num *a) {
+ return (a->limbs == 1 && a->data[0] == 1);
+}
+
static int secp256k1_num_is_zero(const secp256k1_num *a) {
return (a->limbs == 1 && a->data[0] == 0);
}
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar.h b/crypto/secp256k1/libsecp256k1/src/scalar.h
index b590ccd6d..27e9d8375 100644
--- a/crypto/secp256k1/libsecp256k1/src/scalar.h
+++ b/crypto/secp256k1/libsecp256k1/src/scalar.h
@@ -13,7 +13,9 @@
#include "libsecp256k1-config.h"
#endif
-#if defined(USE_SCALAR_4X64)
+#if defined(EXHAUSTIVE_TEST_ORDER)
+#include "scalar_low.h"
+#elif defined(USE_SCALAR_4X64)
#include "scalar_4x64.h"
#elif defined(USE_SCALAR_8X32)
#include "scalar_8x32.h"
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h
index cbec34d71..56e7bd82a 100644
--- a/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_4x64_impl.h
@@ -282,8 +282,8 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"movq 56(%%rsi), %%r14\n"
/* Initialize r8,r9,r10 */
"movq 0(%%rsi), %%r8\n"
- "movq $0, %%r9\n"
- "movq $0, %%r10\n"
+ "xorq %%r9, %%r9\n"
+ "xorq %%r10, %%r10\n"
/* (r8,r9) += n0 * c0 */
"movq %8, %%rax\n"
"mulq %%r11\n"
@@ -291,7 +291,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"adcq %%rdx, %%r9\n"
/* extract m0 */
"movq %%r8, %q0\n"
- "movq $0, %%r8\n"
+ "xorq %%r8, %%r8\n"
/* (r9,r10) += l1 */
"addq 8(%%rsi), %%r9\n"
"adcq $0, %%r10\n"
@@ -309,7 +309,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"adcq $0, %%r8\n"
/* extract m1 */
"movq %%r9, %q1\n"
- "movq $0, %%r9\n"
+ "xorq %%r9, %%r9\n"
/* (r10,r8,r9) += l2 */
"addq 16(%%rsi), %%r10\n"
"adcq $0, %%r8\n"
@@ -332,7 +332,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"adcq $0, %%r9\n"
/* extract m2 */
"movq %%r10, %q2\n"
- "movq $0, %%r10\n"
+ "xorq %%r10, %%r10\n"
/* (r8,r9,r10) += l3 */
"addq 24(%%rsi), %%r8\n"
"adcq $0, %%r9\n"
@@ -355,7 +355,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"adcq $0, %%r10\n"
/* extract m3 */
"movq %%r8, %q3\n"
- "movq $0, %%r8\n"
+ "xorq %%r8, %%r8\n"
/* (r9,r10,r8) += n3 * c1 */
"movq %9, %%rax\n"
"mulq %%r14\n"
@@ -387,8 +387,8 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"movq %q11, %%r13\n"
/* Initialize (r8,r9,r10) */
"movq %q5, %%r8\n"
- "movq $0, %%r9\n"
- "movq $0, %%r10\n"
+ "xorq %%r9, %%r9\n"
+ "xorq %%r10, %%r10\n"
/* (r8,r9) += m4 * c0 */
"movq %12, %%rax\n"
"mulq %%r11\n"
@@ -396,7 +396,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"adcq %%rdx, %%r9\n"
/* extract p0 */
"movq %%r8, %q0\n"
- "movq $0, %%r8\n"
+ "xorq %%r8, %%r8\n"
/* (r9,r10) += m1 */
"addq %q6, %%r9\n"
"adcq $0, %%r10\n"
@@ -414,7 +414,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"adcq $0, %%r8\n"
/* extract p1 */
"movq %%r9, %q1\n"
- "movq $0, %%r9\n"
+ "xorq %%r9, %%r9\n"
/* (r10,r8,r9) += m2 */
"addq %q7, %%r10\n"
"adcq $0, %%r8\n"
@@ -472,7 +472,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"movq %%rax, 0(%q6)\n"
/* Move to (r8,r9) */
"movq %%rdx, %%r8\n"
- "movq $0, %%r9\n"
+ "xorq %%r9, %%r9\n"
/* (r8,r9) += p1 */
"addq %q2, %%r8\n"
"adcq $0, %%r9\n"
@@ -483,7 +483,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"adcq %%rdx, %%r9\n"
/* Extract r1 */
"movq %%r8, 8(%q6)\n"
- "movq $0, %%r8\n"
+ "xorq %%r8, %%r8\n"
/* (r9,r8) += p4 */
"addq %%r10, %%r9\n"
"adcq $0, %%r8\n"
@@ -492,7 +492,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
"adcq $0, %%r8\n"
/* Extract r2 */
"movq %%r9, 16(%q6)\n"
- "movq $0, %%r9\n"
+ "xorq %%r9, %%r9\n"
/* (r8,r9) += p3 */
"addq %q4, %%r8\n"
"adcq $0, %%r9\n"
@@ -912,6 +912,7 @@ static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a)
secp256k1_scalar_reduce_512(r, l);
}
+#ifdef USE_ENDOMORPHISM
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
r1->d[0] = a->d[0];
r1->d[1] = a->d[1];
@@ -922,6 +923,7 @@ static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r
r2->d[2] = 0;
r2->d[3] = 0;
}
+#endif
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
index 88ea97de8..f5b237640 100644
--- a/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_impl.h
@@ -7,8 +7,6 @@
#ifndef _SECP256K1_SCALAR_IMPL_H_
#define _SECP256K1_SCALAR_IMPL_H_
-#include
-
#include "group.h"
#include "scalar.h"
@@ -16,7 +14,9 @@
#include "libsecp256k1-config.h"
#endif
-#if defined(USE_SCALAR_4X64)
+#if defined(EXHAUSTIVE_TEST_ORDER)
+#include "scalar_low_impl.h"
+#elif defined(USE_SCALAR_4X64)
#include "scalar_4x64_impl.h"
#elif defined(USE_SCALAR_8X32)
#include "scalar_8x32_impl.h"
@@ -33,17 +33,37 @@ static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a
/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
+#if defined(EXHAUSTIVE_TEST_ORDER)
+ static const unsigned char order[32] = {
+ 0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER
+ };
+#else
static const unsigned char order[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
};
+#endif
secp256k1_num_set_bin(r, order, 32);
}
#endif
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
+#if defined(EXHAUSTIVE_TEST_ORDER)
+ int i;
+ *r = 0;
+ for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++)
+ if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1)
+ *r = i;
+ /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
+ * have a composite group order; fix it in exhaustive_tests.c). */
+ VERIFY_CHECK(*r != 0);
+}
+#else
secp256k1_scalar *t;
int i;
/* First compute x ^ (2^N - 1) for some values of N. */
@@ -235,9 +255,9 @@ static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar
}
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
- /* d[0] is present and is the lowest word for all representations */
return !(a->d[0] & 1);
}
+#endif
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
#if defined(USE_SCALAR_INV_BUILTIN)
@@ -261,6 +281,18 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_sc
}
#ifdef USE_ENDOMORPHISM
+#if defined(EXHAUSTIVE_TEST_ORDER)
+/**
+ * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the
+ * full case we don't bother making k1 and k2 be small, we just want them to be
+ * nontrivial to get full test coverage for the exhaustive tests. We therefore
+ * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda.
+ */
+static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
+ *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER;
+ *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
+}
+#else
/**
* The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
* lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
@@ -333,5 +365,6 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar
secp256k1_scalar_add(r1, r1, a);
}
#endif
+#endif
#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_low.h b/crypto/secp256k1/libsecp256k1/src/scalar_low.h
new file mode 100644
index 000000000..5574c44c7
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_low.h
@@ -0,0 +1,15 @@
+/**********************************************************************
+ * Copyright (c) 2015 Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_REPR_
+#define _SECP256K1_SCALAR_REPR_
+
+#include
+
+/** A scalar modulo the group order of the secp256k1 curve. */
+typedef uint32_t secp256k1_scalar;
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/scalar_low_impl.h b/crypto/secp256k1/libsecp256k1/src/scalar_low_impl.h
new file mode 100644
index 000000000..4f94441f4
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/scalar_low_impl.h
@@ -0,0 +1,114 @@
+/**********************************************************************
+ * Copyright (c) 2015 Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#ifndef _SECP256K1_SCALAR_REPR_IMPL_H_
+#define _SECP256K1_SCALAR_REPR_IMPL_H_
+
+#include "scalar.h"
+
+#include
+
+SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
+ return !(*a & 1);
+}
+
+SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { *r = 0; }
+SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { *r = v; }
+
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
+ if (offset < 32)
+ return ((*a >> offset) & ((((uint32_t)1) << count) - 1));
+ else
+ return 0;
+}
+
+SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
+ return secp256k1_scalar_get_bits(a, offset, count);
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { return *a >= EXHAUSTIVE_TEST_ORDER; }
+
+static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ *r = (*a + *b) % EXHAUSTIVE_TEST_ORDER;
+ return *r < *b;
+}
+
+static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
+ if (flag && bit < 32)
+ *r += (1 << bit);
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
+#endif
+}
+
+static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
+ const int base = 0x100 % EXHAUSTIVE_TEST_ORDER;
+ int i;
+ *r = 0;
+ for (i = 0; i < 32; i++) {
+ *r = ((*r * base) + b32[i]) % EXHAUSTIVE_TEST_ORDER;
+ }
+ /* just deny overflow, it basically always happens */
+ if (overflow) *overflow = 0;
+}
+
+static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
+ memset(bin, 0, 32);
+ bin[28] = *a >> 24; bin[29] = *a >> 16; bin[30] = *a >> 8; bin[31] = *a;
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
+ return *a == 0;
+}
+
+static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
+ if (*a == 0) {
+ *r = 0;
+ } else {
+ *r = EXHAUSTIVE_TEST_ORDER - *a;
+ }
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
+ return *a == 1;
+}
+
+static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
+ return *a > EXHAUSTIVE_TEST_ORDER / 2;
+}
+
+static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
+ if (flag) secp256k1_scalar_negate(r, r);
+ return flag ? -1 : 1;
+}
+
+static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ *r = (*a * *b) % EXHAUSTIVE_TEST_ORDER;
+}
+
+static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
+ int ret;
+ VERIFY_CHECK(n > 0);
+ VERIFY_CHECK(n < 16);
+ ret = *r & ((1 << n) - 1);
+ *r >>= n;
+ return ret;
+}
+
+static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
+ *r = (*a * *a) % EXHAUSTIVE_TEST_ORDER;
+}
+
+static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
+ *r1 = *a;
+ *r2 = 0;
+}
+
+SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
+ return *a == *b;
+}
+
+#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/secp256k1.c b/crypto/secp256k1/libsecp256k1/src/secp256k1.c
old mode 100644
new mode 100755
index 203f880af..fb8b882fa
--- a/crypto/secp256k1/libsecp256k1/src/secp256k1.c
+++ b/crypto/secp256k1/libsecp256k1/src/secp256k1.c
@@ -4,8 +4,6 @@
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
-#define SECP256K1_BUILD (1)
-
#include "include/secp256k1.h"
#include "util.h"
@@ -62,13 +60,20 @@ secp256k1_context* secp256k1_context_create(unsigned int flags) {
ret->illegal_callback = default_illegal_callback;
ret->error_callback = default_error_callback;
+ if (EXPECT((flags & SECP256K1_FLAGS_TYPE_MASK) != SECP256K1_FLAGS_TYPE_CONTEXT, 0)) {
+ secp256k1_callback_call(&ret->illegal_callback,
+ "Invalid flags");
+ free(ret);
+ return NULL;
+ }
+
secp256k1_ecmult_context_init(&ret->ecmult_ctx);
secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx);
- if (flags & SECP256K1_CONTEXT_SIGN) {
+ if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) {
secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback);
}
- if (flags & SECP256K1_CONTEXT_VERIFY) {
+ if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) {
secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback);
}
@@ -145,9 +150,11 @@ static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) {
int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) {
secp256k1_ge Q;
- (void)ctx;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(pubkey != NULL);
+ memset(pubkey, 0, sizeof(*pubkey));
+ ARG_CHECK(input != NULL);
if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
- memset(pubkey, 0, sizeof(*pubkey));
return 0;
}
secp256k1_pubkey_save(pubkey, &Q);
@@ -157,10 +164,25 @@ int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pu
int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) {
secp256k1_ge Q;
+ size_t len;
+ int ret = 0;
- (void)ctx;
- return (secp256k1_pubkey_load(ctx, &Q, pubkey) &&
- secp256k1_eckey_pubkey_serialize(&Q, output, outputlen, flags));
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(outputlen != NULL);
+ ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65));
+ len = *outputlen;
+ *outputlen = 0;
+ ARG_CHECK(output != NULL);
+ memset(output, 0, len);
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK((flags & SECP256K1_FLAGS_TYPE_MASK) == SECP256K1_FLAGS_TYPE_COMPRESSION);
+ if (secp256k1_pubkey_load(ctx, &Q, pubkey)) {
+ ret = secp256k1_eckey_pubkey_serialize(&Q, output, &len, flags & SECP256K1_FLAGS_BIT_COMPRESSION);
+ if (ret) {
+ *outputlen = len;
+ }
+ }
+ return ret;
}
static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
@@ -190,7 +212,7 @@ static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const
int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
secp256k1_scalar r, s;
- (void)ctx;
+ VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(input != NULL);
@@ -203,10 +225,31 @@ int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_
}
}
+int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input64) {
+ secp256k1_scalar r, s;
+ int ret = 1;
+ int overflow = 0;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(sig != NULL);
+ ARG_CHECK(input64 != NULL);
+
+ secp256k1_scalar_set_b32(&r, &input64[0], &overflow);
+ ret &= !overflow;
+ secp256k1_scalar_set_b32(&s, &input64[32], &overflow);
+ ret &= !overflow;
+ if (ret) {
+ secp256k1_ecdsa_signature_save(sig, &r, &s);
+ } else {
+ memset(sig, 0, sizeof(*sig));
+ }
+ return ret;
+}
+
int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) {
secp256k1_scalar r, s;
- (void)ctx;
+ VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(outputlen != NULL);
ARG_CHECK(sig != NULL);
@@ -215,6 +258,38 @@ int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsign
return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s);
}
+int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, const secp256k1_ecdsa_signature* sig) {
+ secp256k1_scalar r, s;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(output64 != NULL);
+ ARG_CHECK(sig != NULL);
+
+ secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
+ secp256k1_scalar_get_b32(&output64[0], &r);
+ secp256k1_scalar_get_b32(&output64[32], &s);
+ return 1;
+}
+
+int secp256k1_ecdsa_signature_normalize(const secp256k1_context* ctx, secp256k1_ecdsa_signature *sigout, const secp256k1_ecdsa_signature *sigin) {
+ secp256k1_scalar r, s;
+ int ret = 0;
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(sigin != NULL);
+
+ secp256k1_ecdsa_signature_load(ctx, &r, &s, sigin);
+ ret = secp256k1_scalar_is_high(&s);
+ if (sigout != NULL) {
+ if (ret) {
+ secp256k1_scalar_negate(&s, &s);
+ }
+ secp256k1_ecdsa_signature_save(sigout, &r, &s);
+ }
+
+ return ret;
+}
+
int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
secp256k1_ge q;
secp256k1_scalar r, s;
@@ -227,7 +302,8 @@ int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_s
secp256k1_scalar_set_b32(&m, msg32, NULL);
secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
- return (secp256k1_pubkey_load(ctx, &q, pubkey) &&
+ return (!secp256k1_scalar_is_high(&s) &&
+ secp256k1_pubkey_load(ctx, &q, pubkey) &&
secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m));
}
@@ -239,8 +315,10 @@ static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *m
/* We feed a byte array to the PRNG as input, consisting of:
* - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d.
* - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data.
- * - optionally 16 extra bytes with the algorithm name (the extra data bytes
- * are set to zeroes when not present, while the algorithm name is).
+ * - optionally 16 extra bytes with the algorithm name.
+ * Because the arguments have distinct fixed lengths it is not possible for
+ * different argument mixtures to emulate each other and result in the same
+ * nonces.
*/
memcpy(keydata, key32, 32);
memcpy(keydata + 32, msg32, 32);
@@ -249,9 +327,8 @@ static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *m
keylen = 96;
}
if (algo16 != NULL) {
- memset(keydata + keylen, 0, 96 - keylen);
- memcpy(keydata + 96, algo16, 16);
- keylen = 112;
+ memcpy(keydata + keylen, algo16, 16);
+ keylen += 16;
}
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, keylen);
memset(keydata, 0, sizeof(keydata));
@@ -282,16 +359,15 @@ int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
/* Fail if the secret key is invalid. */
if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
+ unsigned char nonce32[32];
unsigned int count = 0;
secp256k1_scalar_set_b32(&msg, msg32, NULL);
while (1) {
- unsigned char nonce32[32];
ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count);
if (!ret) {
break;
}
secp256k1_scalar_set_b32(&non, nonce32, &overflow);
- memset(nonce32, 0, 32);
if (!overflow && !secp256k1_scalar_is_zero(&non)) {
if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) {
break;
@@ -299,6 +375,7 @@ int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature
}
count++;
}
+ memset(nonce32, 0, 32);
secp256k1_scalar_clear(&msg);
secp256k1_scalar_clear(&non);
secp256k1_scalar_clear(&sec);
@@ -317,7 +394,6 @@ int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
- (void)ctx;
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
ret = !overflow && !secp256k1_scalar_is_zero(&sec);
@@ -332,19 +408,19 @@ int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *p
int overflow;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
- ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(pubkey != NULL);
+ memset(pubkey, 0, sizeof(*pubkey));
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey != NULL);
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec));
- secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
- secp256k1_ge_set_gej(&p, &pj);
- secp256k1_pubkey_save(pubkey, &p);
- secp256k1_scalar_clear(&sec);
- if (!ret) {
- memset(pubkey, 0, sizeof(*pubkey));
+ if (ret) {
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
+ secp256k1_ge_set_gej(&p, &pj);
+ secp256k1_pubkey_save(pubkey, &p);
}
+ secp256k1_scalar_clear(&sec);
return ret;
}
@@ -356,12 +432,12 @@ int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
- (void)ctx;
secp256k1_scalar_set_b32(&term, tweak, &overflow);
secp256k1_scalar_set_b32(&sec, seckey, NULL);
ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term);
+ memset(seckey, 0, 32);
if (ret) {
secp256k1_scalar_get_b32(seckey, &sec);
}
@@ -382,12 +458,13 @@ int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&term, tweak, &overflow);
- if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) {
- ret = secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term);
- if (ret) {
+ ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
+ memset(pubkey, 0, sizeof(*pubkey));
+ if (ret) {
+ if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) {
secp256k1_pubkey_save(pubkey, &p);
} else {
- memset(pubkey, 0, sizeof(*pubkey));
+ ret = 0;
}
}
@@ -402,11 +479,11 @@ int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
- (void)ctx;
secp256k1_scalar_set_b32(&factor, tweak, &overflow);
secp256k1_scalar_set_b32(&sec, seckey, NULL);
ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor);
+ memset(seckey, 0, 32);
if (ret) {
secp256k1_scalar_get_b32(seckey, &sec);
}
@@ -427,48 +504,19 @@ int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&factor, tweak, &overflow);
- if (!overflow && secp256k1_pubkey_load(ctx, &p, pubkey)) {
- ret = secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor);
- if (ret) {
+ ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
+ memset(pubkey, 0, sizeof(*pubkey));
+ if (ret) {
+ if (secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor)) {
secp256k1_pubkey_save(pubkey, &p);
} else {
- memset(pubkey, 0, sizeof(*pubkey));
+ ret = 0;
}
}
return ret;
}
-int secp256k1_ec_privkey_export(const secp256k1_context* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, unsigned int flags) {
- secp256k1_scalar key;
- int ret = 0;
- VERIFY_CHECK(ctx != NULL);
- ARG_CHECK(seckey != NULL);
- ARG_CHECK(privkey != NULL);
- ARG_CHECK(privkeylen != NULL);
- ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
-
- secp256k1_scalar_set_b32(&key, seckey, NULL);
- ret = secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, privkeylen, &key, flags);
- secp256k1_scalar_clear(&key);
- return ret;
-}
-
-int secp256k1_ec_privkey_import(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen) {
- secp256k1_scalar key;
- int ret = 0;
- ARG_CHECK(seckey != NULL);
- ARG_CHECK(privkey != NULL);
- (void)ctx;
-
- ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen);
- if (ret) {
- secp256k1_scalar_get_b32(seckey, &key);
- }
- secp256k1_scalar_clear(&key);
- return ret;
-}
-
int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
@@ -476,12 +524,13 @@ int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *see
return 1;
}
-int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, int n) {
- int i;
+int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, size_t n) {
+ size_t i;
secp256k1_gej Qj;
secp256k1_ge Q;
ARG_CHECK(pubnonce != NULL);
+ memset(pubnonce, 0, sizeof(*pubnonce));
ARG_CHECK(n >= 1);
ARG_CHECK(pubnonces != NULL);
@@ -492,7 +541,6 @@ int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *
secp256k1_gej_add_ge(&Qj, &Qj, &Q);
}
if (secp256k1_gej_is_infinity(&Qj)) {
- memset(pubnonce, 0, sizeof(*pubnonce));
return 0;
}
secp256k1_ge_set_gej(&Q, &Qj);
diff --git a/crypto/secp256k1/libsecp256k1/src/testrand.h b/crypto/secp256k1/libsecp256k1/src/testrand.h
index 041bb92c4..f8efa93c7 100644
--- a/crypto/secp256k1/libsecp256k1/src/testrand.h
+++ b/crypto/secp256k1/libsecp256k1/src/testrand.h
@@ -16,13 +16,23 @@
/** Seed the pseudorandom number generator for testing. */
SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16);
-/** Generate a pseudorandom 32-bit number. */
+/** Generate a pseudorandom number in the range [0..2**32-1]. */
static uint32_t secp256k1_rand32(void);
+/** Generate a pseudorandom number in the range [0..2**bits-1]. Bits must be 1 or
+ * more. */
+static uint32_t secp256k1_rand_bits(int bits);
+
+/** Generate a pseudorandom number in the range [0..range-1]. */
+static uint32_t secp256k1_rand_int(uint32_t range);
+
/** Generate a pseudorandom 32-byte array. */
static void secp256k1_rand256(unsigned char *b32);
/** Generate a pseudorandom 32-byte array with long sequences of zero and one bits. */
static void secp256k1_rand256_test(unsigned char *b32);
+/** Generate pseudorandom bytes with long sequences of zero and one bits. */
+static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len);
+
#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/testrand_impl.h b/crypto/secp256k1/libsecp256k1/src/testrand_impl.h
index 7c3554266..15c7b9f12 100644
--- a/crypto/secp256k1/libsecp256k1/src/testrand_impl.h
+++ b/crypto/secp256k1/libsecp256k1/src/testrand_impl.h
@@ -1,5 +1,5 @@
/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
@@ -16,6 +16,8 @@
static secp256k1_rfc6979_hmac_sha256_t secp256k1_test_rng;
static uint32_t secp256k1_test_rng_precomputed[8];
static int secp256k1_test_rng_precomputed_used = 8;
+static uint64_t secp256k1_test_rng_integer;
+static int secp256k1_test_rng_integer_bits_left = 0;
SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16) {
secp256k1_rfc6979_hmac_sha256_initialize(&secp256k1_test_rng, seed16, 16);
@@ -29,32 +31,80 @@ SECP256K1_INLINE static uint32_t secp256k1_rand32(void) {
return secp256k1_test_rng_precomputed[secp256k1_test_rng_precomputed_used++];
}
+static uint32_t secp256k1_rand_bits(int bits) {
+ uint32_t ret;
+ if (secp256k1_test_rng_integer_bits_left < bits) {
+ secp256k1_test_rng_integer |= (((uint64_t)secp256k1_rand32()) << secp256k1_test_rng_integer_bits_left);
+ secp256k1_test_rng_integer_bits_left += 32;
+ }
+ ret = secp256k1_test_rng_integer;
+ secp256k1_test_rng_integer >>= bits;
+ secp256k1_test_rng_integer_bits_left -= bits;
+ ret &= ((~((uint32_t)0)) >> (32 - bits));
+ return ret;
+}
+
+static uint32_t secp256k1_rand_int(uint32_t range) {
+ /* We want a uniform integer between 0 and range-1, inclusive.
+ * B is the smallest number such that range <= 2**B.
+ * two mechanisms implemented here:
+ * - generate B bits numbers until one below range is found, and return it
+ * - find the largest multiple M of range that is <= 2**(B+A), generate B+A
+ * bits numbers until one below M is found, and return it modulo range
+ * The second mechanism consumes A more bits of entropy in every iteration,
+ * but may need fewer iterations due to M being closer to 2**(B+A) then
+ * range is to 2**B. The array below (indexed by B) contains a 0 when the
+ * first mechanism is to be used, and the number A otherwise.
+ */
+ static const int addbits[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0};
+ uint32_t trange, mult;
+ int bits = 0;
+ if (range <= 1) {
+ return 0;
+ }
+ trange = range - 1;
+ while (trange > 0) {
+ trange >>= 1;
+ bits++;
+ }
+ if (addbits[bits]) {
+ bits = bits + addbits[bits];
+ mult = ((~((uint32_t)0)) >> (32 - bits)) / range;
+ trange = range * mult;
+ } else {
+ trange = range;
+ mult = 1;
+ }
+ while(1) {
+ uint32_t x = secp256k1_rand_bits(bits);
+ if (x < trange) {
+ return (mult == 1) ? x : (x % range);
+ }
+ }
+}
+
static void secp256k1_rand256(unsigned char *b32) {
secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, b32, 32);
}
-static void secp256k1_rand256_test(unsigned char *b32) {
- int bits=0;
- uint64_t ent = 0;
- int entleft = 0;
- memset(b32, 0, 32);
- while (bits < 256) {
+static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len) {
+ size_t bits = 0;
+ memset(bytes, 0, len);
+ while (bits < len * 8) {
int now;
uint32_t val;
- if (entleft < 12) {
- ent |= ((uint64_t)secp256k1_rand32()) << entleft;
- entleft += 32;
- }
- now = 1 + ((ent % 64)*((ent >> 6) % 32)+16)/31;
- val = 1 & (ent >> 11);
- ent >>= 12;
- entleft -= 12;
- while (now > 0 && bits < 256) {
- b32[bits / 8] |= val << (bits % 8);
+ now = 1 + (secp256k1_rand_bits(6) * secp256k1_rand_bits(5) + 16) / 31;
+ val = secp256k1_rand_bits(1);
+ while (now > 0 && bits < len * 8) {
+ bytes[bits / 8] |= val << (bits % 8);
now--;
bits++;
}
}
}
+static void secp256k1_rand256_test(unsigned char *b32) {
+ secp256k1_rand_bytes_test(b32, 32);
+}
+
#endif
diff --git a/crypto/secp256k1/libsecp256k1/src/tests.c b/crypto/secp256k1/libsecp256k1/src/tests.c
index 3366d90fc..9ae7d3028 100644
--- a/crypto/secp256k1/libsecp256k1/src/tests.c
+++ b/crypto/secp256k1/libsecp256k1/src/tests.c
@@ -13,8 +13,8 @@
#include
-#include "include/secp256k1.h"
#include "secp256k1.c"
+#include "include/secp256k1.h"
#include "testrand_impl.h"
#ifdef ENABLE_OPENSSL_TESTS
@@ -24,9 +24,39 @@
#include "openssl/obj_mac.h"
#endif
+#include "contrib/lax_der_parsing.c"
+#include "contrib/lax_der_privatekey_parsing.c"
+
+#if !defined(VG_CHECK)
+# if defined(VALGRIND)
+# include
+# define VG_UNDEF(x,y) VALGRIND_MAKE_MEM_UNDEFINED((x),(y))
+# define VG_CHECK(x,y) VALGRIND_CHECK_MEM_IS_DEFINED((x),(y))
+# else
+# define VG_UNDEF(x,y)
+# define VG_CHECK(x,y)
+# endif
+#endif
+
static int count = 64;
static secp256k1_context *ctx = NULL;
+static void counting_illegal_callback_fn(const char* str, void* data) {
+ /* Dummy callback function that just counts. */
+ int32_t *p;
+ (void)str;
+ p = data;
+ (*p)++;
+}
+
+static void uncounting_illegal_callback_fn(const char* str, void* data) {
+ /* Dummy callback function that just counts (backwards). */
+ int32_t *p;
+ (void)str;
+ p = data;
+ (*p)--;
+}
+
void random_field_element_test(secp256k1_fe *fe) {
do {
unsigned char b32[32];
@@ -39,7 +69,7 @@ void random_field_element_test(secp256k1_fe *fe) {
void random_field_element_magnitude(secp256k1_fe *fe) {
secp256k1_fe zero;
- int n = secp256k1_rand32() % 9;
+ int n = secp256k1_rand_int(9);
secp256k1_fe_normalize(fe);
if (n == 0) {
return;
@@ -55,7 +85,7 @@ void random_group_element_test(secp256k1_ge *ge) {
secp256k1_fe fe;
do {
random_field_element_test(&fe);
- if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand32() & 1)) {
+ if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand_bits(1))) {
secp256k1_fe_normalize(&ge->y);
break;
}
@@ -104,7 +134,12 @@ void random_scalar_order(secp256k1_scalar *num) {
}
void run_context_tests(void) {
- secp256k1_context *none = secp256k1_context_create(0);
+ secp256k1_pubkey pubkey;
+ secp256k1_ecdsa_signature sig;
+ unsigned char ctmp[32];
+ int32_t ecount;
+ int32_t ecount2;
+ secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
@@ -114,6 +149,13 @@ void run_context_tests(void) {
secp256k1_scalar msg, key, nonce;
secp256k1_scalar sigr, sigs;
+ ecount = 0;
+ ecount2 = 10;
+ secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount2);
+ secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, NULL);
+ CHECK(vrfy->error_callback.fn != sign->error_callback.fn);
+
/*** clone and destroy all of them to make sure cloning was complete ***/
{
secp256k1_context *ctx_tmp;
@@ -124,12 +166,54 @@ void run_context_tests(void) {
ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_destroy(ctx_tmp);
}
+ /* Verify that the error callback makes it across the clone. */
+ CHECK(vrfy->error_callback.fn != sign->error_callback.fn);
+ /* And that it resets back to default. */
+ secp256k1_context_set_error_callback(sign, NULL, NULL);
+ CHECK(vrfy->error_callback.fn == sign->error_callback.fn);
+
/*** attempt to use them ***/
random_scalar_order_test(&msg);
random_scalar_order_test(&key);
secp256k1_ecmult_gen(&both->ecmult_gen_ctx, &pubj, &key);
secp256k1_ge_set_gej(&pub, &pubj);
+ /* Verify context-type checking illegal-argument errors. */
+ memset(ctmp, 1, 32);
+ CHECK(secp256k1_ec_pubkey_create(vrfy, &pubkey, ctmp) == 0);
+ CHECK(ecount == 1);
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_create(sign, &pubkey, ctmp) == 1);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ecdsa_sign(vrfy, &sig, ctmp, ctmp, NULL, NULL) == 0);
+ CHECK(ecount == 2);
+ VG_UNDEF(&sig, sizeof(sig));
+ CHECK(secp256k1_ecdsa_sign(sign, &sig, ctmp, ctmp, NULL, NULL) == 1);
+ VG_CHECK(&sig, sizeof(sig));
+ CHECK(ecount2 == 10);
+ CHECK(secp256k1_ecdsa_verify(sign, &sig, ctmp, &pubkey) == 0);
+ CHECK(ecount2 == 11);
+ CHECK(secp256k1_ecdsa_verify(vrfy, &sig, ctmp, &pubkey) == 1);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ec_pubkey_tweak_add(sign, &pubkey, ctmp) == 0);
+ CHECK(ecount2 == 12);
+ CHECK(secp256k1_ec_pubkey_tweak_add(vrfy, &pubkey, ctmp) == 1);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ec_pubkey_tweak_mul(sign, &pubkey, ctmp) == 0);
+ CHECK(ecount2 == 13);
+ CHECK(secp256k1_ec_pubkey_tweak_mul(vrfy, &pubkey, ctmp) == 1);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_context_randomize(vrfy, ctmp) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_context_randomize(sign, NULL) == 1);
+ CHECK(ecount2 == 13);
+ secp256k1_context_set_illegal_callback(vrfy, NULL, NULL);
+ secp256k1_context_set_illegal_callback(sign, NULL, NULL);
+
+ /* This shouldn't leak memory, due to already-set tests. */
+ secp256k1_ecmult_gen_context_build(&sign->ecmult_gen_ctx, NULL);
+ secp256k1_ecmult_context_build(&vrfy->ecmult_ctx, NULL);
+
/* obtain a working nonce */
do {
random_scalar_order_test(&nonce);
@@ -148,6 +232,8 @@ void run_context_tests(void) {
secp256k1_context_destroy(sign);
secp256k1_context_destroy(vrfy);
secp256k1_context_destroy(both);
+ /* Defined as no-op. */
+ secp256k1_context_destroy(NULL);
}
/***** HASH TESTS *****/
@@ -178,7 +264,7 @@ void run_sha256_tests(void) {
secp256k1_sha256_finalize(&hasher, out);
CHECK(memcmp(out, outputs[i], 32) == 0);
if (strlen(inputs[i]) > 0) {
- int split = secp256k1_rand32() % strlen(inputs[i]);
+ int split = secp256k1_rand_int(strlen(inputs[i]));
secp256k1_sha256_initialize(&hasher);
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
@@ -222,7 +308,7 @@ void run_hmac_sha256_tests(void) {
secp256k1_hmac_sha256_finalize(&hasher, out);
CHECK(memcmp(out, outputs[i], 32) == 0);
if (strlen(inputs[i]) > 0) {
- int split = secp256k1_rand32() % strlen(inputs[i]);
+ int split = secp256k1_rand_int(strlen(inputs[i]));
secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
@@ -273,11 +359,83 @@ void run_rfc6979_hmac_sha256_tests(void) {
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
}
+/***** RANDOM TESTS *****/
+
+void test_rand_bits(int rand32, int bits) {
+ /* (1-1/2^B)^rounds[B] < 1/10^9, so rounds is the number of iterations to
+ * get a false negative chance below once in a billion */
+ static const unsigned int rounds[7] = {1, 30, 73, 156, 322, 653, 1316};
+ /* We try multiplying the results with various odd numbers, which shouldn't
+ * influence the uniform distribution modulo a power of 2. */
+ static const uint32_t mults[6] = {1, 3, 21, 289, 0x9999, 0x80402011};
+ /* We only select up to 6 bits from the output to analyse */
+ unsigned int usebits = bits > 6 ? 6 : bits;
+ unsigned int maxshift = bits - usebits;
+ /* For each of the maxshift+1 usebits-bit sequences inside a bits-bit
+ number, track all observed outcomes, one per bit in a uint64_t. */
+ uint64_t x[6][27] = {{0}};
+ unsigned int i, shift, m;
+ /* Multiply the output of all rand calls with the odd number m, which
+ should not change the uniformity of its distribution. */
+ for (i = 0; i < rounds[usebits]; i++) {
+ uint32_t r = (rand32 ? secp256k1_rand32() : secp256k1_rand_bits(bits));
+ CHECK((((uint64_t)r) >> bits) == 0);
+ for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) {
+ uint32_t rm = r * mults[m];
+ for (shift = 0; shift <= maxshift; shift++) {
+ x[m][shift] |= (((uint64_t)1) << ((rm >> shift) & ((1 << usebits) - 1)));
+ }
+ }
+ }
+ for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) {
+ for (shift = 0; shift <= maxshift; shift++) {
+ /* Test that the lower usebits bits of x[shift] are 1 */
+ CHECK(((~x[m][shift]) << (64 - (1 << usebits))) == 0);
+ }
+ }
+}
+
+/* Subrange must be a whole divisor of range, and at most 64 */
+void test_rand_int(uint32_t range, uint32_t subrange) {
+ /* (1-1/subrange)^rounds < 1/10^9 */
+ int rounds = (subrange * 2073) / 100;
+ int i;
+ uint64_t x = 0;
+ CHECK((range % subrange) == 0);
+ for (i = 0; i < rounds; i++) {
+ uint32_t r = secp256k1_rand_int(range);
+ CHECK(r < range);
+ r = r % subrange;
+ x |= (((uint64_t)1) << r);
+ }
+ /* Test that the lower subrange bits of x are 1. */
+ CHECK(((~x) << (64 - subrange)) == 0);
+}
+
+void run_rand_bits(void) {
+ size_t b;
+ test_rand_bits(1, 32);
+ for (b = 1; b <= 32; b++) {
+ test_rand_bits(0, b);
+ }
+}
+
+void run_rand_int(void) {
+ static const uint32_t ms[] = {1, 3, 17, 1000, 13771, 999999, 33554432};
+ static const uint32_t ss[] = {1, 3, 6, 9, 13, 31, 64};
+ unsigned int m, s;
+ for (m = 0; m < sizeof(ms) / sizeof(ms[0]); m++) {
+ for (s = 0; s < sizeof(ss) / sizeof(ss[0]); s++) {
+ test_rand_int(ms[m] * ss[s], ss[s]);
+ }
+ }
+}
+
/***** NUM TESTS *****/
#ifndef USE_NUM_NONE
void random_num_negate(secp256k1_num *num) {
- if (secp256k1_rand32() & 1) {
+ if (secp256k1_rand_bits(1)) {
secp256k1_num_negate(num);
}
}
@@ -315,16 +473,17 @@ void test_num_negate(void) {
}
void test_num_add_sub(void) {
+ int i;
+ secp256k1_scalar s;
secp256k1_num n1;
secp256k1_num n2;
secp256k1_num n1p2, n2p1, n1m2, n2m1;
- int r = secp256k1_rand32();
random_num_order_test(&n1); /* n1 = R1 */
- if (r & 1) {
+ if (secp256k1_rand_bits(1)) {
random_num_negate(&n1);
}
random_num_order_test(&n2); /* n2 = R2 */
- if (r & 2) {
+ if (secp256k1_rand_bits(1)) {
random_num_negate(&n2);
}
secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */
@@ -341,6 +500,110 @@ void test_num_add_sub(void) {
CHECK(!secp256k1_num_eq(&n2p1, &n1));
secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */
CHECK(secp256k1_num_eq(&n2p1, &n1));
+
+ /* check is_one */
+ secp256k1_scalar_set_int(&s, 1);
+ secp256k1_scalar_get_num(&n1, &s);
+ CHECK(secp256k1_num_is_one(&n1));
+ /* check that 2^n + 1 is never 1 */
+ secp256k1_scalar_get_num(&n2, &s);
+ for (i = 0; i < 250; ++i) {
+ secp256k1_num_add(&n1, &n1, &n1); /* n1 *= 2 */
+ secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = n1 + 1 */
+ CHECK(!secp256k1_num_is_one(&n1p2));
+ }
+}
+
+void test_num_mod(void) {
+ int i;
+ secp256k1_scalar s;
+ secp256k1_num order, n;
+
+ /* check that 0 mod anything is 0 */
+ random_scalar_order_test(&s);
+ secp256k1_scalar_get_num(&order, &s);
+ secp256k1_scalar_set_int(&s, 0);
+ secp256k1_scalar_get_num(&n, &s);
+ secp256k1_num_mod(&n, &order);
+ CHECK(secp256k1_num_is_zero(&n));
+
+ /* check that anything mod 1 is 0 */
+ secp256k1_scalar_set_int(&s, 1);
+ secp256k1_scalar_get_num(&order, &s);
+ secp256k1_scalar_get_num(&n, &s);
+ secp256k1_num_mod(&n, &order);
+ CHECK(secp256k1_num_is_zero(&n));
+
+ /* check that increasing the number past 2^256 does not break this */
+ random_scalar_order_test(&s);
+ secp256k1_scalar_get_num(&n, &s);
+ /* multiply by 2^8, which'll test this case with high probability */
+ for (i = 0; i < 8; ++i) {
+ secp256k1_num_add(&n, &n, &n);
+ }
+ secp256k1_num_mod(&n, &order);
+ CHECK(secp256k1_num_is_zero(&n));
+}
+
+void test_num_jacobi(void) {
+ secp256k1_scalar sqr;
+ secp256k1_scalar small;
+ secp256k1_scalar five; /* five is not a quadratic residue */
+ secp256k1_num order, n;
+ int i;
+ /* squares mod 5 are 1, 4 */
+ const int jacobi5[10] = { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1 };
+
+ /* check some small values with 5 as the order */
+ secp256k1_scalar_set_int(&five, 5);
+ secp256k1_scalar_get_num(&order, &five);
+ for (i = 0; i < 10; ++i) {
+ secp256k1_scalar_set_int(&small, i);
+ secp256k1_scalar_get_num(&n, &small);
+ CHECK(secp256k1_num_jacobi(&n, &order) == jacobi5[i]);
+ }
+
+ /** test large values with 5 as group order */
+ secp256k1_scalar_get_num(&order, &five);
+ /* we first need a scalar which is not a multiple of 5 */
+ do {
+ secp256k1_num fiven;
+ random_scalar_order_test(&sqr);
+ secp256k1_scalar_get_num(&fiven, &five);
+ secp256k1_scalar_get_num(&n, &sqr);
+ secp256k1_num_mod(&n, &fiven);
+ } while (secp256k1_num_is_zero(&n));
+ /* next force it to be a residue. 2 is a nonresidue mod 5 so we can
+ * just multiply by two, i.e. add the number to itself */
+ if (secp256k1_num_jacobi(&n, &order) == -1) {
+ secp256k1_num_add(&n, &n, &n);
+ }
+
+ /* test residue */
+ CHECK(secp256k1_num_jacobi(&n, &order) == 1);
+ /* test nonresidue */
+ secp256k1_num_add(&n, &n, &n);
+ CHECK(secp256k1_num_jacobi(&n, &order) == -1);
+
+ /** test with secp group order as order */
+ secp256k1_scalar_order_get_num(&order);
+ random_scalar_order_test(&sqr);
+ secp256k1_scalar_sqr(&sqr, &sqr);
+ /* test residue */
+ secp256k1_scalar_get_num(&n, &sqr);
+ CHECK(secp256k1_num_jacobi(&n, &order) == 1);
+ /* test nonresidue */
+ secp256k1_scalar_mul(&sqr, &sqr, &five);
+ secp256k1_scalar_get_num(&n, &sqr);
+ CHECK(secp256k1_num_jacobi(&n, &order) == -1);
+ /* test multiple of the order*/
+ CHECK(secp256k1_num_jacobi(&order, &order) == 0);
+
+ /* check one less than the order */
+ secp256k1_scalar_set_int(&small, 1);
+ secp256k1_scalar_get_num(&n, &small);
+ secp256k1_num_sub(&n, &order, &n);
+ CHECK(secp256k1_num_jacobi(&n, &order) == 1); /* sage confirms this is 1 */
}
void run_num_smalltests(void) {
@@ -348,6 +611,8 @@ void run_num_smalltests(void) {
for (i = 0; i < 100*count; i++) {
test_num_negate();
test_num_add_sub();
+ test_num_mod();
+ test_num_jacobi();
}
}
#endif
@@ -409,7 +674,7 @@ void scalar_test(void) {
while (i < 256) {
secp256k1_scalar t;
int j;
- int now = (secp256k1_rand32() % 15) + 1;
+ int now = secp256k1_rand_int(15) + 1;
if (now + i > 256) {
now = 256 - i;
}
@@ -437,7 +702,7 @@ void scalar_test(void) {
}
{
- /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
+ /* Test that multiplying the scalars is equal to multiplying their numbers modulo the order. */
secp256k1_scalar r;
secp256k1_num r2num;
secp256k1_num rnum;
@@ -486,7 +751,7 @@ void scalar_test(void) {
secp256k1_num rnum;
secp256k1_num rnum2;
unsigned char cone[1] = {0x01};
- unsigned int shift = 256 + (secp256k1_rand32() % 257);
+ unsigned int shift = 256 + secp256k1_rand_int(257);
secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
secp256k1_num_mul(&rnum, &s1num, &s2num);
secp256k1_num_shift(&rnum, shift - 1);
@@ -504,7 +769,7 @@ void scalar_test(void) {
random_scalar_order_test(&r);
for (i = 0; i < 100; ++i) {
int low;
- int shift = 1 + (secp256k1_rand32() % 15);
+ int shift = 1 + secp256k1_rand_int(15);
int expected = r.d[0] % (1 << shift);
low = secp256k1_scalar_shr_int(&r, shift);
CHECK(expected == low);
@@ -532,6 +797,10 @@ void scalar_test(void) {
secp256k1_scalar_inverse(&inv, &inv);
/* Inverting one must result in one. */
CHECK(secp256k1_scalar_is_one(&inv));
+#ifndef USE_NUM_NONE
+ secp256k1_scalar_get_num(&invnum, &inv);
+ CHECK(secp256k1_num_is_one(&invnum));
+#endif
}
}
@@ -548,7 +817,7 @@ void scalar_test(void) {
secp256k1_scalar b;
int i;
/* Test add_bit. */
- int bit = secp256k1_rand32() % 256;
+ int bit = secp256k1_rand_bits(8);
secp256k1_scalar_set_int(&b, 1);
CHECK(secp256k1_scalar_is_one(&b));
for (i = 0; i < bit; i++) {
@@ -671,6 +940,600 @@ void run_scalar_tests(void) {
CHECK(secp256k1_scalar_is_zero(&zero));
}
#endif
+
+ {
+ /* Does check_overflow check catch all ones? */
+ static const secp256k1_scalar overflowed = SECP256K1_SCALAR_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
+ );
+ CHECK(secp256k1_scalar_check_overflow(&overflowed));
+ }
+
+ {
+ /* Static test vectors.
+ * These were reduced from ~10^12 random vectors based on comparison-decision
+ * and edge-case coverage on 32-bit and 64-bit implementations.
+ * The responses were generated with Sage 5.9.
+ */
+ secp256k1_scalar x;
+ secp256k1_scalar y;
+ secp256k1_scalar z;
+ secp256k1_scalar zz;
+ secp256k1_scalar one;
+ secp256k1_scalar r1;
+ secp256k1_scalar r2;
+#if defined(USE_SCALAR_INV_NUM)
+ secp256k1_scalar zzv;
+#endif
+ int overflow;
+ unsigned char chal[33][2][32] = {
+ {{0xff, 0xff, 0x03, 0x07, 0x00, 0x00, 0x00, 0x00,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff,
+ 0xff, 0xff, 0x03, 0x00, 0xc0, 0xff, 0xff, 0xff},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff}},
+ {{0xef, 0xff, 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+ {0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0,
+ 0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0x7f, 0x00, 0x80, 0xff}},
+ {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00,
+ 0x80, 0x00, 0x00, 0x80, 0xff, 0x3f, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0x00},
+ {0x00, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff, 0x80,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0xe0,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x7f, 0xff, 0xff, 0xff}},
+ {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0x1e, 0xf8, 0xff, 0xff, 0xff, 0xfd, 0xff},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f,
+ 0x00, 0x00, 0x00, 0xf8, 0xff, 0x03, 0x00, 0xe0,
+ 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0xf0, 0xff,
+ 0xf3, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}},
+ {{0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0x1c, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00,
+ 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0x1f, 0x00, 0x00, 0x80, 0xff, 0xff, 0x3f,
+ 0x00, 0xfe, 0xff, 0xff, 0xff, 0xdf, 0xff, 0xff}},
+ {{0xff, 0xff, 0xff, 0xff, 0x00, 0x0f, 0xfc, 0x9f,
+ 0xff, 0xff, 0xff, 0x00, 0x80, 0x00, 0x00, 0x80,
+ 0xff, 0x0f, 0xfc, 0xff, 0x7f, 0x00, 0x00, 0x00,
+ 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00},
+ {0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
+ 0x00, 0x00, 0xf8, 0xff, 0x0f, 0xc0, 0xff, 0xff,
+ 0xff, 0x1f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0x07, 0x80, 0xff, 0xff, 0xff}},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00,
+ 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff,
+ 0xf7, 0xff, 0xff, 0xef, 0xff, 0xff, 0xff, 0x00,
+ 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xf0},
+ {0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}},
+ {{0x00, 0xf8, 0xff, 0x03, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0x03, 0xc0, 0xff, 0x0f, 0xfc, 0xff},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xe0, 0xff, 0xff,
+ 0xff, 0x01, 0x00, 0x00, 0x00, 0x3f, 0x00, 0xc0,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}},
+ {{0x8f, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0x7f, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
+ {{0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0x03, 0x00, 0x80, 0x00, 0x00, 0x80,
+ 0xff, 0xff, 0xff, 0x00, 0x00, 0x80, 0xff, 0x7f},
+ {0xff, 0xcf, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00,
+ 0x00, 0xc0, 0xff, 0xcf, 0xff, 0xff, 0xff, 0xff,
+ 0xbf, 0xff, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x80, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00}},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff,
+ 0xff, 0xff, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0x00, 0x80, 0x00, 0x00, 0x80,
+ 0xff, 0x01, 0xfc, 0xff, 0x01, 0x00, 0xfe, 0xff},
+ {0xff, 0xff, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00}},
+ {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0x7f, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80},
+ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0xf8, 0xff, 0x01, 0x00, 0xf0, 0xff, 0xff,
+ 0xe0, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0x00},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00,
+ 0xfc, 0xff, 0xff, 0x3f, 0xf0, 0xff, 0xff, 0x3f,
+ 0x00, 0x00, 0xf8, 0x07, 0x00, 0x00, 0x00, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0x0f, 0x7e, 0x00, 0x00}},
+ {{0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0x1f, 0x00, 0x00, 0xfe, 0x07, 0x00},
+ {0x00, 0x00, 0x00, 0xf0, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xfb, 0xff, 0x07, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60}},
+ {{0xff, 0x01, 0x00, 0xff, 0xff, 0xff, 0x0f, 0x00,
+ 0x80, 0x7f, 0xfe, 0xff, 0xff, 0xff, 0xff, 0x03,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
+ {0xff, 0xff, 0x1f, 0x00, 0xf0, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, 0x00, 0x00}},
+ {{0x80, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
+ 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff}},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0xc0, 0xff, 0xff, 0xcf, 0xff, 0x1f, 0x00, 0x00,
+ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80},
+ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x7e,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0xfc, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x00},
+ {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
+ 0xff, 0xff, 0x7f, 0x00, 0x80, 0x00, 0x00, 0x00,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff}},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x80,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00},
+ {0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x00, 0x80,
+ 0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
+ 0xff, 0x7f, 0xf8, 0xff, 0xff, 0x1f, 0x00, 0xfe}},
+ {{0xff, 0xff, 0xff, 0x3f, 0xf8, 0xff, 0xff, 0xff,
+ 0xff, 0x03, 0xfe, 0x01, 0x00, 0x00, 0x00, 0x00,
+ 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
+ 0xff, 0xff, 0xff, 0xff, 0x01, 0x80, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00}},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
+ 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
+ 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40}},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
+ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
+ {{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
+ {0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0xc0,
+ 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, 0x00,
+ 0xf0, 0xff, 0xff, 0xff, 0xff, 0x07, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0x01, 0xff, 0xff, 0xff}},
+ {{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
+ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02}},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
+ 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
+ 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40},
+ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0x7e, 0x00, 0x00, 0xc0, 0xff, 0xff, 0x07, 0x00,
+ 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00,
+ 0xfc, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
+ {0xff, 0x01, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x80,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, 0x00,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}},
+ {{0xff, 0xff, 0xf0, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0xf0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0xe0, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01,
+ 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff},
+ {0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xff,
+ 0xff, 0xff, 0x3f, 0x00, 0xf8, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0x3f, 0x00, 0x00, 0xc0, 0xf1, 0x7f, 0x00}},
+ {{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x80, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0x00},
+ {0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff,
+ 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x80, 0x1f,
+ 0x00, 0x00, 0xfc, 0xff, 0xff, 0x01, 0xff, 0xff}},
+ {{0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x80, 0x00, 0x00, 0x80, 0xff, 0x03, 0xe0, 0x01,
+ 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0xfc, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00},
+ {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
+ 0xfe, 0xff, 0xff, 0xf0, 0x07, 0x00, 0x3c, 0x80,
+ 0xff, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0x07, 0xe0, 0xff, 0x00, 0x00, 0x00}},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0xfc, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0xf8,
+ 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80},
+ {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x0c, 0x80, 0x00,
+ 0x00, 0x00, 0x00, 0xc0, 0x7f, 0xfe, 0xff, 0x1f,
+ 0x00, 0xfe, 0xff, 0x03, 0x00, 0x00, 0xfe, 0xff}},
+ {{0xff, 0xff, 0x81, 0xff, 0xff, 0xff, 0xff, 0x00,
+ 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x83,
+ 0xff, 0xff, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80,
+ 0xff, 0xff, 0x7f, 0x00, 0x00, 0x00, 0x00, 0xf0},
+ {0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x00,
+ 0xf8, 0x07, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xc7, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff}},
+ {{0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
+ 0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb,
+ 0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03},
+ {0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
+ 0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb,
+ 0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03}}
+ };
+ unsigned char res[33][2][32] = {
+ {{0x0c, 0x3b, 0x0a, 0xca, 0x8d, 0x1a, 0x2f, 0xb9,
+ 0x8a, 0x7b, 0x53, 0x5a, 0x1f, 0xc5, 0x22, 0xa1,
+ 0x07, 0x2a, 0x48, 0xea, 0x02, 0xeb, 0xb3, 0xd6,
+ 0x20, 0x1e, 0x86, 0xd0, 0x95, 0xf6, 0x92, 0x35},
+ {0xdc, 0x90, 0x7a, 0x07, 0x2e, 0x1e, 0x44, 0x6d,
+ 0xf8, 0x15, 0x24, 0x5b, 0x5a, 0x96, 0x37, 0x9c,
+ 0x37, 0x7b, 0x0d, 0xac, 0x1b, 0x65, 0x58, 0x49,
+ 0x43, 0xb7, 0x31, 0xbb, 0xa7, 0xf4, 0x97, 0x15}},
+ {{0xf1, 0xf7, 0x3a, 0x50, 0xe6, 0x10, 0xba, 0x22,
+ 0x43, 0x4d, 0x1f, 0x1f, 0x7c, 0x27, 0xca, 0x9c,
+ 0xb8, 0xb6, 0xa0, 0xfc, 0xd8, 0xc0, 0x05, 0x2f,
+ 0xf7, 0x08, 0xe1, 0x76, 0xdd, 0xd0, 0x80, 0xc8},
+ {0xe3, 0x80, 0x80, 0xb8, 0xdb, 0xe3, 0xa9, 0x77,
+ 0x00, 0xb0, 0xf5, 0x2e, 0x27, 0xe2, 0x68, 0xc4,
+ 0x88, 0xe8, 0x04, 0xc1, 0x12, 0xbf, 0x78, 0x59,
+ 0xe6, 0xa9, 0x7c, 0xe1, 0x81, 0xdd, 0xb9, 0xd5}},
+ {{0x96, 0xe2, 0xee, 0x01, 0xa6, 0x80, 0x31, 0xef,
+ 0x5c, 0xd0, 0x19, 0xb4, 0x7d, 0x5f, 0x79, 0xab,
+ 0xa1, 0x97, 0xd3, 0x7e, 0x33, 0xbb, 0x86, 0x55,
+ 0x60, 0x20, 0x10, 0x0d, 0x94, 0x2d, 0x11, 0x7c},
+ {0xcc, 0xab, 0xe0, 0xe8, 0x98, 0x65, 0x12, 0x96,
+ 0x38, 0x5a, 0x1a, 0xf2, 0x85, 0x23, 0x59, 0x5f,
+ 0xf9, 0xf3, 0xc2, 0x81, 0x70, 0x92, 0x65, 0x12,
+ 0x9c, 0x65, 0x1e, 0x96, 0x00, 0xef, 0xe7, 0x63}},
+ {{0xac, 0x1e, 0x62, 0xc2, 0x59, 0xfc, 0x4e, 0x5c,
+ 0x83, 0xb0, 0xd0, 0x6f, 0xce, 0x19, 0xf6, 0xbf,
+ 0xa4, 0xb0, 0xe0, 0x53, 0x66, 0x1f, 0xbf, 0xc9,
+ 0x33, 0x47, 0x37, 0xa9, 0x3d, 0x5d, 0xb0, 0x48},
+ {0x86, 0xb9, 0x2a, 0x7f, 0x8e, 0xa8, 0x60, 0x42,
+ 0x26, 0x6d, 0x6e, 0x1c, 0xa2, 0xec, 0xe0, 0xe5,
+ 0x3e, 0x0a, 0x33, 0xbb, 0x61, 0x4c, 0x9f, 0x3c,
+ 0xd1, 0xdf, 0x49, 0x33, 0xcd, 0x72, 0x78, 0x18}},
+ {{0xf7, 0xd3, 0xcd, 0x49, 0x5c, 0x13, 0x22, 0xfb,
+ 0x2e, 0xb2, 0x2f, 0x27, 0xf5, 0x8a, 0x5d, 0x74,
+ 0xc1, 0x58, 0xc5, 0xc2, 0x2d, 0x9f, 0x52, 0xc6,
+ 0x63, 0x9f, 0xba, 0x05, 0x76, 0x45, 0x7a, 0x63},
+ {0x8a, 0xfa, 0x55, 0x4d, 0xdd, 0xa3, 0xb2, 0xc3,
+ 0x44, 0xfd, 0xec, 0x72, 0xde, 0xef, 0xc0, 0x99,
+ 0xf5, 0x9f, 0xe2, 0x52, 0xb4, 0x05, 0x32, 0x58,
+ 0x57, 0xc1, 0x8f, 0xea, 0xc3, 0x24, 0x5b, 0x94}},
+ {{0x05, 0x83, 0xee, 0xdd, 0x64, 0xf0, 0x14, 0x3b,
+ 0xa0, 0x14, 0x4a, 0x3a, 0x41, 0x82, 0x7c, 0xa7,
+ 0x2c, 0xaa, 0xb1, 0x76, 0xbb, 0x59, 0x64, 0x5f,
+ 0x52, 0xad, 0x25, 0x29, 0x9d, 0x8f, 0x0b, 0xb0},
+ {0x7e, 0xe3, 0x7c, 0xca, 0xcd, 0x4f, 0xb0, 0x6d,
+ 0x7a, 0xb2, 0x3e, 0xa0, 0x08, 0xb9, 0xa8, 0x2d,
+ 0xc2, 0xf4, 0x99, 0x66, 0xcc, 0xac, 0xd8, 0xb9,
+ 0x72, 0x2a, 0x4a, 0x3e, 0x0f, 0x7b, 0xbf, 0xf4}},
+ {{0x8c, 0x9c, 0x78, 0x2b, 0x39, 0x61, 0x7e, 0xf7,
+ 0x65, 0x37, 0x66, 0x09, 0x38, 0xb9, 0x6f, 0x70,
+ 0x78, 0x87, 0xff, 0xcf, 0x93, 0xca, 0x85, 0x06,
+ 0x44, 0x84, 0xa7, 0xfe, 0xd3, 0xa4, 0xe3, 0x7e},
+ {0xa2, 0x56, 0x49, 0x23, 0x54, 0xa5, 0x50, 0xe9,
+ 0x5f, 0xf0, 0x4d, 0xe7, 0xdc, 0x38, 0x32, 0x79,
+ 0x4f, 0x1c, 0xb7, 0xe4, 0xbb, 0xf8, 0xbb, 0x2e,
+ 0x40, 0x41, 0x4b, 0xcc, 0xe3, 0x1e, 0x16, 0x36}},
+ {{0x0c, 0x1e, 0xd7, 0x09, 0x25, 0x40, 0x97, 0xcb,
+ 0x5c, 0x46, 0xa8, 0xda, 0xef, 0x25, 0xd5, 0xe5,
+ 0x92, 0x4d, 0xcf, 0xa3, 0xc4, 0x5d, 0x35, 0x4a,
+ 0xe4, 0x61, 0x92, 0xf3, 0xbf, 0x0e, 0xcd, 0xbe},
+ {0xe4, 0xaf, 0x0a, 0xb3, 0x30, 0x8b, 0x9b, 0x48,
+ 0x49, 0x43, 0xc7, 0x64, 0x60, 0x4a, 0x2b, 0x9e,
+ 0x95, 0x5f, 0x56, 0xe8, 0x35, 0xdc, 0xeb, 0xdc,
+ 0xc7, 0xc4, 0xfe, 0x30, 0x40, 0xc7, 0xbf, 0xa4}},
+ {{0xd4, 0xa0, 0xf5, 0x81, 0x49, 0x6b, 0xb6, 0x8b,
+ 0x0a, 0x69, 0xf9, 0xfe, 0xa8, 0x32, 0xe5, 0xe0,
+ 0xa5, 0xcd, 0x02, 0x53, 0xf9, 0x2c, 0xe3, 0x53,
+ 0x83, 0x36, 0xc6, 0x02, 0xb5, 0xeb, 0x64, 0xb8},
+ {0x1d, 0x42, 0xb9, 0xf9, 0xe9, 0xe3, 0x93, 0x2c,
+ 0x4c, 0xee, 0x6c, 0x5a, 0x47, 0x9e, 0x62, 0x01,
+ 0x6b, 0x04, 0xfe, 0xa4, 0x30, 0x2b, 0x0d, 0x4f,
+ 0x71, 0x10, 0xd3, 0x55, 0xca, 0xf3, 0x5e, 0x80}},
+ {{0x77, 0x05, 0xf6, 0x0c, 0x15, 0x9b, 0x45, 0xe7,
+ 0xb9, 0x11, 0xb8, 0xf5, 0xd6, 0xda, 0x73, 0x0c,
+ 0xda, 0x92, 0xea, 0xd0, 0x9d, 0xd0, 0x18, 0x92,
+ 0xce, 0x9a, 0xaa, 0xee, 0x0f, 0xef, 0xde, 0x30},
+ {0xf1, 0xf1, 0xd6, 0x9b, 0x51, 0xd7, 0x77, 0x62,
+ 0x52, 0x10, 0xb8, 0x7a, 0x84, 0x9d, 0x15, 0x4e,
+ 0x07, 0xdc, 0x1e, 0x75, 0x0d, 0x0c, 0x3b, 0xdb,
+ 0x74, 0x58, 0x62, 0x02, 0x90, 0x54, 0x8b, 0x43}},
+ {{0xa6, 0xfe, 0x0b, 0x87, 0x80, 0x43, 0x67, 0x25,
+ 0x57, 0x5d, 0xec, 0x40, 0x50, 0x08, 0xd5, 0x5d,
+ 0x43, 0xd7, 0xe0, 0xaa, 0xe0, 0x13, 0xb6, 0xb0,
+ 0xc0, 0xd4, 0xe5, 0x0d, 0x45, 0x83, 0xd6, 0x13},
+ {0x40, 0x45, 0x0a, 0x92, 0x31, 0xea, 0x8c, 0x60,
+ 0x8c, 0x1f, 0xd8, 0x76, 0x45, 0xb9, 0x29, 0x00,
+ 0x26, 0x32, 0xd8, 0xa6, 0x96, 0x88, 0xe2, 0xc4,
+ 0x8b, 0xdb, 0x7f, 0x17, 0x87, 0xcc, 0xc8, 0xf2}},
+ {{0xc2, 0x56, 0xe2, 0xb6, 0x1a, 0x81, 0xe7, 0x31,
+ 0x63, 0x2e, 0xbb, 0x0d, 0x2f, 0x81, 0x67, 0xd4,
+ 0x22, 0xe2, 0x38, 0x02, 0x25, 0x97, 0xc7, 0x88,
+ 0x6e, 0xdf, 0xbe, 0x2a, 0xa5, 0x73, 0x63, 0xaa},
+ {0x50, 0x45, 0xe2, 0xc3, 0xbd, 0x89, 0xfc, 0x57,
+ 0xbd, 0x3c, 0xa3, 0x98, 0x7e, 0x7f, 0x36, 0x38,
+ 0x92, 0x39, 0x1f, 0x0f, 0x81, 0x1a, 0x06, 0x51,
+ 0x1f, 0x8d, 0x6a, 0xff, 0x47, 0x16, 0x06, 0x9c}},
+ {{0x33, 0x95, 0xa2, 0x6f, 0x27, 0x5f, 0x9c, 0x9c,
+ 0x64, 0x45, 0xcb, 0xd1, 0x3c, 0xee, 0x5e, 0x5f,
+ 0x48, 0xa6, 0xaf, 0xe3, 0x79, 0xcf, 0xb1, 0xe2,
+ 0xbf, 0x55, 0x0e, 0xa2, 0x3b, 0x62, 0xf0, 0xe4},
+ {0x14, 0xe8, 0x06, 0xe3, 0xbe, 0x7e, 0x67, 0x01,
+ 0xc5, 0x21, 0x67, 0xd8, 0x54, 0xb5, 0x7f, 0xa4,
+ 0xf9, 0x75, 0x70, 0x1c, 0xfd, 0x79, 0xdb, 0x86,
+ 0xad, 0x37, 0x85, 0x83, 0x56, 0x4e, 0xf0, 0xbf}},
+ {{0xbc, 0xa6, 0xe0, 0x56, 0x4e, 0xef, 0xfa, 0xf5,
+ 0x1d, 0x5d, 0x3f, 0x2a, 0x5b, 0x19, 0xab, 0x51,
+ 0xc5, 0x8b, 0xdd, 0x98, 0x28, 0x35, 0x2f, 0xc3,
+ 0x81, 0x4f, 0x5c, 0xe5, 0x70, 0xb9, 0xeb, 0x62},
+ {0xc4, 0x6d, 0x26, 0xb0, 0x17, 0x6b, 0xfe, 0x6c,
+ 0x12, 0xf8, 0xe7, 0xc1, 0xf5, 0x2f, 0xfa, 0x91,
+ 0x13, 0x27, 0xbd, 0x73, 0xcc, 0x33, 0x31, 0x1c,
+ 0x39, 0xe3, 0x27, 0x6a, 0x95, 0xcf, 0xc5, 0xfb}},
+ {{0x30, 0xb2, 0x99, 0x84, 0xf0, 0x18, 0x2a, 0x6e,
+ 0x1e, 0x27, 0xed, 0xa2, 0x29, 0x99, 0x41, 0x56,
+ 0xe8, 0xd4, 0x0d, 0xef, 0x99, 0x9c, 0xf3, 0x58,
+ 0x29, 0x55, 0x1a, 0xc0, 0x68, 0xd6, 0x74, 0xa4},
+ {0x07, 0x9c, 0xe7, 0xec, 0xf5, 0x36, 0x73, 0x41,
+ 0xa3, 0x1c, 0xe5, 0x93, 0x97, 0x6a, 0xfd, 0xf7,
+ 0x53, 0x18, 0xab, 0xaf, 0xeb, 0x85, 0xbd, 0x92,
+ 0x90, 0xab, 0x3c, 0xbf, 0x30, 0x82, 0xad, 0xf6}},
+ {{0xc6, 0x87, 0x8a, 0x2a, 0xea, 0xc0, 0xa9, 0xec,
+ 0x6d, 0xd3, 0xdc, 0x32, 0x23, 0xce, 0x62, 0x19,
+ 0xa4, 0x7e, 0xa8, 0xdd, 0x1c, 0x33, 0xae, 0xd3,
+ 0x4f, 0x62, 0x9f, 0x52, 0xe7, 0x65, 0x46, 0xf4},
+ {0x97, 0x51, 0x27, 0x67, 0x2d, 0xa2, 0x82, 0x87,
+ 0x98, 0xd3, 0xb6, 0x14, 0x7f, 0x51, 0xd3, 0x9a,
+ 0x0b, 0xd0, 0x76, 0x81, 0xb2, 0x4f, 0x58, 0x92,
+ 0xa4, 0x86, 0xa1, 0xa7, 0x09, 0x1d, 0xef, 0x9b}},
+ {{0xb3, 0x0f, 0x2b, 0x69, 0x0d, 0x06, 0x90, 0x64,
+ 0xbd, 0x43, 0x4c, 0x10, 0xe8, 0x98, 0x1c, 0xa3,
+ 0xe1, 0x68, 0xe9, 0x79, 0x6c, 0x29, 0x51, 0x3f,
+ 0x41, 0xdc, 0xdf, 0x1f, 0xf3, 0x60, 0xbe, 0x33},
+ {0xa1, 0x5f, 0xf7, 0x1d, 0xb4, 0x3e, 0x9b, 0x3c,
+ 0xe7, 0xbd, 0xb6, 0x06, 0xd5, 0x60, 0x06, 0x6d,
+ 0x50, 0xd2, 0xf4, 0x1a, 0x31, 0x08, 0xf2, 0xea,
+ 0x8e, 0xef, 0x5f, 0x7d, 0xb6, 0xd0, 0xc0, 0x27}},
+ {{0x62, 0x9a, 0xd9, 0xbb, 0x38, 0x36, 0xce, 0xf7,
+ 0x5d, 0x2f, 0x13, 0xec, 0xc8, 0x2d, 0x02, 0x8a,
+ 0x2e, 0x72, 0xf0, 0xe5, 0x15, 0x9d, 0x72, 0xae,
+ 0xfc, 0xb3, 0x4f, 0x02, 0xea, 0xe1, 0x09, 0xfe},
+ {0x00, 0x00, 0x00, 0x00, 0xfa, 0x0a, 0x3d, 0xbc,
+ 0xad, 0x16, 0x0c, 0xb6, 0xe7, 0x7c, 0x8b, 0x39,
+ 0x9a, 0x43, 0xbb, 0xe3, 0xc2, 0x55, 0x15, 0x14,
+ 0x75, 0xac, 0x90, 0x9b, 0x7f, 0x9a, 0x92, 0x00}},
+ {{0x8b, 0xac, 0x70, 0x86, 0x29, 0x8f, 0x00, 0x23,
+ 0x7b, 0x45, 0x30, 0xaa, 0xb8, 0x4c, 0xc7, 0x8d,
+ 0x4e, 0x47, 0x85, 0xc6, 0x19, 0xe3, 0x96, 0xc2,
+ 0x9a, 0xa0, 0x12, 0xed, 0x6f, 0xd7, 0x76, 0x16},
+ {0x45, 0xaf, 0x7e, 0x33, 0xc7, 0x7f, 0x10, 0x6c,
+ 0x7c, 0x9f, 0x29, 0xc1, 0xa8, 0x7e, 0x15, 0x84,
+ 0xe7, 0x7d, 0xc0, 0x6d, 0xab, 0x71, 0x5d, 0xd0,
+ 0x6b, 0x9f, 0x97, 0xab, 0xcb, 0x51, 0x0c, 0x9f}},
+ {{0x9e, 0xc3, 0x92, 0xb4, 0x04, 0x9f, 0xc8, 0xbb,
+ 0xdd, 0x9e, 0xc6, 0x05, 0xfd, 0x65, 0xec, 0x94,
+ 0x7f, 0x2c, 0x16, 0xc4, 0x40, 0xac, 0x63, 0x7b,
+ 0x7d, 0xb8, 0x0c, 0xe4, 0x5b, 0xe3, 0xa7, 0x0e},
+ {0x43, 0xf4, 0x44, 0xe8, 0xcc, 0xc8, 0xd4, 0x54,
+ 0x33, 0x37, 0x50, 0xf2, 0x87, 0x42, 0x2e, 0x00,
+ 0x49, 0x60, 0x62, 0x02, 0xfd, 0x1a, 0x7c, 0xdb,
+ 0x29, 0x6c, 0x6d, 0x54, 0x53, 0x08, 0xd1, 0xc8}},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
+ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}},
+ {{0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1,
+ 0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0,
+ 0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59,
+ 0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92},
+ {0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1,
+ 0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0,
+ 0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59,
+ 0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}},
+ {{0x28, 0x56, 0xac, 0x0e, 0x4f, 0x98, 0x09, 0xf0,
+ 0x49, 0xfa, 0x7f, 0x84, 0xac, 0x7e, 0x50, 0x5b,
+ 0x17, 0x43, 0x14, 0x89, 0x9c, 0x53, 0xa8, 0x94,
+ 0x30, 0xf2, 0x11, 0x4d, 0x92, 0x14, 0x27, 0xe8},
+ {0x39, 0x7a, 0x84, 0x56, 0x79, 0x9d, 0xec, 0x26,
+ 0x2c, 0x53, 0xc1, 0x94, 0xc9, 0x8d, 0x9e, 0x9d,
+ 0x32, 0x1f, 0xdd, 0x84, 0x04, 0xe8, 0xe2, 0x0a,
+ 0x6b, 0xbe, 0xbb, 0x42, 0x40, 0x67, 0x30, 0x6c}},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ 0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4,
+ 0x40, 0x2d, 0xa1, 0x73, 0x2f, 0xc9, 0xbe, 0xbd},
+ {0x27, 0x59, 0xc7, 0x35, 0x60, 0x71, 0xa6, 0xf1,
+ 0x79, 0xa5, 0xfd, 0x79, 0x16, 0xf3, 0x41, 0xf0,
+ 0x57, 0xb4, 0x02, 0x97, 0x32, 0xe7, 0xde, 0x59,
+ 0xe2, 0x2d, 0x9b, 0x11, 0xea, 0x2c, 0x35, 0x92}},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
+ 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
+ 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40},
+ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}},
+ {{0x1c, 0xc4, 0xf7, 0xda, 0x0f, 0x65, 0xca, 0x39,
+ 0x70, 0x52, 0x92, 0x8e, 0xc3, 0xc8, 0x15, 0xea,
+ 0x7f, 0x10, 0x9e, 0x77, 0x4b, 0x6e, 0x2d, 0xdf,
+ 0xe8, 0x30, 0x9d, 0xda, 0xe8, 0x9a, 0x65, 0xae},
+ {0x02, 0xb0, 0x16, 0xb1, 0x1d, 0xc8, 0x57, 0x7b,
+ 0xa2, 0x3a, 0xa2, 0xa3, 0x38, 0x5c, 0x8f, 0xeb,
+ 0x66, 0x37, 0x91, 0xa8, 0x5f, 0xef, 0x04, 0xf6,
+ 0x59, 0x75, 0xe1, 0xee, 0x92, 0xf6, 0x0e, 0x30}},
+ {{0x8d, 0x76, 0x14, 0xa4, 0x14, 0x06, 0x9f, 0x9a,
+ 0xdf, 0x4a, 0x85, 0xa7, 0x6b, 0xbf, 0x29, 0x6f,
+ 0xbc, 0x34, 0x87, 0x5d, 0xeb, 0xbb, 0x2e, 0xa9,
+ 0xc9, 0x1f, 0x58, 0xd6, 0x9a, 0x82, 0xa0, 0x56},
+ {0xd4, 0xb9, 0xdb, 0x88, 0x1d, 0x04, 0xe9, 0x93,
+ 0x8d, 0x3f, 0x20, 0xd5, 0x86, 0xa8, 0x83, 0x07,
+ 0xdb, 0x09, 0xd8, 0x22, 0x1f, 0x7f, 0xf1, 0x71,
+ 0xc8, 0xe7, 0x5d, 0x47, 0xaf, 0x8b, 0x72, 0xe9}},
+ {{0x83, 0xb9, 0x39, 0xb2, 0xa4, 0xdf, 0x46, 0x87,
+ 0xc2, 0xb8, 0xf1, 0xe6, 0x4c, 0xd1, 0xe2, 0xa9,
+ 0xe4, 0x70, 0x30, 0x34, 0xbc, 0x52, 0x7c, 0x55,
+ 0xa6, 0xec, 0x80, 0xa4, 0xe5, 0xd2, 0xdc, 0x73},
+ {0x08, 0xf1, 0x03, 0xcf, 0x16, 0x73, 0xe8, 0x7d,
+ 0xb6, 0x7e, 0x9b, 0xc0, 0xb4, 0xc2, 0xa5, 0x86,
+ 0x02, 0x77, 0xd5, 0x27, 0x86, 0xa5, 0x15, 0xfb,
+ 0xae, 0x9b, 0x8c, 0xa9, 0xf9, 0xf8, 0xa8, 0x4a}},
+ {{0x8b, 0x00, 0x49, 0xdb, 0xfa, 0xf0, 0x1b, 0xa2,
+ 0xed, 0x8a, 0x9a, 0x7a, 0x36, 0x78, 0x4a, 0xc7,
+ 0xf7, 0xad, 0x39, 0xd0, 0x6c, 0x65, 0x7a, 0x41,
+ 0xce, 0xd6, 0xd6, 0x4c, 0x20, 0x21, 0x6b, 0xc7},
+ {0xc6, 0xca, 0x78, 0x1d, 0x32, 0x6c, 0x6c, 0x06,
+ 0x91, 0xf2, 0x1a, 0xe8, 0x43, 0x16, 0xea, 0x04,
+ 0x3c, 0x1f, 0x07, 0x85, 0xf7, 0x09, 0x22, 0x08,
+ 0xba, 0x13, 0xfd, 0x78, 0x1e, 0x3f, 0x6f, 0x62}},
+ {{0x25, 0x9b, 0x7c, 0xb0, 0xac, 0x72, 0x6f, 0xb2,
+ 0xe3, 0x53, 0x84, 0x7a, 0x1a, 0x9a, 0x98, 0x9b,
+ 0x44, 0xd3, 0x59, 0xd0, 0x8e, 0x57, 0x41, 0x40,
+ 0x78, 0xa7, 0x30, 0x2f, 0x4c, 0x9c, 0xb9, 0x68},
+ {0xb7, 0x75, 0x03, 0x63, 0x61, 0xc2, 0x48, 0x6e,
+ 0x12, 0x3d, 0xbf, 0x4b, 0x27, 0xdf, 0xb1, 0x7a,
+ 0xff, 0x4e, 0x31, 0x07, 0x83, 0xf4, 0x62, 0x5b,
+ 0x19, 0xa5, 0xac, 0xa0, 0x32, 0x58, 0x0d, 0xa7}},
+ {{0x43, 0x4f, 0x10, 0xa4, 0xca, 0xdb, 0x38, 0x67,
+ 0xfa, 0xae, 0x96, 0xb5, 0x6d, 0x97, 0xff, 0x1f,
+ 0xb6, 0x83, 0x43, 0xd3, 0xa0, 0x2d, 0x70, 0x7a,
+ 0x64, 0x05, 0x4c, 0xa7, 0xc1, 0xa5, 0x21, 0x51},
+ {0xe4, 0xf1, 0x23, 0x84, 0xe1, 0xb5, 0x9d, 0xf2,
+ 0xb8, 0x73, 0x8b, 0x45, 0x2b, 0x35, 0x46, 0x38,
+ 0x10, 0x2b, 0x50, 0xf8, 0x8b, 0x35, 0xcd, 0x34,
+ 0xc8, 0x0e, 0xf6, 0xdb, 0x09, 0x35, 0xf0, 0xda}},
+ {{0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34,
+ 0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13,
+ 0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46,
+ 0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5},
+ {0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34,
+ 0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13,
+ 0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46,
+ 0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5}}
+ };
+ secp256k1_scalar_set_int(&one, 1);
+ for (i = 0; i < 33; i++) {
+ secp256k1_scalar_set_b32(&x, chal[i][0], &overflow);
+ CHECK(!overflow);
+ secp256k1_scalar_set_b32(&y, chal[i][1], &overflow);
+ CHECK(!overflow);
+ secp256k1_scalar_set_b32(&r1, res[i][0], &overflow);
+ CHECK(!overflow);
+ secp256k1_scalar_set_b32(&r2, res[i][1], &overflow);
+ CHECK(!overflow);
+ secp256k1_scalar_mul(&z, &x, &y);
+ CHECK(!secp256k1_scalar_check_overflow(&z));
+ CHECK(secp256k1_scalar_eq(&r1, &z));
+ if (!secp256k1_scalar_is_zero(&y)) {
+ secp256k1_scalar_inverse(&zz, &y);
+ CHECK(!secp256k1_scalar_check_overflow(&zz));
+#if defined(USE_SCALAR_INV_NUM)
+ secp256k1_scalar_inverse_var(&zzv, &y);
+ CHECK(secp256k1_scalar_eq(&zzv, &zz));
+#endif
+ secp256k1_scalar_mul(&z, &z, &zz);
+ CHECK(!secp256k1_scalar_check_overflow(&z));
+ CHECK(secp256k1_scalar_eq(&x, &z));
+ secp256k1_scalar_mul(&zz, &zz, &y);
+ CHECK(!secp256k1_scalar_check_overflow(&zz));
+ CHECK(secp256k1_scalar_eq(&one, &zz));
+ }
+ secp256k1_scalar_mul(&z, &x, &x);
+ CHECK(!secp256k1_scalar_check_overflow(&z));
+ secp256k1_scalar_sqr(&zz, &x);
+ CHECK(!secp256k1_scalar_check_overflow(&zz));
+ CHECK(secp256k1_scalar_eq(&zz, &z));
+ CHECK(secp256k1_scalar_eq(&r2, &zz));
+ }
+ }
}
/***** FIELD TESTS *****/
@@ -685,6 +1548,16 @@ void random_fe(secp256k1_fe *x) {
} while(1);
}
+void random_fe_test(secp256k1_fe *x) {
+ unsigned char bin[32];
+ do {
+ secp256k1_rand256_test(bin);
+ if (secp256k1_fe_set_b32(x, bin)) {
+ return;
+ }
+ } while(1);
+}
+
void random_fe_non_zero(secp256k1_fe *nz) {
int tries = 10;
while (--tries >= 0) {
@@ -701,7 +1574,7 @@ void random_fe_non_zero(secp256k1_fe *nz) {
void random_fe_non_square(secp256k1_fe *ns) {
secp256k1_fe r;
random_fe_non_zero(ns);
- if (secp256k1_fe_sqrt_var(&r, ns)) {
+ if (secp256k1_fe_sqrt(&r, ns)) {
secp256k1_fe_negate(ns, ns, 1);
}
}
@@ -860,18 +1733,18 @@ void run_field_inv_all_var(void) {
secp256k1_fe x[16], xi[16], xii[16];
int i;
/* Check it's safe to call for 0 elements */
- secp256k1_fe_inv_all_var(0, xi, x);
+ secp256k1_fe_inv_all_var(xi, x, 0);
for (i = 0; i < count; i++) {
size_t j;
- size_t len = (secp256k1_rand32() & 15) + 1;
+ size_t len = secp256k1_rand_int(15) + 1;
for (j = 0; j < len; j++) {
random_fe_non_zero(&x[j]);
}
- secp256k1_fe_inv_all_var(len, xi, x);
+ secp256k1_fe_inv_all_var(xi, x, len);
for (j = 0; j < len; j++) {
CHECK(check_fe_inverse(&x[j], &xi[j]));
}
- secp256k1_fe_inv_all_var(len, xii, xi);
+ secp256k1_fe_inv_all_var(xii, xi, len);
for (j = 0; j < len; j++) {
CHECK(check_fe_equal(&x[j], &xii[j]));
}
@@ -896,7 +1769,7 @@ void run_sqr(void) {
void test_sqrt(const secp256k1_fe *a, const secp256k1_fe *k) {
secp256k1_fe r1, r2;
- int v = secp256k1_fe_sqrt_var(&r1, a);
+ int v = secp256k1_fe_sqrt(&r1, a);
CHECK((v == 0) == (k == NULL));
if (k != NULL) {
@@ -1002,7 +1875,7 @@ void test_ge(void) {
/* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4).
* The second in each pair of identical points uses a random Z coordinate in the Jacobian form.
* All magnitudes are randomized.
- * All 17*17 combinations of points are added to eachother, using all applicable methods.
+ * All 17*17 combinations of points are added to each other, using all applicable methods.
*
* When the endomorphism code is compiled in, p5 = lambda*p1 and p6 = lambda^2*p1 are added as well.
*/
@@ -1057,7 +1930,7 @@ void test_ge(void) {
zs[i] = gej[i].z;
}
}
- secp256k1_fe_inv_all_var(4 * runs + 1, zinv, zs);
+ secp256k1_fe_inv_all_var(zinv, zs, 4 * runs + 1);
free(zs);
}
@@ -1152,7 +2025,7 @@ void test_ge(void) {
gej_shuffled[i] = gej[i];
}
for (i = 0; i < 4 * runs + 1; i++) {
- int swap = i + secp256k1_rand32() % (4 * runs + 1 - i);
+ int swap = i + secp256k1_rand_int(4 * runs + 1 - i);
if (swap != i) {
secp256k1_gej t = gej_shuffled[i];
gej_shuffled[i] = gej_shuffled[swap];
@@ -1177,8 +2050,8 @@ void test_ge(void) {
secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z);
}
}
- secp256k1_ge_set_table_gej_var(4 * runs + 1, ge_set_table, gej, zr);
- secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej, &ctx->error_callback);
+ secp256k1_ge_set_table_gej_var(ge_set_table, gej, zr, 4 * runs + 1);
+ secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1, &ctx->error_callback);
for (i = 0; i < 4 * runs + 1; i++) {
secp256k1_fe s;
random_fe_non_zero(&s);
@@ -1206,8 +2079,8 @@ void test_add_neg_y_diff_x(void) {
* of the sum to be wrong (since infinity has no xy coordinates).
* HOWEVER, if the x-coordinates are different, infinity is the
* wrong answer, and such degeneracies are exposed. This is the
- * root of https://github.com/bitcoin/secp256k1/issues/257 which
- * this test is a regression test for.
+ * root of https://github.com/bitcoin-core/secp256k1/issues/257
+ * which this test is a regression test for.
*
* These points were generated in sage as
* # secp256k1 params
@@ -1303,6 +2176,79 @@ void run_ec_combine(void) {
}
}
+void test_group_decompress(const secp256k1_fe* x) {
+ /* The input itself, normalized. */
+ secp256k1_fe fex = *x;
+ secp256k1_fe fez;
+ /* Results of set_xquad_var, set_xo_var(..., 0), set_xo_var(..., 1). */
+ secp256k1_ge ge_quad, ge_even, ge_odd;
+ secp256k1_gej gej_quad;
+ /* Return values of the above calls. */
+ int res_quad, res_even, res_odd;
+
+ secp256k1_fe_normalize_var(&fex);
+
+ res_quad = secp256k1_ge_set_xquad(&ge_quad, &fex);
+ res_even = secp256k1_ge_set_xo_var(&ge_even, &fex, 0);
+ res_odd = secp256k1_ge_set_xo_var(&ge_odd, &fex, 1);
+
+ CHECK(res_quad == res_even);
+ CHECK(res_quad == res_odd);
+
+ if (res_quad) {
+ secp256k1_fe_normalize_var(&ge_quad.x);
+ secp256k1_fe_normalize_var(&ge_odd.x);
+ secp256k1_fe_normalize_var(&ge_even.x);
+ secp256k1_fe_normalize_var(&ge_quad.y);
+ secp256k1_fe_normalize_var(&ge_odd.y);
+ secp256k1_fe_normalize_var(&ge_even.y);
+
+ /* No infinity allowed. */
+ CHECK(!ge_quad.infinity);
+ CHECK(!ge_even.infinity);
+ CHECK(!ge_odd.infinity);
+
+ /* Check that the x coordinates check out. */
+ CHECK(secp256k1_fe_equal_var(&ge_quad.x, x));
+ CHECK(secp256k1_fe_equal_var(&ge_even.x, x));
+ CHECK(secp256k1_fe_equal_var(&ge_odd.x, x));
+
+ /* Check that the Y coordinate result in ge_quad is a square. */
+ CHECK(secp256k1_fe_is_quad_var(&ge_quad.y));
+
+ /* Check odd/even Y in ge_odd, ge_even. */
+ CHECK(secp256k1_fe_is_odd(&ge_odd.y));
+ CHECK(!secp256k1_fe_is_odd(&ge_even.y));
+
+ /* Check secp256k1_gej_has_quad_y_var. */
+ secp256k1_gej_set_ge(&gej_quad, &ge_quad);
+ CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
+ do {
+ random_fe_test(&fez);
+ } while (secp256k1_fe_is_zero(&fez));
+ secp256k1_gej_rescale(&gej_quad, &fez);
+ CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
+ secp256k1_gej_neg(&gej_quad, &gej_quad);
+ CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad));
+ do {
+ random_fe_test(&fez);
+ } while (secp256k1_fe_is_zero(&fez));
+ secp256k1_gej_rescale(&gej_quad, &fez);
+ CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad));
+ secp256k1_gej_neg(&gej_quad, &gej_quad);
+ CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
+ }
+}
+
+void run_group_decompress(void) {
+ int i;
+ for (i = 0; i < count * 4; i++) {
+ secp256k1_fe fe;
+ random_fe_test(&fe);
+ test_group_decompress(&fe);
+ }
+}
+
/***** ECMULT TESTS *****/
void run_ecmult_chain(void) {
@@ -1582,9 +2528,7 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
secp256k1_scalar x, shift;
int wnaf[256] = {0};
int i;
-#ifdef USE_ENDOMORPHISM
int skew;
-#endif
secp256k1_scalar num = *number;
secp256k1_scalar_set_int(&x, 0);
@@ -1594,10 +2538,8 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
for (i = 0; i < 16; ++i) {
secp256k1_scalar_shr_int(&num, 8);
}
- skew = secp256k1_wnaf_const(wnaf, num, w);
-#else
- secp256k1_wnaf_const(wnaf, num, w);
#endif
+ skew = secp256k1_wnaf_const(wnaf, num, w);
for (i = WNAF_SIZE(w); i >= 0; --i) {
secp256k1_scalar t;
@@ -1616,10 +2558,8 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
}
secp256k1_scalar_add(&x, &x, &t);
}
-#ifdef USE_ENDOMORPHISM
- /* Skew num because when encoding 128-bit numbers as odd we use an offset */
+ /* Skew num because when encoding numbers as odd we use an offset */
secp256k1_scalar_cadd_bit(&num, skew == 2, 1);
-#endif
CHECK(secp256k1_scalar_eq(&x, &num));
}
@@ -1640,6 +2580,11 @@ void run_wnaf(void) {
test_constant_wnaf_negate(&n);
test_constant_wnaf(&n, 4 + (i % 10));
}
+ secp256k1_scalar_set_int(&n, 0);
+ CHECK(secp256k1_scalar_cond_negate(&n, 1) == -1);
+ CHECK(secp256k1_scalar_is_zero(&n));
+ CHECK(secp256k1_scalar_cond_negate(&n, 0) == 1);
+ CHECK(secp256k1_scalar_is_zero(&n));
}
void test_ecmult_constants(void) {
@@ -1680,7 +2625,7 @@ void run_ecmult_constants(void) {
}
void test_ecmult_gen_blind(void) {
- /* Test ecmult_gen() blinding and confirm that the blinding changes, the affline points match, and the z's don't match. */
+ /* Test ecmult_gen() blinding and confirm that the blinding changes, the affine points match, and the z's don't match. */
secp256k1_scalar key;
secp256k1_scalar b;
unsigned char seed32[32];
@@ -1752,6 +2697,644 @@ void run_endomorphism_tests(void) {
}
#endif
+void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvalid) {
+ unsigned char pubkeyc[65];
+ secp256k1_pubkey pubkey;
+ secp256k1_ge ge;
+ size_t pubkeyclen;
+ int32_t ecount;
+ ecount = 0;
+ secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount);
+ for (pubkeyclen = 3; pubkeyclen <= 65; pubkeyclen++) {
+ /* Smaller sizes are tested exhaustively elsewhere. */
+ int32_t i;
+ memcpy(&pubkeyc[1], input, 64);
+ VG_UNDEF(&pubkeyc[pubkeyclen], 65 - pubkeyclen);
+ for (i = 0; i < 256; i++) {
+ /* Try all type bytes. */
+ int xpass;
+ int ypass;
+ int ysign;
+ pubkeyc[0] = i;
+ /* What sign does this point have? */
+ ysign = (input[63] & 1) + 2;
+ /* For the current type (i) do we expect parsing to work? Handled all of compressed/uncompressed/hybrid. */
+ xpass = xvalid && (pubkeyclen == 33) && ((i & 254) == 2);
+ /* Do we expect a parse and re-serialize as uncompressed to give a matching y? */
+ ypass = xvalid && yvalid && ((i & 4) == ((pubkeyclen == 65) << 2)) &&
+ ((i == 4) || ((i & 251) == ysign)) && ((pubkeyclen == 33) || (pubkeyclen == 65));
+ if (xpass || ypass) {
+ /* These cases must parse. */
+ unsigned char pubkeyo[65];
+ size_t outl;
+ memset(&pubkey, 0, sizeof(pubkey));
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ ecount = 0;
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ outl = 65;
+ VG_UNDEF(pubkeyo, 65);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyo, &outl, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
+ VG_CHECK(pubkeyo, outl);
+ CHECK(outl == 33);
+ CHECK(memcmp(&pubkeyo[1], &pubkeyc[1], 32) == 0);
+ CHECK((pubkeyclen != 33) || (pubkeyo[0] == pubkeyc[0]));
+ if (ypass) {
+ /* This test isn't always done because we decode with alternative signs, so the y won't match. */
+ CHECK(pubkeyo[0] == ysign);
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 1);
+ memset(&pubkey, 0, sizeof(pubkey));
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ secp256k1_pubkey_save(&pubkey, &ge);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ outl = 65;
+ VG_UNDEF(pubkeyo, 65);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyo, &outl, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 1);
+ VG_CHECK(pubkeyo, outl);
+ CHECK(outl == 65);
+ CHECK(pubkeyo[0] == 4);
+ CHECK(memcmp(&pubkeyo[1], input, 64) == 0);
+ }
+ CHECK(ecount == 0);
+ } else {
+ /* These cases must fail to parse. */
+ memset(&pubkey, 0xfe, sizeof(pubkey));
+ ecount = 0;
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(ecount == 0);
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
+ CHECK(ecount == 1);
+ }
+ }
+ }
+ secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
+}
+
+void run_ec_pubkey_parse_test(void) {
+#define SECP256K1_EC_PARSE_TEST_NVALID (12)
+ const unsigned char valid[SECP256K1_EC_PARSE_TEST_NVALID][64] = {
+ {
+ /* Point with leading and trailing zeros in x and y serialization. */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x52,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x64, 0xef, 0xa1, 0x7b, 0x77, 0x61, 0xe1, 0xe4, 0x27, 0x06, 0x98, 0x9f, 0xb4, 0x83,
+ 0xb8, 0xd2, 0xd4, 0x9b, 0xf7, 0x8f, 0xae, 0x98, 0x03, 0xf0, 0x99, 0xb8, 0x34, 0xed, 0xeb, 0x00
+ },
+ {
+ /* Point with x equal to a 3rd root of unity.*/
+ 0x7a, 0xe9, 0x6a, 0x2b, 0x65, 0x7c, 0x07, 0x10, 0x6e, 0x64, 0x47, 0x9e, 0xac, 0x34, 0x34, 0xe9,
+ 0x9c, 0xf0, 0x49, 0x75, 0x12, 0xf5, 0x89, 0x95, 0xc1, 0x39, 0x6c, 0x28, 0x71, 0x95, 0x01, 0xee,
+ 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14,
+ 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee,
+ },
+ {
+ /* Point with largest x. (1/2) */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2c,
+ 0x0e, 0x99, 0x4b, 0x14, 0xea, 0x72, 0xf8, 0xc3, 0xeb, 0x95, 0xc7, 0x1e, 0xf6, 0x92, 0x57, 0x5e,
+ 0x77, 0x50, 0x58, 0x33, 0x2d, 0x7e, 0x52, 0xd0, 0x99, 0x5c, 0xf8, 0x03, 0x88, 0x71, 0xb6, 0x7d,
+ },
+ {
+ /* Point with largest x. (2/2) */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2c,
+ 0xf1, 0x66, 0xb4, 0xeb, 0x15, 0x8d, 0x07, 0x3c, 0x14, 0x6a, 0x38, 0xe1, 0x09, 0x6d, 0xa8, 0xa1,
+ 0x88, 0xaf, 0xa7, 0xcc, 0xd2, 0x81, 0xad, 0x2f, 0x66, 0xa3, 0x07, 0xfb, 0x77, 0x8e, 0x45, 0xb2,
+ },
+ {
+ /* Point with smallest x. (1/2) */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14,
+ 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee,
+ },
+ {
+ /* Point with smallest x. (2/2) */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb,
+ 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41,
+ },
+ {
+ /* Point with largest y. (1/3) */
+ 0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6,
+ 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
+ },
+ {
+ /* Point with largest y. (2/3) */
+ 0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c,
+ 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
+ },
+ {
+ /* Point with largest y. (3/3) */
+ 0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc,
+ 0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
+ },
+ {
+ /* Point with smallest y. (1/3) */
+ 0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6,
+ 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ },
+ {
+ /* Point with smallest y. (2/3) */
+ 0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c,
+ 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ },
+ {
+ /* Point with smallest y. (3/3) */
+ 0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc,
+ 0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
+ }
+ };
+#define SECP256K1_EC_PARSE_TEST_NXVALID (4)
+ const unsigned char onlyxvalid[SECP256K1_EC_PARSE_TEST_NXVALID][64] = {
+ {
+ /* Valid if y overflow ignored (y = 1 mod p). (1/3) */
+ 0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6,
+ 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
+ },
+ {
+ /* Valid if y overflow ignored (y = 1 mod p). (2/3) */
+ 0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c,
+ 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
+ },
+ {
+ /* Valid if y overflow ignored (y = 1 mod p). (3/3)*/
+ 0x14, 0x6d, 0x3b, 0x65, 0xad, 0xd9, 0xf5, 0x4c, 0xcc, 0xa2, 0x85, 0x33, 0xc8, 0x8e, 0x2c, 0xbc,
+ 0x63, 0xf7, 0x44, 0x3e, 0x16, 0x58, 0x78, 0x3a, 0xb4, 0x1f, 0x8e, 0xf9, 0x7c, 0x2a, 0x10, 0xb5,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
+ },
+ {
+ /* x on curve, y is from y^2 = x^3 + 8. */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03
+ }
+ };
+#define SECP256K1_EC_PARSE_TEST_NINVALID (7)
+ const unsigned char invalid[SECP256K1_EC_PARSE_TEST_NINVALID][64] = {
+ {
+ /* x is third root of -8, y is -1 * (x^3+7); also on the curve for y^2 = x^3 + 9. */
+ 0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c,
+ 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ },
+ {
+ /* Valid if x overflow ignored (x = 1 mod p). */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
+ 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14,
+ 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee,
+ },
+ {
+ /* Valid if x overflow ignored (x = 1 mod p). */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x30,
+ 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb,
+ 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41,
+ },
+ {
+ /* x is -1, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 5. */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
+ 0xf4, 0x84, 0x14, 0x5c, 0xb0, 0x14, 0x9b, 0x82, 0x5d, 0xff, 0x41, 0x2f, 0xa0, 0x52, 0xa8, 0x3f,
+ 0xcb, 0x72, 0xdb, 0x61, 0xd5, 0x6f, 0x37, 0x70, 0xce, 0x06, 0x6b, 0x73, 0x49, 0xa2, 0xaa, 0x28,
+ },
+ {
+ /* x is -1, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 5. */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2e,
+ 0x0b, 0x7b, 0xeb, 0xa3, 0x4f, 0xeb, 0x64, 0x7d, 0xa2, 0x00, 0xbe, 0xd0, 0x5f, 0xad, 0x57, 0xc0,
+ 0x34, 0x8d, 0x24, 0x9e, 0x2a, 0x90, 0xc8, 0x8f, 0x31, 0xf9, 0x94, 0x8b, 0xb6, 0x5d, 0x52, 0x07,
+ },
+ {
+ /* x is zero, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 7. */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x8f, 0x53, 0x7e, 0xef, 0xdf, 0xc1, 0x60, 0x6a, 0x07, 0x27, 0xcd, 0x69, 0xb4, 0xa7, 0x33, 0x3d,
+ 0x38, 0xed, 0x44, 0xe3, 0x93, 0x2a, 0x71, 0x79, 0xee, 0xcb, 0x4b, 0x6f, 0xba, 0x93, 0x60, 0xdc,
+ },
+ {
+ /* x is zero, y is the result of the sqrt ladder; also on the curve for y^2 = x^3 - 7. */
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x70, 0xac, 0x81, 0x10, 0x20, 0x3e, 0x9f, 0x95, 0xf8, 0xd8, 0x32, 0x96, 0x4b, 0x58, 0xcc, 0xc2,
+ 0xc7, 0x12, 0xbb, 0x1c, 0x6c, 0xd5, 0x8e, 0x86, 0x11, 0x34, 0xb4, 0x8f, 0x45, 0x6c, 0x9b, 0x53
+ }
+ };
+ const unsigned char pubkeyc[66] = {
+ /* Serialization of G. */
+ 0x04, 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, 0xAC, 0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B,
+ 0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, 0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17,
+ 0x98, 0x48, 0x3A, 0xDA, 0x77, 0x26, 0xA3, 0xC4, 0x65, 0x5D, 0xA4, 0xFB, 0xFC, 0x0E, 0x11, 0x08,
+ 0xA8, 0xFD, 0x17, 0xB4, 0x48, 0xA6, 0x85, 0x54, 0x19, 0x9C, 0x47, 0xD0, 0x8F, 0xFB, 0x10, 0xD4,
+ 0xB8, 0x00
+ };
+ unsigned char sout[65];
+ unsigned char shortkey[2];
+ secp256k1_ge ge;
+ secp256k1_pubkey pubkey;
+ size_t len;
+ int32_t i;
+ int32_t ecount;
+ int32_t ecount2;
+ ecount = 0;
+ /* Nothing should be reading this far into pubkeyc. */
+ VG_UNDEF(&pubkeyc[65], 1);
+ secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount);
+ /* Zero length claimed, fail, zeroize, no illegal arg error. */
+ memset(&pubkey, 0xfe, sizeof(pubkey));
+ ecount = 0;
+ VG_UNDEF(shortkey, 2);
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, shortkey, 0) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(ecount == 0);
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
+ CHECK(ecount == 1);
+ /* Length one claimed, fail, zeroize, no illegal arg error. */
+ for (i = 0; i < 256 ; i++) {
+ memset(&pubkey, 0xfe, sizeof(pubkey));
+ ecount = 0;
+ shortkey[0] = i;
+ VG_UNDEF(&shortkey[1], 1);
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, shortkey, 1) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(ecount == 0);
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
+ CHECK(ecount == 1);
+ }
+ /* Length two claimed, fail, zeroize, no illegal arg error. */
+ for (i = 0; i < 65536 ; i++) {
+ memset(&pubkey, 0xfe, sizeof(pubkey));
+ ecount = 0;
+ shortkey[0] = i & 255;
+ shortkey[1] = i >> 8;
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, shortkey, 2) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(ecount == 0);
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
+ CHECK(ecount == 1);
+ }
+ memset(&pubkey, 0xfe, sizeof(pubkey));
+ ecount = 0;
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ /* 33 bytes claimed on otherwise valid input starting with 0x04, fail, zeroize output, no illegal arg error. */
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 33) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(ecount == 0);
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
+ CHECK(ecount == 1);
+ /* NULL pubkey, illegal arg error. Pubkey isn't rewritten before this step, since it's NULL into the parser. */
+ CHECK(secp256k1_ec_pubkey_parse(ctx, NULL, pubkeyc, 65) == 0);
+ CHECK(ecount == 2);
+ /* NULL input string. Illegal arg and zeroize output. */
+ memset(&pubkey, 0xfe, sizeof(pubkey));
+ ecount = 0;
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, NULL, 65) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(ecount == 1);
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
+ CHECK(ecount == 2);
+ /* 64 bytes claimed on input starting with 0x04, fail, zeroize output, no illegal arg error. */
+ memset(&pubkey, 0xfe, sizeof(pubkey));
+ ecount = 0;
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 64) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(ecount == 0);
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
+ CHECK(ecount == 1);
+ /* 66 bytes claimed, fail, zeroize output, no illegal arg error. */
+ memset(&pubkey, 0xfe, sizeof(pubkey));
+ ecount = 0;
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 66) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(ecount == 0);
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 0);
+ CHECK(ecount == 1);
+ /* Valid parse. */
+ memset(&pubkey, 0, sizeof(pubkey));
+ ecount = 0;
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 65) == 1);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(ecount == 0);
+ VG_UNDEF(&ge, sizeof(ge));
+ CHECK(secp256k1_pubkey_load(ctx, &ge, &pubkey) == 1);
+ VG_CHECK(&ge.x, sizeof(ge.x));
+ VG_CHECK(&ge.y, sizeof(ge.y));
+ VG_CHECK(&ge.infinity, sizeof(ge.infinity));
+ ge_equals_ge(&secp256k1_ge_const_g, &ge);
+ CHECK(ecount == 0);
+ /* secp256k1_ec_pubkey_serialize illegal args. */
+ ecount = 0;
+ len = 65;
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, NULL, &len, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 0);
+ CHECK(ecount == 1);
+ CHECK(len == 0);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, NULL, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 0);
+ CHECK(ecount == 2);
+ len = 65;
+ VG_UNDEF(sout, 65);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, &len, NULL, SECP256K1_EC_UNCOMPRESSED) == 0);
+ VG_CHECK(sout, 65);
+ CHECK(ecount == 3);
+ CHECK(len == 0);
+ len = 65;
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, &len, &pubkey, ~0) == 0);
+ CHECK(ecount == 4);
+ CHECK(len == 0);
+ len = 65;
+ VG_UNDEF(sout, 65);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, sout, &len, &pubkey, SECP256K1_EC_UNCOMPRESSED) == 1);
+ VG_CHECK(sout, 65);
+ CHECK(ecount == 4);
+ CHECK(len == 65);
+ /* Multiple illegal args. Should still set arg error only once. */
+ ecount = 0;
+ ecount2 = 11;
+ CHECK(secp256k1_ec_pubkey_parse(ctx, NULL, NULL, 65) == 0);
+ CHECK(ecount == 1);
+ /* Does the illegal arg callback actually change the behavior? */
+ secp256k1_context_set_illegal_callback(ctx, uncounting_illegal_callback_fn, &ecount2);
+ CHECK(secp256k1_ec_pubkey_parse(ctx, NULL, NULL, 65) == 0);
+ CHECK(ecount == 1);
+ CHECK(ecount2 == 10);
+ secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
+ /* Try a bunch of prefabbed points with all possible encodings. */
+ for (i = 0; i < SECP256K1_EC_PARSE_TEST_NVALID; i++) {
+ ec_pubkey_parse_pointtest(valid[i], 1, 1);
+ }
+ for (i = 0; i < SECP256K1_EC_PARSE_TEST_NXVALID; i++) {
+ ec_pubkey_parse_pointtest(onlyxvalid[i], 1, 0);
+ }
+ for (i = 0; i < SECP256K1_EC_PARSE_TEST_NINVALID; i++) {
+ ec_pubkey_parse_pointtest(invalid[i], 0, 0);
+ }
+}
+
+void run_eckey_edge_case_test(void) {
+ const unsigned char orderc[32] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
+ 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
+ 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41
+ };
+ const unsigned char zeros[sizeof(secp256k1_pubkey)] = {0x00};
+ unsigned char ctmp[33];
+ unsigned char ctmp2[33];
+ secp256k1_pubkey pubkey;
+ secp256k1_pubkey pubkey2;
+ secp256k1_pubkey pubkey_one;
+ secp256k1_pubkey pubkey_negone;
+ const secp256k1_pubkey *pubkeys[3];
+ size_t len;
+ int32_t ecount;
+ /* Group order is too large, reject. */
+ CHECK(secp256k1_ec_seckey_verify(ctx, orderc) == 0);
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, orderc) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ /* Maximum value is too large, reject. */
+ memset(ctmp, 255, 32);
+ CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
+ memset(&pubkey, 1, sizeof(pubkey));
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ /* Zero is too small, reject. */
+ memset(ctmp, 0, 32);
+ CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
+ memset(&pubkey, 1, sizeof(pubkey));
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ /* One must be accepted. */
+ ctmp[31] = 0x01;
+ CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1);
+ memset(&pubkey, 0, sizeof(pubkey));
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ pubkey_one = pubkey;
+ /* Group order + 1 is too large, reject. */
+ memcpy(ctmp, orderc, 32);
+ ctmp[31] = 0x42;
+ CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
+ memset(&pubkey, 1, sizeof(pubkey));
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ /* -1 must be accepted. */
+ ctmp[31] = 0x40;
+ CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1);
+ memset(&pubkey, 0, sizeof(pubkey));
+ VG_UNDEF(&pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1);
+ VG_CHECK(&pubkey, sizeof(pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ pubkey_negone = pubkey;
+ /* Tweak of zero leaves the value changed. */
+ memset(ctmp2, 0, 32);
+ CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, ctmp2) == 1);
+ CHECK(memcmp(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40);
+ memcpy(&pubkey2, &pubkey, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
+ CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ /* Multiply tweak of zero zeroizes the output. */
+ CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, ctmp2) == 0);
+ CHECK(memcmp(zeros, ctmp, 32) == 0);
+ CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, ctmp2) == 0);
+ CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ memcpy(&pubkey, &pubkey2, sizeof(pubkey));
+ /* Overflowing key tweak zeroizes. */
+ memcpy(ctmp, orderc, 32);
+ ctmp[31] = 0x40;
+ CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, orderc) == 0);
+ CHECK(memcmp(zeros, ctmp, 32) == 0);
+ memcpy(ctmp, orderc, 32);
+ ctmp[31] = 0x40;
+ CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, orderc) == 0);
+ CHECK(memcmp(zeros, ctmp, 32) == 0);
+ memcpy(ctmp, orderc, 32);
+ ctmp[31] = 0x40;
+ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, orderc) == 0);
+ CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ memcpy(&pubkey, &pubkey2, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, orderc) == 0);
+ CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ memcpy(&pubkey, &pubkey2, sizeof(pubkey));
+ /* Private key tweaks results in a key of zero. */
+ ctmp2[31] = 1;
+ CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp2, ctmp) == 0);
+ CHECK(memcmp(zeros, ctmp2, 32) == 0);
+ ctmp2[31] = 1;
+ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0);
+ CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ memcpy(&pubkey, &pubkey2, sizeof(pubkey));
+ /* Tweak computation wraps and results in a key of 1. */
+ ctmp2[31] = 2;
+ CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp2, ctmp) == 1);
+ CHECK(memcmp(ctmp2, zeros, 31) == 0 && ctmp2[31] == 1);
+ ctmp2[31] = 2;
+ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
+ ctmp2[31] = 1;
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, ctmp2) == 1);
+ CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ /* Tweak mul * 2 = 1+1. */
+ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
+ ctmp2[31] = 2;
+ CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 1);
+ CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
+ /* Test argument errors. */
+ ecount = 0;
+ secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount);
+ CHECK(ecount == 0);
+ /* Zeroize pubkey on parse error. */
+ memset(&pubkey, 0, 32);
+ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0);
+ CHECK(ecount == 1);
+ CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
+ memcpy(&pubkey, &pubkey2, sizeof(pubkey));
+ memset(&pubkey2, 0, 32);
+ CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 0);
+ CHECK(ecount == 2);
+ CHECK(memcmp(&pubkey2, zeros, sizeof(pubkey2)) == 0);
+ /* Plain argument errors. */
+ ecount = 0;
+ CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1);
+ CHECK(ecount == 0);
+ CHECK(secp256k1_ec_seckey_verify(ctx, NULL) == 0);
+ CHECK(ecount == 1);
+ ecount = 0;
+ memset(ctmp2, 0, 32);
+ ctmp2[31] = 4;
+ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, NULL, ctmp2) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, NULL) == 0);
+ CHECK(ecount == 2);
+ ecount = 0;
+ memset(ctmp2, 0, 32);
+ ctmp2[31] = 4;
+ CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, NULL, ctmp2) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, NULL) == 0);
+ CHECK(ecount == 2);
+ ecount = 0;
+ memset(ctmp2, 0, 32);
+ CHECK(secp256k1_ec_privkey_tweak_add(ctx, NULL, ctmp2) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, NULL) == 0);
+ CHECK(ecount == 2);
+ ecount = 0;
+ memset(ctmp2, 0, 32);
+ ctmp2[31] = 1;
+ CHECK(secp256k1_ec_privkey_tweak_mul(ctx, NULL, ctmp2) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, NULL) == 0);
+ CHECK(ecount == 2);
+ ecount = 0;
+ CHECK(secp256k1_ec_pubkey_create(ctx, NULL, ctmp) == 0);
+ CHECK(ecount == 1);
+ memset(&pubkey, 1, sizeof(pubkey));
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, NULL) == 0);
+ CHECK(ecount == 2);
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ /* secp256k1_ec_pubkey_combine tests. */
+ ecount = 0;
+ pubkeys[0] = &pubkey_one;
+ VG_UNDEF(&pubkeys[0], sizeof(secp256k1_pubkey *));
+ VG_UNDEF(&pubkeys[1], sizeof(secp256k1_pubkey *));
+ VG_UNDEF(&pubkeys[2], sizeof(secp256k1_pubkey *));
+ memset(&pubkey, 255, sizeof(secp256k1_pubkey));
+ VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 0) == 0);
+ VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ec_pubkey_combine(ctx, NULL, pubkeys, 1) == 0);
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(ecount == 2);
+ memset(&pubkey, 255, sizeof(secp256k1_pubkey));
+ VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, NULL, 1) == 0);
+ VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(ecount == 3);
+ pubkeys[0] = &pubkey_negone;
+ memset(&pubkey, 255, sizeof(secp256k1_pubkey));
+ VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 1) == 1);
+ VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ CHECK(ecount == 3);
+ len = 33;
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_negone, SECP256K1_EC_COMPRESSED) == 1);
+ CHECK(memcmp(ctmp, ctmp2, 33) == 0);
+ /* Result is infinity. */
+ pubkeys[0] = &pubkey_one;
+ pubkeys[1] = &pubkey_negone;
+ memset(&pubkey, 255, sizeof(secp256k1_pubkey));
+ VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 0);
+ VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0);
+ CHECK(ecount == 3);
+ /* Passes through infinity but comes out one. */
+ pubkeys[2] = &pubkey_one;
+ memset(&pubkey, 255, sizeof(secp256k1_pubkey));
+ VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 3) == 1);
+ VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ CHECK(ecount == 3);
+ len = 33;
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_one, SECP256K1_EC_COMPRESSED) == 1);
+ CHECK(memcmp(ctmp, ctmp2, 33) == 0);
+ /* Adds to two. */
+ pubkeys[1] = &pubkey_one;
+ memset(&pubkey, 255, sizeof(secp256k1_pubkey));
+ VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 1);
+ VG_CHECK(&pubkey, sizeof(secp256k1_pubkey));
+ CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
+ CHECK(ecount == 3);
+ secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
+}
+
void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) {
secp256k1_scalar nonce;
do {
@@ -1771,7 +3354,7 @@ void test_ecdsa_sign_verify(void) {
random_scalar_order_test(&key);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubj, &key);
secp256k1_ge_set_gej(&pub, &pubj);
- getrec = secp256k1_rand32()&1;
+ getrec = secp256k1_rand_bits(1);
random_sign(&sigr, &sigs, &key, &msg, getrec?&recid:NULL);
if (getrec) {
CHECK(recid >= 0 && recid < 4);
@@ -1828,7 +3411,7 @@ static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char
}
return 1;
}
- /* Retry rate of 6979 is negligible esp. as we only call this in determinstic tests. */
+ /* Retry rate of 6979 is negligible esp. as we only call this in deterministic tests. */
/* If someone does fine a case where it retries for secp256k1, we'd like to know. */
if (counter > 5) {
return 0;
@@ -1846,7 +3429,8 @@ void test_ecdsa_end_to_end(void) {
unsigned char privkey[32];
unsigned char message[32];
unsigned char privkey2[32];
- secp256k1_ecdsa_signature signature[5];
+ secp256k1_ecdsa_signature signature[6];
+ secp256k1_scalar r, s;
unsigned char sig[74];
size_t siglen = 74;
unsigned char pubkeyc[65];
@@ -1869,17 +3453,17 @@ void test_ecdsa_end_to_end(void) {
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1);
/* Verify exporting and importing public key. */
- CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_rand32() % 2) == 1);
+ CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_rand_bits(1) == 1 ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED));
memset(&pubkey, 0, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1);
/* Verify private key import and export. */
- CHECK(secp256k1_ec_privkey_export(ctx, seckey, &seckeylen, privkey, (secp256k1_rand32() % 2) == 1) ? SECP256K1_EC_COMPRESSED : 0);
- CHECK(secp256k1_ec_privkey_import(ctx, privkey2, seckey, seckeylen) == 1);
+ CHECK(ec_privkey_export_der(ctx, seckey, &seckeylen, privkey, secp256k1_rand_bits(1) == 1));
+ CHECK(ec_privkey_import_der(ctx, privkey2, seckey, seckeylen) == 1);
CHECK(memcmp(privkey, privkey2, 32) == 0);
/* Optionally tweak the keys using addition. */
- if (secp256k1_rand32() % 3 == 0) {
+ if (secp256k1_rand_int(3) == 0) {
int ret1;
int ret2;
unsigned char rnd[32];
@@ -1896,7 +3480,7 @@ void test_ecdsa_end_to_end(void) {
}
/* Optionally tweak the keys using multiplication. */
- if (secp256k1_rand32() % 3 == 0) {
+ if (secp256k1_rand_int(3) == 0) {
int ret1;
int ret2;
unsigned char rnd[32];
@@ -1933,6 +3517,22 @@ void test_ecdsa_end_to_end(void) {
CHECK(secp256k1_ecdsa_verify(ctx, &signature[1], message, &pubkey) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, &signature[2], message, &pubkey) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, &signature[3], message, &pubkey) == 1);
+ /* Test lower-S form, malleate, verify and fail, test again, malleate again */
+ CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[0]));
+ secp256k1_ecdsa_signature_load(ctx, &r, &s, &signature[0]);
+ secp256k1_scalar_negate(&s, &s);
+ secp256k1_ecdsa_signature_save(&signature[5], &r, &s);
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 0);
+ CHECK(secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5]));
+ CHECK(secp256k1_ecdsa_signature_normalize(ctx, &signature[5], &signature[5]));
+ CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5]));
+ CHECK(!secp256k1_ecdsa_signature_normalize(ctx, &signature[5], &signature[5]));
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 1);
+ secp256k1_scalar_negate(&s, &s);
+ secp256k1_ecdsa_signature_save(&signature[5], &r, &s);
+ CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5]));
+ CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 1);
+ CHECK(memcmp(&signature[5], &signature[0], 64) == 0);
/* Serialize/parse DER and verify again */
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
@@ -1942,7 +3542,7 @@ void test_ecdsa_end_to_end(void) {
/* Serialize/destroy/parse DER and verify again. */
siglen = 74;
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
- sig[secp256k1_rand32() % siglen] += 1 + (secp256k1_rand32() % 255);
+ sig[secp256k1_rand_int(siglen)] += 1 + secp256k1_rand_int(255);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 0 ||
secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 0);
}
@@ -1952,23 +3552,18 @@ void test_random_pubkeys(void) {
secp256k1_ge elem2;
unsigned char in[65];
/* Generate some randomly sized pubkeys. */
- uint32_t r = secp256k1_rand32();
- size_t len = (r & 3) == 0 ? 65 : 33;
- r>>=2;
- if ((r & 3) == 0) {
- len = (r & 252) >> 3;
+ size_t len = secp256k1_rand_bits(2) == 0 ? 65 : 33;
+ if (secp256k1_rand_bits(2) == 0) {
+ len = secp256k1_rand_bits(6);
}
- r>>=8;
if (len == 65) {
- in[0] = (r & 2) ? 4 : ((r & 1)? 6 : 7);
+ in[0] = secp256k1_rand_bits(1) ? 4 : (secp256k1_rand_bits(1) ? 6 : 7);
} else {
- in[0] = (r & 1) ? 2 : 3;
+ in[0] = secp256k1_rand_bits(1) ? 2 : 3;
}
- r>>=2;
- if ((r & 7) == 0) {
- in[0] = (r & 2040) >> 3;
+ if (secp256k1_rand_bits(3) == 0) {
+ in[0] = secp256k1_rand_bits(8);
}
- r>>=11;
if (len > 1) {
secp256k1_rand256(&in[1]);
}
@@ -1982,7 +3577,7 @@ void test_random_pubkeys(void) {
size_t size = len;
firstb = in[0];
/* If the pubkey can be parsed, it should round-trip... */
- CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, (len == 33) ? SECP256K1_EC_COMPRESSED : 0));
+ CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33));
CHECK(size == len);
CHECK(memcmp(&in[1], &out[1], len-1) == 0);
/* ... except for the type of hybrid inputs. */
@@ -1995,7 +3590,7 @@ void test_random_pubkeys(void) {
CHECK(secp256k1_eckey_pubkey_parse(&elem2, in, size));
ge_equals_ge(&elem,&elem2);
/* Check that the X9.62 hybrid type is checked. */
- in[0] = (r & 1) ? 6 : 7;
+ in[0] = secp256k1_rand_bits(1) ? 6 : 7;
res = secp256k1_eckey_pubkey_parse(&elem2, in, size);
if (firstb == 2 || firstb == 3) {
if (in[0] == firstb + 4) {
@@ -2026,6 +3621,334 @@ void run_ecdsa_end_to_end(void) {
}
}
+int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_der, int certainly_not_der) {
+ static const unsigned char zeroes[32] = {0};
+#ifdef ENABLE_OPENSSL_TESTS
+ static const unsigned char max_scalar[32] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
+ 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
+ 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40
+ };
+#endif
+
+ int ret = 0;
+
+ secp256k1_ecdsa_signature sig_der;
+ unsigned char roundtrip_der[2048];
+ unsigned char compact_der[64];
+ size_t len_der = 2048;
+ int parsed_der = 0, valid_der = 0, roundtrips_der = 0;
+
+ secp256k1_ecdsa_signature sig_der_lax;
+ unsigned char roundtrip_der_lax[2048];
+ unsigned char compact_der_lax[64];
+ size_t len_der_lax = 2048;
+ int parsed_der_lax = 0, valid_der_lax = 0, roundtrips_der_lax = 0;
+
+#ifdef ENABLE_OPENSSL_TESTS
+ ECDSA_SIG *sig_openssl;
+ const unsigned char *sigptr;
+ unsigned char roundtrip_openssl[2048];
+ int len_openssl = 2048;
+ int parsed_openssl, valid_openssl = 0, roundtrips_openssl = 0;
+#endif
+
+ parsed_der = secp256k1_ecdsa_signature_parse_der(ctx, &sig_der, sig, siglen);
+ if (parsed_der) {
+ ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der, &sig_der)) << 0;
+ valid_der = (memcmp(compact_der, zeroes, 32) != 0) && (memcmp(compact_der + 32, zeroes, 32) != 0);
+ }
+ if (valid_der) {
+ ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der, &len_der, &sig_der)) << 1;
+ roundtrips_der = (len_der == siglen) && memcmp(roundtrip_der, sig, siglen) == 0;
+ }
+
+ parsed_der_lax = ecdsa_signature_parse_der_lax(ctx, &sig_der_lax, sig, siglen);
+ if (parsed_der_lax) {
+ ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der_lax, &sig_der_lax)) << 10;
+ valid_der_lax = (memcmp(compact_der_lax, zeroes, 32) != 0) && (memcmp(compact_der_lax + 32, zeroes, 32) != 0);
+ }
+ if (valid_der_lax) {
+ ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der_lax, &len_der_lax, &sig_der_lax)) << 11;
+ roundtrips_der_lax = (len_der_lax == siglen) && memcmp(roundtrip_der_lax, sig, siglen) == 0;
+ }
+
+ if (certainly_der) {
+ ret |= (!parsed_der) << 2;
+ }
+ if (certainly_not_der) {
+ ret |= (parsed_der) << 17;
+ }
+ if (valid_der) {
+ ret |= (!roundtrips_der) << 3;
+ }
+
+ if (valid_der) {
+ ret |= (!roundtrips_der_lax) << 12;
+ ret |= (len_der != len_der_lax) << 13;
+ ret |= (memcmp(roundtrip_der_lax, roundtrip_der, len_der) != 0) << 14;
+ }
+ ret |= (roundtrips_der != roundtrips_der_lax) << 15;
+ if (parsed_der) {
+ ret |= (!parsed_der_lax) << 16;
+ }
+
+#ifdef ENABLE_OPENSSL_TESTS
+ sig_openssl = ECDSA_SIG_new();
+ sigptr = sig;
+ parsed_openssl = (d2i_ECDSA_SIG(&sig_openssl, &sigptr, siglen) != NULL);
+ if (parsed_openssl) {
+ valid_openssl = !BN_is_negative(sig_openssl->r) && !BN_is_negative(sig_openssl->s) && BN_num_bits(sig_openssl->r) > 0 && BN_num_bits(sig_openssl->r) <= 256 && BN_num_bits(sig_openssl->s) > 0 && BN_num_bits(sig_openssl->s) <= 256;
+ if (valid_openssl) {
+ unsigned char tmp[32] = {0};
+ BN_bn2bin(sig_openssl->r, tmp + 32 - BN_num_bytes(sig_openssl->r));
+ valid_openssl = memcmp(tmp, max_scalar, 32) < 0;
+ }
+ if (valid_openssl) {
+ unsigned char tmp[32] = {0};
+ BN_bn2bin(sig_openssl->s, tmp + 32 - BN_num_bytes(sig_openssl->s));
+ valid_openssl = memcmp(tmp, max_scalar, 32) < 0;
+ }
+ }
+ len_openssl = i2d_ECDSA_SIG(sig_openssl, NULL);
+ if (len_openssl <= 2048) {
+ unsigned char *ptr = roundtrip_openssl;
+ CHECK(i2d_ECDSA_SIG(sig_openssl, &ptr) == len_openssl);
+ roundtrips_openssl = valid_openssl && ((size_t)len_openssl == siglen) && (memcmp(roundtrip_openssl, sig, siglen) == 0);
+ } else {
+ len_openssl = 0;
+ }
+ ECDSA_SIG_free(sig_openssl);
+
+ ret |= (parsed_der && !parsed_openssl) << 4;
+ ret |= (valid_der && !valid_openssl) << 5;
+ ret |= (roundtrips_openssl && !parsed_der) << 6;
+ ret |= (roundtrips_der != roundtrips_openssl) << 7;
+ if (roundtrips_openssl) {
+ ret |= (len_der != (size_t)len_openssl) << 8;
+ ret |= (memcmp(roundtrip_der, roundtrip_openssl, len_der) != 0) << 9;
+ }
+#endif
+ return ret;
+}
+
+static void assign_big_endian(unsigned char *ptr, size_t ptrlen, uint32_t val) {
+ size_t i;
+ for (i = 0; i < ptrlen; i++) {
+ int shift = ptrlen - 1 - i;
+ if (shift >= 4) {
+ ptr[i] = 0;
+ } else {
+ ptr[i] = (val >> shift) & 0xFF;
+ }
+ }
+}
+
+static void damage_array(unsigned char *sig, size_t *len) {
+ int pos;
+ int action = secp256k1_rand_bits(3);
+ if (action < 1 && *len > 3) {
+ /* Delete a byte. */
+ pos = secp256k1_rand_int(*len);
+ memmove(sig + pos, sig + pos + 1, *len - pos - 1);
+ (*len)--;
+ return;
+ } else if (action < 2 && *len < 2048) {
+ /* Insert a byte. */
+ pos = secp256k1_rand_int(1 + *len);
+ memmove(sig + pos + 1, sig + pos, *len - pos);
+ sig[pos] = secp256k1_rand_bits(8);
+ (*len)++;
+ return;
+ } else if (action < 4) {
+ /* Modify a byte. */
+ sig[secp256k1_rand_int(*len)] += 1 + secp256k1_rand_int(255);
+ return;
+ } else { /* action < 8 */
+ /* Modify a bit. */
+ sig[secp256k1_rand_int(*len)] ^= 1 << secp256k1_rand_bits(3);
+ return;
+ }
+}
+
+static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly_der, int* certainly_not_der) {
+ int der;
+ int nlow[2], nlen[2], nlenlen[2], nhbit[2], nhbyte[2], nzlen[2];
+ size_t tlen, elen, glen;
+ int indet;
+ int n;
+
+ *len = 0;
+ der = secp256k1_rand_bits(2) == 0;
+ *certainly_der = der;
+ *certainly_not_der = 0;
+ indet = der ? 0 : secp256k1_rand_int(10) == 0;
+
+ for (n = 0; n < 2; n++) {
+ /* We generate two classes of numbers: nlow==1 "low" ones (up to 32 bytes), nlow==0 "high" ones (32 bytes with 129 top bits set, or larger than 32 bytes) */
+ nlow[n] = der ? 1 : (secp256k1_rand_bits(3) != 0);
+ /* The length of the number in bytes (the first byte of which will always be nonzero) */
+ nlen[n] = nlow[n] ? secp256k1_rand_int(33) : 32 + secp256k1_rand_int(200) * secp256k1_rand_int(8) / 8;
+ CHECK(nlen[n] <= 232);
+ /* The top bit of the number. */
+ nhbit[n] = (nlow[n] == 0 && nlen[n] == 32) ? 1 : (nlen[n] == 0 ? 0 : secp256k1_rand_bits(1));
+ /* The top byte of the number (after the potential hardcoded 16 0xFF characters for "high" 32 bytes numbers) */
+ nhbyte[n] = nlen[n] == 0 ? 0 : (nhbit[n] ? 128 + secp256k1_rand_bits(7) : 1 + secp256k1_rand_int(127));
+ /* The number of zero bytes in front of the number (which is 0 or 1 in case of DER, otherwise we extend up to 300 bytes) */
+ nzlen[n] = der ? ((nlen[n] == 0 || nhbit[n]) ? 1 : 0) : (nlow[n] ? secp256k1_rand_int(3) : secp256k1_rand_int(300 - nlen[n]) * secp256k1_rand_int(8) / 8);
+ if (nzlen[n] > ((nlen[n] == 0 || nhbit[n]) ? 1 : 0)) {
+ *certainly_not_der = 1;
+ }
+ CHECK(nlen[n] + nzlen[n] <= 300);
+ /* The length of the length descriptor for the number. 0 means short encoding, anything else is long encoding. */
+ nlenlen[n] = nlen[n] + nzlen[n] < 128 ? 0 : (nlen[n] + nzlen[n] < 256 ? 1 : 2);
+ if (!der) {
+ /* nlenlen[n] max 127 bytes */
+ int add = secp256k1_rand_int(127 - nlenlen[n]) * secp256k1_rand_int(16) * secp256k1_rand_int(16) / 256;
+ nlenlen[n] += add;
+ if (add != 0) {
+ *certainly_not_der = 1;
+ }
+ }
+ CHECK(nlen[n] + nzlen[n] + nlenlen[n] <= 427);
+ }
+
+ /* The total length of the data to go, so far */
+ tlen = 2 + nlenlen[0] + nlen[0] + nzlen[0] + 2 + nlenlen[1] + nlen[1] + nzlen[1];
+ CHECK(tlen <= 856);
+
+ /* The length of the garbage inside the tuple. */
+ elen = (der || indet) ? 0 : secp256k1_rand_int(980 - tlen) * secp256k1_rand_int(8) / 8;
+ if (elen != 0) {
+ *certainly_not_der = 1;
+ }
+ tlen += elen;
+ CHECK(tlen <= 980);
+
+ /* The length of the garbage after the end of the tuple. */
+ glen = der ? 0 : secp256k1_rand_int(990 - tlen) * secp256k1_rand_int(8) / 8;
+ if (glen != 0) {
+ *certainly_not_der = 1;
+ }
+ CHECK(tlen + glen <= 990);
+
+ /* Write the tuple header. */
+ sig[(*len)++] = 0x30;
+ if (indet) {
+ /* Indeterminate length */
+ sig[(*len)++] = 0x80;
+ *certainly_not_der = 1;
+ } else {
+ int tlenlen = tlen < 128 ? 0 : (tlen < 256 ? 1 : 2);
+ if (!der) {
+ int add = secp256k1_rand_int(127 - tlenlen) * secp256k1_rand_int(16) * secp256k1_rand_int(16) / 256;
+ tlenlen += add;
+ if (add != 0) {
+ *certainly_not_der = 1;
+ }
+ }
+ if (tlenlen == 0) {
+ /* Short length notation */
+ sig[(*len)++] = tlen;
+ } else {
+ /* Long length notation */
+ sig[(*len)++] = 128 + tlenlen;
+ assign_big_endian(sig + *len, tlenlen, tlen);
+ *len += tlenlen;
+ }
+ tlen += tlenlen;
+ }
+ tlen += 2;
+ CHECK(tlen + glen <= 1119);
+
+ for (n = 0; n < 2; n++) {
+ /* Write the integer header. */
+ sig[(*len)++] = 0x02;
+ if (nlenlen[n] == 0) {
+ /* Short length notation */
+ sig[(*len)++] = nlen[n] + nzlen[n];
+ } else {
+ /* Long length notation. */
+ sig[(*len)++] = 128 + nlenlen[n];
+ assign_big_endian(sig + *len, nlenlen[n], nlen[n] + nzlen[n]);
+ *len += nlenlen[n];
+ }
+ /* Write zero padding */
+ while (nzlen[n] > 0) {
+ sig[(*len)++] = 0x00;
+ nzlen[n]--;
+ }
+ if (nlen[n] == 32 && !nlow[n]) {
+ /* Special extra 16 0xFF bytes in "high" 32-byte numbers */
+ int i;
+ for (i = 0; i < 16; i++) {
+ sig[(*len)++] = 0xFF;
+ }
+ nlen[n] -= 16;
+ }
+ /* Write first byte of number */
+ if (nlen[n] > 0) {
+ sig[(*len)++] = nhbyte[n];
+ nlen[n]--;
+ }
+ /* Generate remaining random bytes of number */
+ secp256k1_rand_bytes_test(sig + *len, nlen[n]);
+ *len += nlen[n];
+ nlen[n] = 0;
+ }
+
+ /* Generate random garbage inside tuple. */
+ secp256k1_rand_bytes_test(sig + *len, elen);
+ *len += elen;
+
+ /* Generate end-of-contents bytes. */
+ if (indet) {
+ sig[(*len)++] = 0;
+ sig[(*len)++] = 0;
+ tlen += 2;
+ }
+ CHECK(tlen + glen <= 1121);
+
+ /* Generate random garbage outside tuple. */
+ secp256k1_rand_bytes_test(sig + *len, glen);
+ *len += glen;
+ tlen += glen;
+ CHECK(tlen <= 1121);
+ CHECK(tlen == *len);
+}
+
+void run_ecdsa_der_parse(void) {
+ int i,j;
+ for (i = 0; i < 200 * count; i++) {
+ unsigned char buffer[2048];
+ size_t buflen = 0;
+ int certainly_der = 0;
+ int certainly_not_der = 0;
+ random_ber_signature(buffer, &buflen, &certainly_der, &certainly_not_der);
+ CHECK(buflen <= 2048);
+ for (j = 0; j < 16; j++) {
+ int ret = 0;
+ if (j > 0) {
+ damage_array(buffer, &buflen);
+ /* We don't know anything anymore about the DERness of the result */
+ certainly_der = 0;
+ certainly_not_der = 0;
+ }
+ ret = test_ecdsa_der_parse(buffer, buflen, certainly_der, certainly_not_der);
+ if (ret != 0) {
+ size_t k;
+ fprintf(stderr, "Failure %x on ", ret);
+ for (k = 0; k < buflen; k++) {
+ fprintf(stderr, "%02x ", buffer[k]);
+ }
+ fprintf(stderr, "\n");
+ }
+ CHECK(ret == 0);
+ }
+ }
+}
+
/* Tests several edge cases. */
void test_ecdsa_edge_cases(void) {
int t;
@@ -2047,11 +3970,159 @@ void test_ecdsa_edge_cases(void) {
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
}
- /*Signature where s would be zero.*/
+ /* Verify signature with r of zero fails. */
{
- unsigned char signature[72];
+ const unsigned char pubkey_mods_zero[33] = {
+ 0x02, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xfe, 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0,
+ 0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41,
+ 0x41
+ };
+ secp256k1_ge key;
+ secp256k1_scalar msg;
+ secp256k1_scalar sr, ss;
+ secp256k1_scalar_set_int(&ss, 1);
+ secp256k1_scalar_set_int(&msg, 0);
+ secp256k1_scalar_set_int(&sr, 0);
+ CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey_mods_zero, 33));
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
+ }
+
+ /* Verify signature with s of zero fails. */
+ {
+ const unsigned char pubkey[33] = {
+ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x01
+ };
+ secp256k1_ge key;
+ secp256k1_scalar msg;
+ secp256k1_scalar sr, ss;
+ secp256k1_scalar_set_int(&ss, 0);
+ secp256k1_scalar_set_int(&msg, 0);
+ secp256k1_scalar_set_int(&sr, 1);
+ CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33));
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
+ }
+
+ /* Verify signature with message 0 passes. */
+ {
+ const unsigned char pubkey[33] = {
+ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x02
+ };
+ const unsigned char pubkey2[33] = {
+ 0x02, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xfe, 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0,
+ 0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41,
+ 0x43
+ };
+ secp256k1_ge key;
+ secp256k1_ge key2;
+ secp256k1_scalar msg;
+ secp256k1_scalar sr, ss;
+ secp256k1_scalar_set_int(&ss, 2);
+ secp256k1_scalar_set_int(&msg, 0);
+ secp256k1_scalar_set_int(&sr, 2);
+ CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33));
+ CHECK(secp256k1_eckey_pubkey_parse(&key2, pubkey2, 33));
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1);
+ secp256k1_scalar_negate(&ss, &ss);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1);
+ secp256k1_scalar_set_int(&ss, 1);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 0);
+ }
+
+ /* Verify signature with message 1 passes. */
+ {
+ const unsigned char pubkey[33] = {
+ 0x02, 0x14, 0x4e, 0x5a, 0x58, 0xef, 0x5b, 0x22,
+ 0x6f, 0xd2, 0xe2, 0x07, 0x6a, 0x77, 0xcf, 0x05,
+ 0xb4, 0x1d, 0xe7, 0x4a, 0x30, 0x98, 0x27, 0x8c,
+ 0x93, 0xe6, 0xe6, 0x3c, 0x0b, 0xc4, 0x73, 0x76,
+ 0x25
+ };
+ const unsigned char pubkey2[33] = {
+ 0x02, 0x8a, 0xd5, 0x37, 0xed, 0x73, 0xd9, 0x40,
+ 0x1d, 0xa0, 0x33, 0xd2, 0xdc, 0xf0, 0xaf, 0xae,
+ 0x34, 0xcf, 0x5f, 0x96, 0x4c, 0x73, 0x28, 0x0f,
+ 0x92, 0xc0, 0xf6, 0x9d, 0xd9, 0xb2, 0x09, 0x10,
+ 0x62
+ };
+ const unsigned char csr[32] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ 0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4,
+ 0x40, 0x2d, 0xa1, 0x72, 0x2f, 0xc9, 0xba, 0xeb
+ };
+ secp256k1_ge key;
+ secp256k1_ge key2;
+ secp256k1_scalar msg;
+ secp256k1_scalar sr, ss;
+ secp256k1_scalar_set_int(&ss, 1);
+ secp256k1_scalar_set_int(&msg, 1);
+ secp256k1_scalar_set_b32(&sr, csr, NULL);
+ CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33));
+ CHECK(secp256k1_eckey_pubkey_parse(&key2, pubkey2, 33));
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1);
+ secp256k1_scalar_negate(&ss, &ss);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 1);
+ secp256k1_scalar_set_int(&ss, 2);
+ secp256k1_scalar_inverse_var(&ss, &ss);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key2, &msg) == 0);
+ }
+
+ /* Verify signature with message -1 passes. */
+ {
+ const unsigned char pubkey[33] = {
+ 0x03, 0xaf, 0x97, 0xff, 0x7d, 0x3a, 0xf6, 0xa0,
+ 0x02, 0x94, 0xbd, 0x9f, 0x4b, 0x2e, 0xd7, 0x52,
+ 0x28, 0xdb, 0x49, 0x2a, 0x65, 0xcb, 0x1e, 0x27,
+ 0x57, 0x9c, 0xba, 0x74, 0x20, 0xd5, 0x1d, 0x20,
+ 0xf1
+ };
+ const unsigned char csr[32] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+ 0x45, 0x51, 0x23, 0x19, 0x50, 0xb7, 0x5f, 0xc4,
+ 0x40, 0x2d, 0xa1, 0x72, 0x2f, 0xc9, 0xba, 0xee
+ };
+ secp256k1_ge key;
+ secp256k1_scalar msg;
+ secp256k1_scalar sr, ss;
+ secp256k1_scalar_set_int(&ss, 1);
+ secp256k1_scalar_set_int(&msg, 1);
+ secp256k1_scalar_negate(&msg, &msg);
+ secp256k1_scalar_set_b32(&sr, csr, NULL);
+ CHECK(secp256k1_eckey_pubkey_parse(&key, pubkey, 33));
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
+ secp256k1_scalar_negate(&ss, &ss);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 1);
+ secp256k1_scalar_set_int(&ss, 3);
+ secp256k1_scalar_inverse_var(&ss, &ss);
+ CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sr, &ss, &key, &msg) == 0);
+ }
+
+ /* Signature where s would be zero. */
+ {
+ secp256k1_pubkey pubkey;
size_t siglen;
- const unsigned char nonce[32] = {
+ int32_t ecount;
+ unsigned char signature[72];
+ static const unsigned char nonce[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
@@ -2075,15 +4146,72 @@ void test_ecdsa_edge_cases(void) {
0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62,
0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9,
};
+ ecount = 0;
+ secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount);
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 0);
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 0);
msg[31] = 0xaa;
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce) == 1);
+ CHECK(ecount == 0);
+ CHECK(secp256k1_ecdsa_sign(ctx, NULL, msg, key, precomputed_nonce_function, nonce2) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, NULL, key, precomputed_nonce_function, nonce2) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, NULL, precomputed_nonce_function, nonce2) == 0);
+ CHECK(ecount == 3);
CHECK(secp256k1_ecdsa_sign(ctx, &sig, msg, key, precomputed_nonce_function, nonce2) == 1);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, key) == 1);
+ CHECK(secp256k1_ecdsa_verify(ctx, NULL, msg, &pubkey) == 0);
+ CHECK(ecount == 4);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, NULL, &pubkey) == 0);
+ CHECK(ecount == 5);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg, NULL) == 0);
+ CHECK(ecount == 6);
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg, &pubkey) == 1);
+ CHECK(ecount == 6);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, NULL) == 0);
+ CHECK(ecount == 7);
+ /* That pubkeyload fails via an ARGCHECK is a little odd but makes sense because pubkeys are an opaque data type. */
+ CHECK(secp256k1_ecdsa_verify(ctx, &sig, msg, &pubkey) == 0);
+ CHECK(ecount == 8);
siglen = 72;
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, NULL, &siglen, &sig) == 0);
+ CHECK(ecount == 9);
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, NULL, &sig) == 0);
+ CHECK(ecount == 10);
+ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, NULL) == 0);
+ CHECK(ecount == 11);
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 1);
+ CHECK(ecount == 11);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, NULL, signature, siglen) == 0);
+ CHECK(ecount == 12);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, NULL, siglen) == 0);
+ CHECK(ecount == 13);
+ CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, signature, siglen) == 1);
+ CHECK(ecount == 13);
siglen = 10;
+ /* Too little room for a signature does not fail via ARGCHECK. */
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 0);
+ CHECK(ecount == 13);
+ ecount = 0;
+ CHECK(secp256k1_ecdsa_signature_normalize(ctx, NULL, NULL) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, NULL, &sig) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, signature, NULL) == 0);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, signature, &sig) == 1);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, NULL, signature) == 0);
+ CHECK(ecount == 4);
+ CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, NULL) == 0);
+ CHECK(ecount == 5);
+ CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, signature) == 1);
+ CHECK(ecount == 5);
+ memset(signature, 255, 64);
+ CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, signature) == 0);
+ CHECK(ecount == 5);
+ secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
}
/* Nonce function corner cases. */
@@ -2116,7 +4244,7 @@ void test_ecdsa_edge_cases(void) {
CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, nonce_function_rfc6979, extra) == 1);
CHECK(!is_empty_signature(&sig2));
CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
- /* The default nonce function is determinstic. */
+ /* The default nonce function is deterministic. */
CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1);
CHECK(!is_empty_signature(&sig2));
CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
@@ -2147,6 +4275,34 @@ void test_ecdsa_edge_cases(void) {
key[0] = 0;
}
+ {
+ /* Check that optional nonce arguments do not have equivalent effect. */
+ const unsigned char zeros[32] = {0};
+ unsigned char nonce[32];
+ unsigned char nonce2[32];
+ unsigned char nonce3[32];
+ unsigned char nonce4[32];
+ VG_UNDEF(nonce,32);
+ VG_UNDEF(nonce2,32);
+ VG_UNDEF(nonce3,32);
+ VG_UNDEF(nonce4,32);
+ CHECK(nonce_function_rfc6979(nonce, zeros, zeros, NULL, NULL, 0) == 1);
+ VG_CHECK(nonce,32);
+ CHECK(nonce_function_rfc6979(nonce2, zeros, zeros, zeros, NULL, 0) == 1);
+ VG_CHECK(nonce2,32);
+ CHECK(nonce_function_rfc6979(nonce3, zeros, zeros, NULL, (void *)zeros, 0) == 1);
+ VG_CHECK(nonce3,32);
+ CHECK(nonce_function_rfc6979(nonce4, zeros, zeros, zeros, (void *)zeros, 0) == 1);
+ VG_CHECK(nonce4,32);
+ CHECK(memcmp(nonce, nonce2, 32) != 0);
+ CHECK(memcmp(nonce, nonce3, 32) != 0);
+ CHECK(memcmp(nonce, nonce4, 32) != 0);
+ CHECK(memcmp(nonce2, nonce3, 32) != 0);
+ CHECK(memcmp(nonce2, nonce4, 32) != 0);
+ CHECK(memcmp(nonce3, nonce4, 32) != 0);
+ }
+
+
/* Privkey export where pubkey is the point at infinity. */
{
unsigned char privkey[300];
@@ -2157,9 +4313,9 @@ void test_ecdsa_edge_cases(void) {
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41,
};
size_t outlen = 300;
- CHECK(!secp256k1_ec_privkey_export(ctx, privkey, &outlen, seckey, 0));
+ CHECK(!ec_privkey_export_der(ctx, privkey, &outlen, seckey, 0));
outlen = 300;
- CHECK(!secp256k1_ec_privkey_export(ctx, privkey, &outlen, seckey, SECP256K1_EC_COMPRESSED));
+ CHECK(!ec_privkey_export_der(ctx, privkey, &outlen, seckey, 1));
}
}
@@ -2168,13 +4324,13 @@ void run_ecdsa_edge_cases(void) {
}
#ifdef ENABLE_OPENSSL_TESTS
-EC_KEY *get_openssl_key(const secp256k1_scalar *key) {
+EC_KEY *get_openssl_key(const unsigned char *key32) {
unsigned char privkey[300];
size_t privkeylen;
const unsigned char* pbegin = privkey;
- int compr = secp256k1_rand32() & 1;
+ int compr = secp256k1_rand_bits(1);
EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
- CHECK(secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, &privkeylen, key, compr ? SECP256K1_EC_COMPRESSED : 0));
+ CHECK(ec_privkey_export_der(ctx, privkey, &privkeylen, key32, compr));
CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
CHECK(EC_KEY_check_key(ec_key));
return ec_key;
@@ -2192,12 +4348,14 @@ void test_ecdsa_openssl(void) {
size_t secp_sigsize = 80;
unsigned char message[32];
unsigned char signature[80];
+ unsigned char key32[32];
secp256k1_rand256_test(message);
secp256k1_scalar_set_b32(&msg, message, NULL);
random_scalar_order_test(&key);
+ secp256k1_scalar_get_b32(key32, &key);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &qj, &key);
secp256k1_ge_set_gej(&q, &qj);
- ec_key = get_openssl_key(&key);
+ ec_key = get_openssl_key(key32);
CHECK(ec_key != NULL);
CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
CHECK(secp256k1_ecdsa_sig_parse(&sigr, &sigs, signature, sigsize));
@@ -2278,12 +4436,14 @@ int main(int argc, char **argv) {
/* initialize */
run_context_tests();
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
-
- if (secp256k1_rand32() & 1) {
+ if (secp256k1_rand_bits(1)) {
secp256k1_rand256(run32);
- CHECK(secp256k1_context_randomize(ctx, (secp256k1_rand32() & 1) ? run32 : NULL));
+ CHECK(secp256k1_context_randomize(ctx, secp256k1_rand_bits(1) ? run32 : NULL));
}
+ run_rand_bits();
+ run_rand_int();
+
run_sha256_tests();
run_hmac_sha256_tests();
run_rfc6979_hmac_sha256_tests();
@@ -2307,6 +4467,7 @@ int main(int argc, char **argv) {
/* group tests */
run_ge();
+ run_group_decompress();
/* ecmult tests */
run_wnaf();
@@ -2322,6 +4483,12 @@ int main(int argc, char **argv) {
run_endomorphism_tests();
#endif
+ /* EC point parser test */
+ run_ec_pubkey_parse_test();
+
+ /* EC key edge cases */
+ run_eckey_edge_case_test();
+
#ifdef ENABLE_MODULE_ECDH
/* ecdh tests */
run_ecdh_tests();
@@ -2329,6 +4496,7 @@ int main(int argc, char **argv) {
/* ecdsa tests */
run_random_pubkeys();
+ run_ecdsa_der_parse();
run_ecdsa_sign_verify();
run_ecdsa_end_to_end();
run_ecdsa_edge_cases();
diff --git a/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c b/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c
new file mode 100644
index 000000000..b040bb073
--- /dev/null
+++ b/crypto/secp256k1/libsecp256k1/src/tests_exhaustive.c
@@ -0,0 +1,470 @@
+/***********************************************************************
+ * Copyright (c) 2016 Andrew Poelstra *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
+
+#if defined HAVE_CONFIG_H
+#include "libsecp256k1-config.h"
+#endif
+
+#include
+#include
+
+#include
+
+#undef USE_ECMULT_STATIC_PRECOMPUTATION
+
+#ifndef EXHAUSTIVE_TEST_ORDER
+/* see group_impl.h for allowable values */
+#define EXHAUSTIVE_TEST_ORDER 13
+#define EXHAUSTIVE_TEST_LAMBDA 9 /* cube root of 1 mod 13 */
+#endif
+
+#include "include/secp256k1.h"
+#include "group.h"
+#include "secp256k1.c"
+#include "testrand_impl.h"
+
+#ifdef ENABLE_MODULE_RECOVERY
+#include "src/modules/recovery/main_impl.h"
+#include "include/secp256k1_recovery.h"
+#endif
+
+/** stolen from tests.c */
+void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
+ CHECK(a->infinity == b->infinity);
+ if (a->infinity) {
+ return;
+ }
+ CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
+ CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
+}
+
+void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
+ secp256k1_fe z2s;
+ secp256k1_fe u1, u2, s1, s2;
+ CHECK(a->infinity == b->infinity);
+ if (a->infinity) {
+ return;
+ }
+ /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
+ secp256k1_fe_sqr(&z2s, &b->z);
+ secp256k1_fe_mul(&u1, &a->x, &z2s);
+ u2 = b->x; secp256k1_fe_normalize_weak(&u2);
+ secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
+ s2 = b->y; secp256k1_fe_normalize_weak(&s2);
+ CHECK(secp256k1_fe_equal_var(&u1, &u2));
+ CHECK(secp256k1_fe_equal_var(&s1, &s2));
+}
+
+void random_fe(secp256k1_fe *x) {
+ unsigned char bin[32];
+ do {
+ secp256k1_rand256(bin);
+ if (secp256k1_fe_set_b32(x, bin)) {
+ return;
+ }
+ } while(1);
+}
+/** END stolen from tests.c */
+
+int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
+ const unsigned char *key32, const unsigned char *algo16,
+ void *data, unsigned int attempt) {
+ secp256k1_scalar s;
+ int *idata = data;
+ (void)msg32;
+ (void)key32;
+ (void)algo16;
+ /* Some nonces cannot be used because they'd cause s and/or r to be zero.
+ * The signing function has retry logic here that just re-calls the nonce
+ * function with an increased `attempt`. So if attempt > 0 this means we
+ * need to change the nonce to avoid an infinite loop. */
+ if (attempt > 0) {
+ *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER;
+ }
+ secp256k1_scalar_set_int(&s, *idata);
+ secp256k1_scalar_get_b32(nonce32, &s);
+ return 1;
+}
+
+#ifdef USE_ENDOMORPHISM
+void test_exhaustive_endomorphism(const secp256k1_ge *group, int order) {
+ int i;
+ for (i = 0; i < order; i++) {
+ secp256k1_ge res;
+ secp256k1_ge_mul_lambda(&res, &group[i]);
+ ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res);
+ }
+}
+#endif
+
+void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
+ int i, j;
+
+ /* Sanity-check (and check infinity functions) */
+ CHECK(secp256k1_ge_is_infinity(&group[0]));
+ CHECK(secp256k1_gej_is_infinity(&groupj[0]));
+ for (i = 1; i < order; i++) {
+ CHECK(!secp256k1_ge_is_infinity(&group[i]));
+ CHECK(!secp256k1_gej_is_infinity(&groupj[i]));
+ }
+
+ /* Check all addition formulae */
+ for (j = 0; j < order; j++) {
+ secp256k1_fe fe_inv;
+ secp256k1_fe_inv(&fe_inv, &groupj[j].z);
+ for (i = 0; i < order; i++) {
+ secp256k1_ge zless_gej;
+ secp256k1_gej tmp;
+ /* add_var */
+ secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
+ ge_equals_gej(&group[(i + j) % order], &tmp);
+ /* add_ge */
+ if (j > 0) {
+ secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
+ ge_equals_gej(&group[(i + j) % order], &tmp);
+ }
+ /* add_ge_var */
+ secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
+ ge_equals_gej(&group[(i + j) % order], &tmp);
+ /* add_zinv_var */
+ zless_gej.infinity = groupj[j].infinity;
+ zless_gej.x = groupj[j].x;
+ zless_gej.y = groupj[j].y;
+ secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
+ ge_equals_gej(&group[(i + j) % order], &tmp);
+ }
+ }
+
+ /* Check doubling */
+ for (i = 0; i < order; i++) {
+ secp256k1_gej tmp;
+ if (i > 0) {
+ secp256k1_gej_double_nonzero(&tmp, &groupj[i], NULL);
+ ge_equals_gej(&group[(2 * i) % order], &tmp);
+ }
+ secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
+ ge_equals_gej(&group[(2 * i) % order], &tmp);
+ }
+
+ /* Check negation */
+ for (i = 1; i < order; i++) {
+ secp256k1_ge tmp;
+ secp256k1_gej tmpj;
+ secp256k1_ge_neg(&tmp, &group[i]);
+ ge_equals_ge(&group[order - i], &tmp);
+ secp256k1_gej_neg(&tmpj, &groupj[i]);
+ ge_equals_gej(&group[order - i], &tmpj);
+ }
+}
+
+void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
+ int i, j, r_log;
+ for (r_log = 1; r_log < order; r_log++) {
+ for (j = 0; j < order; j++) {
+ for (i = 0; i < order; i++) {
+ secp256k1_gej tmp;
+ secp256k1_scalar na, ng;
+ secp256k1_scalar_set_int(&na, i);
+ secp256k1_scalar_set_int(&ng, j);
+
+ secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng);
+ ge_equals_gej(&group[(i * r_log + j) % order], &tmp);
+
+ if (i > 0) {
+ secp256k1_ecmult_const(&tmp, &group[i], &ng);
+ ge_equals_gej(&group[(i * j) % order], &tmp);
+ }
+ }
+ }
+ }
+}
+
+void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) {
+ secp256k1_fe x;
+ unsigned char x_bin[32];
+ k %= EXHAUSTIVE_TEST_ORDER;
+ x = group[k].x;
+ secp256k1_fe_normalize(&x);
+ secp256k1_fe_get_b32(x_bin, &x);
+ secp256k1_scalar_set_b32(r, x_bin, NULL);
+}
+
+void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
+ int s, r, msg, key;
+ for (s = 1; s < order; s++) {
+ for (r = 1; r < order; r++) {
+ for (msg = 1; msg < order; msg++) {
+ for (key = 1; key < order; key++) {
+ secp256k1_ge nonconst_ge;
+ secp256k1_ecdsa_signature sig;
+ secp256k1_pubkey pk;
+ secp256k1_scalar sk_s, msg_s, r_s, s_s;
+ secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
+ int k, should_verify;
+ unsigned char msg32[32];
+
+ secp256k1_scalar_set_int(&s_s, s);
+ secp256k1_scalar_set_int(&r_s, r);
+ secp256k1_scalar_set_int(&msg_s, msg);
+ secp256k1_scalar_set_int(&sk_s, key);
+
+ /* Verify by hand */
+ /* Run through every k value that gives us this r and check that *one* works.
+ * Note there could be none, there could be multiple, ECDSA is weird. */
+ should_verify = 0;
+ for (k = 0; k < order; k++) {
+ secp256k1_scalar check_x_s;
+ r_from_k(&check_x_s, group, k);
+ if (r_s == check_x_s) {
+ secp256k1_scalar_set_int(&s_times_k_s, k);
+ secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
+ secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
+ secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
+ should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
+ }
+ }
+ /* nb we have a "high s" rule */
+ should_verify &= !secp256k1_scalar_is_high(&s_s);
+
+ /* Verify by calling verify */
+ secp256k1_ecdsa_signature_save(&sig, &r_s, &s_s);
+ memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
+ secp256k1_pubkey_save(&pk, &nonconst_ge);
+ secp256k1_scalar_get_b32(msg32, &msg_s);
+ CHECK(should_verify ==
+ secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
+ }
+ }
+ }
+ }
+}
+
+void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
+ int i, j, k;
+
+ /* Loop */
+ for (i = 1; i < order; i++) { /* message */
+ for (j = 1; j < order; j++) { /* key */
+ for (k = 1; k < order; k++) { /* nonce */
+ const int starting_k = k;
+ secp256k1_ecdsa_signature sig;
+ secp256k1_scalar sk, msg, r, s, expected_r;
+ unsigned char sk32[32], msg32[32];
+ secp256k1_scalar_set_int(&msg, i);
+ secp256k1_scalar_set_int(&sk, j);
+ secp256k1_scalar_get_b32(sk32, &sk);
+ secp256k1_scalar_get_b32(msg32, &msg);
+
+ secp256k1_ecdsa_sign(ctx, &sig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
+
+ secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
+ /* Note that we compute expected_r *after* signing -- this is important
+ * because our nonce-computing function function might change k during
+ * signing. */
+ r_from_k(&expected_r, group, k);
+ CHECK(r == expected_r);
+ CHECK((k * s) % order == (i + r * j) % order ||
+ (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
+
+ /* Overflow means we've tried every possible nonce */
+ if (k < starting_k) {
+ break;
+ }
+ }
+ }
+ }
+
+ /* We would like to verify zero-knowledge here by counting how often every
+ * possible (s, r) tuple appears, but because the group order is larger
+ * than the field order, when coercing the x-values to scalar values, some
+ * appear more often than others, so we are actually not zero-knowledge.
+ * (This effect also appears in the real code, but the difference is on the
+ * order of 1/2^128th the field order, so the deviation is not useful to a
+ * computationally bounded attacker.)
+ */
+}
+
+#ifdef ENABLE_MODULE_RECOVERY
+void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
+ int i, j, k;
+
+ /* Loop */
+ for (i = 1; i < order; i++) { /* message */
+ for (j = 1; j < order; j++) { /* key */
+ for (k = 1; k < order; k++) { /* nonce */
+ const int starting_k = k;
+ secp256k1_fe r_dot_y_normalized;
+ secp256k1_ecdsa_recoverable_signature rsig;
+ secp256k1_ecdsa_signature sig;
+ secp256k1_scalar sk, msg, r, s, expected_r;
+ unsigned char sk32[32], msg32[32];
+ int expected_recid;
+ int recid;
+ secp256k1_scalar_set_int(&msg, i);
+ secp256k1_scalar_set_int(&sk, j);
+ secp256k1_scalar_get_b32(sk32, &sk);
+ secp256k1_scalar_get_b32(msg32, &msg);
+
+ secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
+
+ /* Check directly */
+ secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig);
+ r_from_k(&expected_r, group, k);
+ CHECK(r == expected_r);
+ CHECK((k * s) % order == (i + r * j) % order ||
+ (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
+ /* In computing the recid, there is an overflow condition that is disabled in
+ * scalar_low_impl.h `secp256k1_scalar_set_b32` because almost every r.y value
+ * will exceed the group order, and our signing code always holds out for r
+ * values that don't overflow, so with a proper overflow check the tests would
+ * loop indefinitely. */
+ r_dot_y_normalized = group[k].y;
+ secp256k1_fe_normalize(&r_dot_y_normalized);
+ /* Also the recovery id is flipped depending if we hit the low-s branch */
+ if ((k * s) % order == (i + r * j) % order) {
+ expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 1 : 0;
+ } else {
+ expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 0 : 1;
+ }
+ CHECK(recid == expected_recid);
+
+ /* Convert to a standard sig then check */
+ secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
+ secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
+ /* Note that we compute expected_r *after* signing -- this is important
+ * because our nonce-computing function function might change k during
+ * signing. */
+ r_from_k(&expected_r, group, k);
+ CHECK(r == expected_r);
+ CHECK((k * s) % order == (i + r * j) % order ||
+ (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
+
+ /* Overflow means we've tried every possible nonce */
+ if (k < starting_k) {
+ break;
+ }
+ }
+ }
+ }
+}
+
+void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
+ /* This is essentially a copy of test_exhaustive_verify, with recovery added */
+ int s, r, msg, key;
+ for (s = 1; s < order; s++) {
+ for (r = 1; r < order; r++) {
+ for (msg = 1; msg < order; msg++) {
+ for (key = 1; key < order; key++) {
+ secp256k1_ge nonconst_ge;
+ secp256k1_ecdsa_recoverable_signature rsig;
+ secp256k1_ecdsa_signature sig;
+ secp256k1_pubkey pk;
+ secp256k1_scalar sk_s, msg_s, r_s, s_s;
+ secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
+ int recid = 0;
+ int k, should_verify;
+ unsigned char msg32[32];
+
+ secp256k1_scalar_set_int(&s_s, s);
+ secp256k1_scalar_set_int(&r_s, r);
+ secp256k1_scalar_set_int(&msg_s, msg);
+ secp256k1_scalar_set_int(&sk_s, key);
+ secp256k1_scalar_get_b32(msg32, &msg_s);
+
+ /* Verify by hand */
+ /* Run through every k value that gives us this r and check that *one* works.
+ * Note there could be none, there could be multiple, ECDSA is weird. */
+ should_verify = 0;
+ for (k = 0; k < order; k++) {
+ secp256k1_scalar check_x_s;
+ r_from_k(&check_x_s, group, k);
+ if (r_s == check_x_s) {
+ secp256k1_scalar_set_int(&s_times_k_s, k);
+ secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
+ secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
+ secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
+ should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
+ }
+ }
+ /* nb we have a "high s" rule */
+ should_verify &= !secp256k1_scalar_is_high(&s_s);
+
+ /* We would like to try recovering the pubkey and checking that it matches,
+ * but pubkey recovery is impossible in the exhaustive tests (the reason
+ * being that there are 12 nonzero r values, 12 nonzero points, and no
+ * overlap between the sets, so there are no valid signatures). */
+
+ /* Verify by converting to a standard signature and calling verify */
+ secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid);
+ secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
+ memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
+ secp256k1_pubkey_save(&pk, &nonconst_ge);
+ CHECK(should_verify ==
+ secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
+ }
+ }
+ }
+ }
+}
+#endif
+
+int main(void) {
+ int i;
+ secp256k1_gej groupj[EXHAUSTIVE_TEST_ORDER];
+ secp256k1_ge group[EXHAUSTIVE_TEST_ORDER];
+
+ /* Build context */
+ secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+
+ /* TODO set z = 1, then do num_tests runs with random z values */
+
+ /* Generate the entire group */
+ secp256k1_gej_set_infinity(&groupj[0]);
+ secp256k1_ge_set_gej(&group[0], &groupj[0]);
+ for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
+ /* Set a different random z-value for each Jacobian point */
+ secp256k1_fe z;
+ random_fe(&z);
+
+ secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
+ secp256k1_ge_set_gej(&group[i], &groupj[i]);
+ secp256k1_gej_rescale(&groupj[i], &z);
+
+ /* Verify against ecmult_gen */
+ {
+ secp256k1_scalar scalar_i;
+ secp256k1_gej generatedj;
+ secp256k1_ge generated;
+
+ secp256k1_scalar_set_int(&scalar_i, i);
+ secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i);
+ secp256k1_ge_set_gej(&generated, &generatedj);
+
+ CHECK(group[i].infinity == 0);
+ CHECK(generated.infinity == 0);
+ CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x));
+ CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y));
+ }
+ }
+
+ /* Run the tests */
+#ifdef USE_ENDOMORPHISM
+ test_exhaustive_endomorphism(group, EXHAUSTIVE_TEST_ORDER);
+#endif
+ test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER);
+ test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER);
+ test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
+ test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
+
+#ifdef ENABLE_MODULE_RECOVERY
+ test_exhaustive_recovery_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
+ test_exhaustive_recovery_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
+#endif
+
+ secp256k1_context_destroy(ctx);
+ return 0;
+}
+
diff --git a/crypto/secp256k1/libsecp256k1/src/util.h b/crypto/secp256k1/libsecp256k1/src/util.h
index 4eef4ded4..4092a86c9 100644
--- a/crypto/secp256k1/libsecp256k1/src/util.h
+++ b/crypto/secp256k1/libsecp256k1/src/util.h
@@ -57,7 +57,10 @@ static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback *
#endif
/* Like assert(), but when VERIFY is defined, and side-effect safe. */
-#ifdef VERIFY
+#if defined(COVERAGE)
+#define VERIFY_CHECK(check)
+#define VERIFY_SETUP(stmt)
+#elif defined(VERIFY)
#define VERIFY_CHECK CHECK
#define VERIFY_SETUP(stmt) do { stmt; } while(0)
#else
diff --git a/crypto/secp256k1/notes.go b/crypto/secp256k1/notes.go
deleted file mode 100644
index 49fcf8e2d..000000000
--- a/crypto/secp256k1/notes.go
+++ /dev/null
@@ -1,208 +0,0 @@
-// Copyright 2015 The go-ethereum Authors
-// This file is part of the go-ethereum library.
-//
-// The go-ethereum library is free software: you can redistribute it and/or modify
-// it under the terms of the GNU Lesser General Public License as published by
-// the Free Software Foundation, either version 3 of the License, or
-// (at your option) any later version.
-//
-// The go-ethereum library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public License
-// along with the go-ethereum library. If not, see .
-
-package secp256k1
-
-/*
- sipa, int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed);
- is that how i generate private/public keys?
- HaltingState: you pass in a random 32-byte string as seckey
- HaltingState: if it is valid, the corresponding pubkey is put in pubkey
- and true is returned
- otherwise, false is returned
- around 1 in 2^128 32-byte strings are invalid, so the odds of even ever seeing one is extremely rare
-
- private keys are mathematically numbers
- each has a corresponding point on the curve as public key
- a private key is just a number
- a public key is a point with x/y coordinates
- almost every 256-bit number is a valid private key (one with a point on the curve corresponding to it)
- HaltingState: ok?
-
- more than half of random points are not on the curve
- and actually, it is less than the square root, not less than half, sorry :)
-!!!
- a private key is a NUMBER
- a public key is a POINT
- half the x,y values in the field are not on the curve, a private key is an integer.
-
- HaltingState: yes, n,q = private keys; N,Q = corresponding public keys (N=n*G, Q=q*G); then it follows that n*Q = n*q*G = q*n*G = q*N
- that's the reason ECDH works
- multiplication is associative and commutativ
-*/
-
-/*
- sipa, ok; i am doing compact signatures and I want to know; can someone change the signature to get another valid signature for same message without the private key
- because i know they can do that for the normal 72 byte signatures that openssl was putting out
- HaltingState: if you don't enforce non-malleability, yes
- HaltingState: if you force the highest bit of t
-
- it _creates_ signatures that already satisfy that condition
- but it will accept ones that don't
- maybe i should change that, and be strict
- yes; i want some way to know signature is valid but fails malleability
- well if the highest bit of S is 1, you can take its complement
- and end up with a valid signature
- that is canonical
-*/
-
-/*
-
- sipa, I am signing messages and highest bit of the compact signature is 1!!!
- if (b & 0x80) == 0x80 {
- log.Panic("b= %v b2= %v \n", b, b&0x80)
- }
- what bit?
-* Pengoo has quit (Ping timeout: 272 seconds)
- the highest bit of the first byte of signature
- it's the highest bit of S
- so the 32nd byte
- wtf
-
-*/
-
-/*
- For instance, nonces are used in HTTP digest access authentication to calculate an MD5 digest
- of the password. The nonces are different each time the 401 authentication challenge
- response code is presented, thus making replay attacks virtually impossible.
-
-can verify client/server match without sending password over network
-*/
-
-/*
- one thing I dont get about armory for instance,
-is how the hot-wallet can generate new addresses without
-knowing the master key
-*/
-
-/*
- i am yelling at the telehash people for using secp256r1
-instead of secp256k1; they thing r1 is "more secure" despite fact that
-there is no implementation that works and wrapping it is now taking
-up massive time, lol
- ...
-
- You know that the *r curves are selected via an undisclosed
-secret process, right?
- HaltingState: telehash is offtopic for this channel.
-*/
-/*
- For instance, nonces are used in HTTP digest access authentication to calculate an MD5 digest
- of the password. The nonces are different each time the 401 authentication challenge
- response code is presented, thus making replay attacks virtually impossible.
-
-can verify client/server match without sending password over network
-*/
-
-/*
-void secp256k1_start(void);
-void secp256k1_stop(void);
-
- * Verify an ECDSA signature.
- * Returns: 1: correct signature
- * 0: incorrect signature
- * -1: invalid public key
- * -2: invalid signature
- *
-int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen,
- const unsigned char *sig, int siglen,
- const unsigned char *pubkey, int pubkeylen);
-
-http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
-
-Why did this work? ECDSA requires a random number for each signature. If this random
-number is ever used twice with the same private key it can be recovered.
-This transaction was generated by a hardware bitcoin wallet using a pseudo-random number
-generator that was returning the same “random” number every time.
-
-Nonce is 32 bytes?
-
- * Create an ECDSA signature.
- * Returns: 1: signature created
- * 0: nonce invalid, try another one
- * In: msg: the message being signed
- * msglen: the length of the message being signed
- * seckey: pointer to a 32-byte secret key (assumed to be valid)
- * nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG)
- * Out: sig: pointer to a 72-byte array where the signature will be placed.
- * siglen: pointer to an int, which will be updated to the signature length (<=72).
- *
-int secp256k1_ecdsa_sign(const unsigned char *msg, int msglen,
- unsigned char *sig, int *siglen,
- const unsigned char *seckey,
- const unsigned char *nonce);
-
-
- * Create a compact ECDSA signature (64 byte + recovery id).
- * Returns: 1: signature created
- * 0: nonce invalid, try another one
- * In: msg: the message being signed
- * msglen: the length of the message being signed
- * seckey: pointer to a 32-byte secret key (assumed to be valid)
- * nonce: pointer to a 32-byte nonce (generated with a cryptographic PRNG)
- * Out: sig: pointer to a 64-byte array where the signature will be placed.
- * recid: pointer to an int, which will be updated to contain the recovery id.
- *
-int secp256k1_ecdsa_sign_compact(const unsigned char *msg, int msglen,
- unsigned char *sig64,
- const unsigned char *seckey,
- const unsigned char *nonce,
- int *recid);
-
- * Recover an ECDSA public key from a compact signature.
- * Returns: 1: public key successfully recovered (which guarantees a correct signature).
- * 0: otherwise.
- * In: msg: the message assumed to be signed
- * msglen: the length of the message
- * compressed: whether to recover a compressed or uncompressed pubkey
- * recid: the recovery id (as returned by ecdsa_sign_compact)
- * Out: pubkey: pointer to a 33 or 65 byte array to put the pubkey.
- * pubkeylen: pointer to an int that will contain the pubkey length.
- *
-
-recovery id is between 0 and 3
-
-int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen,
- const unsigned char *sig64,
- unsigned char *pubkey, int *pubkeylen,
- int compressed, int recid);
-
-
- * Verify an ECDSA secret key.
- * Returns: 1: secret key is valid
- * 0: secret key is invalid
- * In: seckey: pointer to a 32-byte secret key
- *
-int secp256k1_ecdsa_seckey_verify(const unsigned char *seckey);
-
-** Just validate a public key.
- * Returns: 1: valid public key
- * 0: invalid public key
- *
-int secp256k1_ecdsa_pubkey_verify(const unsigned char *pubkey, int pubkeylen);
-
-** Compute the public key for a secret key.
- * In: compressed: whether the computed public key should be compressed
- * seckey: pointer to a 32-byte private key.
- * Out: pubkey: pointer to a 33-byte (if compressed) or 65-byte (if uncompressed)
- * area to store the public key.
- * pubkeylen: pointer to int that will be updated to contains the pubkey's
- * length.
- * Returns: 1: secret was valid, public key stores
- * 0: secret was invalid, try again.
- *
-int secp256k1_ecdsa_pubkey_create(unsigned char *pubkey, int *pubkeylen, const unsigned char *seckey, int compressed);
-*/
diff --git a/crypto/secp256k1/pubkey_scalar_mul.h b/crypto/secp256k1/pubkey_scalar_mul.h
deleted file mode 100644
index 0511545ec..000000000
--- a/crypto/secp256k1/pubkey_scalar_mul.h
+++ /dev/null
@@ -1,56 +0,0 @@
-// Copyright 2015 The go-ethereum Authors
-// This file is part of the go-ethereum library.
-//
-// The go-ethereum library is free software: you can redistribute it and/or modify
-// it under the terms of the GNU Lesser General Public License as published by
-// the Free Software Foundation, either version 3 of the License, or
-// (at your option) any later version.
-//
-// The go-ethereum library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU Lesser General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public License
-// along with the go-ethereum library. If not, see .
-
-/** Multiply point by scalar in constant time.
- * Returns: 1: multiplication was successful
- * 0: scalar was invalid (zero or overflow)
- * Args: ctx: pointer to a context object (cannot be NULL)
- * Out: point: the multiplied point (usually secret)
- * In: point: pointer to a 64-byte bytepublic point,
- encoded as two 256bit big-endian numbers.
- * scalar: a 32-byte scalar with which to multiply the point
- */
-int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, unsigned char *point, const unsigned char *scalar) {
- int ret = 0;
- int overflow = 0;
- secp256k1_fe feX, feY;
- secp256k1_gej res;
- secp256k1_ge ge;
- secp256k1_scalar s;
- ARG_CHECK(point != NULL);
- ARG_CHECK(scalar != NULL);
- (void)ctx;
-
- secp256k1_fe_set_b32(&feX, point);
- secp256k1_fe_set_b32(&feY, point+32);
- secp256k1_ge_set_xy(&ge, &feX, &feY);
- secp256k1_scalar_set_b32(&s, scalar, &overflow);
- if (overflow || secp256k1_scalar_is_zero(&s)) {
- ret = 0;
- } else {
- secp256k1_ecmult_const(&res, &ge, &s);
- secp256k1_ge_set_gej(&ge, &res);
- /* Note: can't use secp256k1_pubkey_save here because it is not constant time. */
- secp256k1_fe_normalize(&ge.x);
- secp256k1_fe_normalize(&ge.y);
- secp256k1_fe_get_b32(point, &ge.x);
- secp256k1_fe_get_b32(point+32, &ge.y);
- ret = 1;
- }
- secp256k1_scalar_clear(&s);
- return ret;
-}
-
diff --git a/crypto/secp256k1/secp256.go b/crypto/secp256k1/secp256.go
index 2c5f61450..070e0d902 100644
--- a/crypto/secp256k1/secp256.go
+++ b/crypto/secp256k1/secp256.go
@@ -14,10 +14,9 @@
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see .
+// Package secp256k1 wraps the bitcoin secp256k1 C library.
package secp256k1
-// TODO: set USE_SCALAR_4X64 depending on platform?
-
/*
#cgo CFLAGS: -I./libsecp256k1
#cgo CFLAGS: -I./libsecp256k1/src/
@@ -29,7 +28,7 @@ package secp256k1
#define NDEBUG
#include "./libsecp256k1/src/secp256k1.c"
#include "./libsecp256k1/src/modules/recovery/main_impl.h"
-#include "pubkey_scalar_mul.h"
+#include "ext.h"
typedef void (*callbackFunc) (const char* msg, void* data);
extern void secp256k1GoPanicIllegal(const char* msg, void* data);
@@ -45,16 +44,6 @@ import (
"github.com/ethereum/go-ethereum/crypto/randentropy"
)
-//#define USE_FIELD_5X64
-
-/*
- TODO:
- > store private keys in buffer and shuffle (deters persistence on swap disc)
- > byte permutation (changing)
- > xor with chaning random block (to deter scanning memory for 0x63) (stream cipher?)
-*/
-
-// holds ptr to secp256k1_context_struct (see secp256k1/include/secp256k1.h)
var (
context *C.secp256k1_context
N *big.Int
@@ -67,127 +56,57 @@ func init() {
HalfN, _ = new(big.Int).SetString("7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0", 16)
// around 20 ms on a modern CPU.
- context = C.secp256k1_context_create(3) // SECP256K1_START_SIGN | SECP256K1_START_VERIFY
+ context = C.secp256k1_context_create_sign_verify()
C.secp256k1_context_set_illegal_callback(context, C.callbackFunc(C.secp256k1GoPanicIllegal), nil)
C.secp256k1_context_set_error_callback(context, C.callbackFunc(C.secp256k1GoPanicError), nil)
}
var (
- ErrInvalidMsgLen = errors.New("invalid message length for signature recovery")
+ ErrInvalidMsgLen = errors.New("invalid message length, need 32 bytes")
ErrInvalidSignatureLen = errors.New("invalid signature length")
ErrInvalidRecoveryID = errors.New("invalid signature recovery id")
+ ErrInvalidKey = errors.New("invalid private key")
+ ErrSignFailed = errors.New("signing failed")
+ ErrRecoverFailed = errors.New("recovery failed")
)
-func GenerateKeyPair() ([]byte, []byte) {
- var seckey []byte = randentropy.GetEntropyCSPRNG(32)
- var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
- var pubkey64 []byte = make([]byte, 64) // secp256k1_pubkey
- var pubkey65 []byte = make([]byte, 65) // 65 byte uncompressed pubkey
- pubkey64_ptr := (*C.secp256k1_pubkey)(unsafe.Pointer(&pubkey64[0]))
- pubkey65_ptr := (*C.uchar)(unsafe.Pointer(&pubkey65[0]))
-
- ret := C.secp256k1_ec_pubkey_create(
- context,
- pubkey64_ptr,
- seckey_ptr,
- )
-
- if ret != C.int(1) {
- return GenerateKeyPair() // invalid secret, try again
- }
-
- var output_len C.size_t
-
- C.secp256k1_ec_pubkey_serialize( // always returns 1
- context,
- pubkey65_ptr,
- &output_len,
- pubkey64_ptr,
- 0, // SECP256K1_EC_COMPRESSED
- )
-
- return pubkey65, seckey
-}
-
-func GeneratePubKey(seckey []byte) ([]byte, error) {
- if err := VerifySeckeyValidity(seckey); err != nil {
- return nil, err
- }
-
- var pubkey []byte = make([]byte, 64)
- var pubkey_ptr *C.secp256k1_pubkey = (*C.secp256k1_pubkey)(unsafe.Pointer(&pubkey[0]))
-
- var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
-
- ret := C.secp256k1_ec_pubkey_create(
- context,
- pubkey_ptr,
- seckey_ptr,
- )
-
- if ret != C.int(1) {
- return nil, errors.New("Unable to generate pubkey from seckey")
- }
-
- return pubkey, nil
-}
-
+// Sign creates a recoverable ECDSA signature.
+// The produced signature is in the 65-byte [R || S || V] format where V is 0 or 1.
+//
+// The caller is responsible for ensuring that msg cannot be chosen
+// directly by an attacker. It is usually preferable to use a cryptographic
+// hash function on any input before handing it to this function.
func Sign(msg []byte, seckey []byte) ([]byte, error) {
- msg_ptr := (*C.uchar)(unsafe.Pointer(&msg[0]))
- seckey_ptr := (*C.uchar)(unsafe.Pointer(&seckey[0]))
-
- sig := make([]byte, 65)
- sig_ptr := (*C.secp256k1_ecdsa_recoverable_signature)(unsafe.Pointer(&sig[0]))
-
- nonce := randentropy.GetEntropyCSPRNG(32)
- ndata_ptr := unsafe.Pointer(&nonce[0])
-
- noncefp_ptr := &(*C.secp256k1_nonce_function_default)
-
- if C.secp256k1_ec_seckey_verify(context, seckey_ptr) != C.int(1) {
- return nil, errors.New("Invalid secret key")
+ if len(msg) != 32 {
+ return nil, ErrInvalidMsgLen
}
-
- ret := C.secp256k1_ecdsa_sign_recoverable(
- context,
- sig_ptr,
- msg_ptr,
- seckey_ptr,
- noncefp_ptr,
- ndata_ptr,
- )
-
- if ret == C.int(0) {
- return Sign(msg, seckey) //invalid secret, try again
- }
-
- sig_serialized := make([]byte, 65)
- sig_serialized_ptr := (*C.uchar)(unsafe.Pointer(&sig_serialized[0]))
- var recid C.int
-
- C.secp256k1_ecdsa_recoverable_signature_serialize_compact(
- context,
- sig_serialized_ptr, // 64 byte compact signature
- &recid,
- sig_ptr, // 65 byte "recoverable" signature
- )
-
- sig_serialized[64] = byte(int(recid)) // add back recid to get 65 bytes sig
-
- return sig_serialized, nil
-
-}
-
-func VerifySeckeyValidity(seckey []byte) error {
if len(seckey) != 32 {
- return errors.New("priv key is not 32 bytes")
+ return nil, ErrInvalidKey
}
- var seckey_ptr *C.uchar = (*C.uchar)(unsafe.Pointer(&seckey[0]))
- ret := C.secp256k1_ec_seckey_verify(context, seckey_ptr)
- if int(ret) != 1 {
- return errors.New("invalid seckey")
+ seckeydata := (*C.uchar)(unsafe.Pointer(&seckey[0]))
+ if C.secp256k1_ec_seckey_verify(context, seckeydata) != 1 {
+ return nil, ErrInvalidKey
}
- return nil
+
+ var (
+ msgdata = (*C.uchar)(unsafe.Pointer(&msg[0]))
+ nonce = randentropy.GetEntropyCSPRNG(32)
+ noncefunc = &(*C.secp256k1_nonce_function_default)
+ noncefuncData = unsafe.Pointer(&nonce[0])
+ sigstruct C.secp256k1_ecdsa_recoverable_signature
+ )
+ if C.secp256k1_ecdsa_sign_recoverable(context, &sigstruct, msgdata, seckeydata, noncefunc, noncefuncData) == 0 {
+ return nil, ErrSignFailed
+ }
+
+ var (
+ sig = make([]byte, 65)
+ sigdata = (*C.uchar)(unsafe.Pointer(&sig[0]))
+ recid C.int
+ )
+ C.secp256k1_ecdsa_recoverable_signature_serialize_compact(context, sigdata, &recid, &sigstruct)
+ sig[64] = byte(recid) // add back recid to get 65 bytes sig
+ return sig, nil
}
// RecoverPubkey returns the the public key of the signer.
@@ -202,49 +121,15 @@ func RecoverPubkey(msg []byte, sig []byte) ([]byte, error) {
return nil, err
}
- msg_ptr := (*C.uchar)(unsafe.Pointer(&msg[0]))
- sig_ptr := (*C.uchar)(unsafe.Pointer(&sig[0]))
- pubkey := make([]byte, 64)
- /*
- this slice is used for both the recoverable signature and the
- resulting serialized pubkey (both types in libsecp256k1 are 65
- bytes). this saves one allocation of 65 bytes, which is nice as
- pubkey recovery is one bottleneck during load in Ethereum
- */
- bytes65 := make([]byte, 65)
- pubkey_ptr := (*C.secp256k1_pubkey)(unsafe.Pointer(&pubkey[0]))
- recoverable_sig_ptr := (*C.secp256k1_ecdsa_recoverable_signature)(unsafe.Pointer(&bytes65[0]))
- recid := C.int(sig[64])
-
- ret := C.secp256k1_ecdsa_recoverable_signature_parse_compact(
- context,
- recoverable_sig_ptr,
- sig_ptr,
- recid)
- if ret == C.int(0) {
- return nil, errors.New("Failed to parse signature")
- }
-
- ret = C.secp256k1_ecdsa_recover(
- context,
- pubkey_ptr,
- recoverable_sig_ptr,
- msg_ptr,
+ var (
+ pubkey = make([]byte, 65)
+ sigdata = (*C.uchar)(unsafe.Pointer(&sig[0]))
+ msgdata = (*C.uchar)(unsafe.Pointer(&msg[0]))
)
- if ret == C.int(0) {
- return nil, errors.New("Failed to recover public key")
+ if C.secp256k1_ecdsa_recover_pubkey(context, (*C.uchar)(unsafe.Pointer(&pubkey[0])), sigdata, msgdata) == 0 {
+ return nil, ErrRecoverFailed
}
-
- serialized_pubkey_ptr := (*C.uchar)(unsafe.Pointer(&bytes65[0]))
- var output_len C.size_t
- C.secp256k1_ec_pubkey_serialize( // always returns 1
- context,
- serialized_pubkey_ptr,
- &output_len,
- pubkey_ptr,
- 0, // SECP256K1_EC_COMPRESSED
- )
- return bytes65, nil
+ return pubkey, nil
}
func checkSignature(sig []byte) error {
diff --git a/crypto/secp256k1/secp256_test.go b/crypto/secp256k1/secp256_test.go
index e91166cf1..ec28b8e39 100644
--- a/crypto/secp256k1/secp256_test.go
+++ b/crypto/secp256k1/secp256_test.go
@@ -18,6 +18,9 @@ package secp256k1
import (
"bytes"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
"encoding/hex"
"testing"
@@ -26,15 +29,41 @@ import (
const TestCount = 1000
-func TestPrivkeyGenerate(t *testing.T) {
- _, seckey := GenerateKeyPair()
- if err := VerifySeckeyValidity(seckey); err != nil {
- t.Errorf("seckey not valid: %s", err)
+func generateKeyPair() (pubkey, privkey []byte) {
+ key, err := ecdsa.GenerateKey(S256(), rand.Reader)
+ if err != nil {
+ panic(err)
+ }
+ pubkey = elliptic.Marshal(S256(), key.X, key.Y)
+ privkey = make([]byte, 32)
+ readBits(privkey, key.D)
+ return pubkey, privkey
+}
+
+func randSig() []byte {
+ sig := randentropy.GetEntropyCSPRNG(65)
+ sig[32] &= 0x70
+ sig[64] %= 4
+ return sig
+}
+
+// tests for malleability
+// highest bit of signature ECDSA s value must be 0, in the 33th byte
+func compactSigCheck(t *testing.T, sig []byte) {
+ var b int = int(sig[32])
+ if b < 0 {
+ t.Errorf("highest bit is negative: %d", b)
+ }
+ if ((b >> 7) == 1) != ((b & 0x80) == 0x80) {
+ t.Errorf("highest bit: %d bit >> 7: %d", b, b>>7)
+ }
+ if (b & 0x80) == 0x80 {
+ t.Errorf("highest bit: %d bit & 0x80: %d", b, b&0x80)
}
}
func TestSignatureValidity(t *testing.T) {
- pubkey, seckey := GenerateKeyPair()
+ pubkey, seckey := generateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, err := Sign(msg, seckey)
if err != nil {
@@ -57,7 +86,7 @@ func TestSignatureValidity(t *testing.T) {
}
func TestInvalidRecoveryID(t *testing.T) {
- _, seckey := GenerateKeyPair()
+ _, seckey := generateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, _ := Sign(msg, seckey)
sig[64] = 99
@@ -68,7 +97,7 @@ func TestInvalidRecoveryID(t *testing.T) {
}
func TestSignAndRecover(t *testing.T) {
- pubkey1, seckey := GenerateKeyPair()
+ pubkey1, seckey := generateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, err := Sign(msg, seckey)
if err != nil {
@@ -84,7 +113,7 @@ func TestSignAndRecover(t *testing.T) {
}
func TestRandomMessagesWithSameKey(t *testing.T) {
- pubkey, seckey := GenerateKeyPair()
+ pubkey, seckey := generateKeyPair()
keys := func() ([]byte, []byte) {
return pubkey, seckey
}
@@ -93,7 +122,7 @@ func TestRandomMessagesWithSameKey(t *testing.T) {
func TestRandomMessagesWithRandomKeys(t *testing.T) {
keys := func() ([]byte, []byte) {
- pubkey, seckey := GenerateKeyPair()
+ pubkey, seckey := generateKeyPair()
return pubkey, seckey
}
signAndRecoverWithRandomMessages(t, keys)
@@ -129,7 +158,7 @@ func signAndRecoverWithRandomMessages(t *testing.T, keys func() ([]byte, []byte)
}
func TestRecoveryOfRandomSignature(t *testing.T) {
- pubkey1, _ := GenerateKeyPair()
+ pubkey1, _ := generateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
for i := 0; i < TestCount; i++ {
@@ -141,15 +170,8 @@ func TestRecoveryOfRandomSignature(t *testing.T) {
}
}
-func randSig() []byte {
- sig := randentropy.GetEntropyCSPRNG(65)
- sig[32] &= 0x70
- sig[64] %= 4
- return sig
-}
-
func TestRandomMessagesAgainstValidSig(t *testing.T) {
- pubkey1, seckey := GenerateKeyPair()
+ pubkey1, seckey := generateKeyPair()
msg := randentropy.GetEntropyCSPRNG(32)
sig, _ := Sign(msg, seckey)
@@ -163,14 +185,6 @@ func TestRandomMessagesAgainstValidSig(t *testing.T) {
}
}
-func TestZeroPrivkey(t *testing.T) {
- zeroedBytes := make([]byte, 32)
- err := VerifySeckeyValidity(zeroedBytes)
- if err == nil {
- t.Errorf("zeroed bytes should have returned error")
- }
-}
-
// Useful when the underlying libsecp256k1 API changes to quickly
// check only recover function without use of signature function
func TestRecoverSanity(t *testing.T) {
@@ -186,47 +200,23 @@ func TestRecoverSanity(t *testing.T) {
}
}
-// tests for malleability
-// highest bit of signature ECDSA s value must be 0, in the 33th byte
-func compactSigCheck(t *testing.T, sig []byte) {
- var b int = int(sig[32])
- if b < 0 {
- t.Errorf("highest bit is negative: %d", b)
- }
- if ((b >> 7) == 1) != ((b & 0x80) == 0x80) {
- t.Errorf("highest bit: %d bit >> 7: %d", b, b>>7)
- }
- if (b & 0x80) == 0x80 {
- t.Errorf("highest bit: %d bit & 0x80: %d", b, b&0x80)
- }
-}
-
-// godep go test -v -run=XXX -bench=BenchmarkSign
-// add -benchtime=10s to benchmark longer for more accurate average
-
-// to avoid compiler optimizing the benchmarked function call
-var err error
-
func BenchmarkSign(b *testing.B) {
+ _, seckey := generateKeyPair()
+ msg := randentropy.GetEntropyCSPRNG(32)
+ b.ResetTimer()
+
for i := 0; i < b.N; i++ {
- _, seckey := GenerateKeyPair()
- msg := randentropy.GetEntropyCSPRNG(32)
- b.StartTimer()
- _, e := Sign(msg, seckey)
- err = e
- b.StopTimer()
+ Sign(msg, seckey)
}
}
-//godep go test -v -run=XXX -bench=BenchmarkECRec
func BenchmarkRecover(b *testing.B) {
+ msg := randentropy.GetEntropyCSPRNG(32)
+ _, seckey := generateKeyPair()
+ sig, _ := Sign(msg, seckey)
+ b.ResetTimer()
+
for i := 0; i < b.N; i++ {
- _, seckey := GenerateKeyPair()
- msg := randentropy.GetEntropyCSPRNG(32)
- sig, _ := Sign(msg, seckey)
- b.StartTimer()
- _, e := RecoverPubkey(msg, sig)
- err = e
- b.StopTimer()
+ RecoverPubkey(msg, sig)
}
}