trie: support proof generation from the iterator
This commit is contained in:
parent
fbf57d53e2
commit
c934c06cc1
@ -22,6 +22,7 @@ import (
|
|||||||
"errors"
|
"errors"
|
||||||
|
|
||||||
"github.com/ethereum/go-ethereum/common"
|
"github.com/ethereum/go-ethereum/common"
|
||||||
|
"github.com/ethereum/go-ethereum/rlp"
|
||||||
)
|
)
|
||||||
|
|
||||||
// Iterator is a key-value trie iterator that traverses a Trie.
|
// Iterator is a key-value trie iterator that traverses a Trie.
|
||||||
@ -55,31 +56,50 @@ func (it *Iterator) Next() bool {
|
|||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Prove generates the Merkle proof for the leaf node the iterator is currently
|
||||||
|
// positioned on.
|
||||||
|
func (it *Iterator) Prove() [][]byte {
|
||||||
|
return it.nodeIt.LeafProof()
|
||||||
|
}
|
||||||
|
|
||||||
// NodeIterator is an iterator to traverse the trie pre-order.
|
// NodeIterator is an iterator to traverse the trie pre-order.
|
||||||
type NodeIterator interface {
|
type NodeIterator interface {
|
||||||
// Next moves the iterator to the next node. If the parameter is false, any child
|
// Next moves the iterator to the next node. If the parameter is false, any child
|
||||||
// nodes will be skipped.
|
// nodes will be skipped.
|
||||||
Next(bool) bool
|
Next(bool) bool
|
||||||
|
|
||||||
// Error returns the error status of the iterator.
|
// Error returns the error status of the iterator.
|
||||||
Error() error
|
Error() error
|
||||||
|
|
||||||
// Hash returns the hash of the current node.
|
// Hash returns the hash of the current node.
|
||||||
Hash() common.Hash
|
Hash() common.Hash
|
||||||
|
|
||||||
// Parent returns the hash of the parent of the current node. The hash may be the one
|
// Parent returns the hash of the parent of the current node. The hash may be the one
|
||||||
// grandparent if the immediate parent is an internal node with no hash.
|
// grandparent if the immediate parent is an internal node with no hash.
|
||||||
Parent() common.Hash
|
Parent() common.Hash
|
||||||
|
|
||||||
// Path returns the hex-encoded path to the current node.
|
// Path returns the hex-encoded path to the current node.
|
||||||
// Callers must not retain references to the return value after calling Next.
|
// Callers must not retain references to the return value after calling Next.
|
||||||
// For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
|
// For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
|
||||||
Path() []byte
|
Path() []byte
|
||||||
|
|
||||||
// Leaf returns true iff the current node is a leaf node.
|
// Leaf returns true iff the current node is a leaf node.
|
||||||
// LeafBlob, LeafKey return the contents and key of the leaf node. These
|
|
||||||
// method panic if the iterator is not positioned at a leaf.
|
|
||||||
// Callers must not retain references to their return value after calling Next
|
|
||||||
Leaf() bool
|
Leaf() bool
|
||||||
LeafBlob() []byte
|
|
||||||
|
// LeafKey returns the key of the leaf. The method panics if the iterator is not
|
||||||
|
// positioned at a leaf. Callers must not retain references to the value after
|
||||||
|
// calling Next.
|
||||||
LeafKey() []byte
|
LeafKey() []byte
|
||||||
|
|
||||||
|
// LeafBlob returns the content of the leaf. The method panics if the iterator
|
||||||
|
// is not positioned at a leaf. Callers must not retain references to the value
|
||||||
|
// after calling Next.
|
||||||
|
LeafBlob() []byte
|
||||||
|
|
||||||
|
// LeafProof returns the Merkle proof of the leaf. The method panics if the
|
||||||
|
// iterator is not positioned at a leaf. Callers must not retain references
|
||||||
|
// to the value after calling Next.
|
||||||
|
LeafProof() [][]byte
|
||||||
}
|
}
|
||||||
|
|
||||||
// nodeIteratorState represents the iteration state at one particular node of the
|
// nodeIteratorState represents the iteration state at one particular node of the
|
||||||
@ -139,6 +159,15 @@ func (it *nodeIterator) Leaf() bool {
|
|||||||
return hasTerm(it.path)
|
return hasTerm(it.path)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (it *nodeIterator) LeafKey() []byte {
|
||||||
|
if len(it.stack) > 0 {
|
||||||
|
if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
||||||
|
return hexToKeybytes(it.path)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
panic("not at leaf")
|
||||||
|
}
|
||||||
|
|
||||||
func (it *nodeIterator) LeafBlob() []byte {
|
func (it *nodeIterator) LeafBlob() []byte {
|
||||||
if len(it.stack) > 0 {
|
if len(it.stack) > 0 {
|
||||||
if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
||||||
@ -148,10 +177,22 @@ func (it *nodeIterator) LeafBlob() []byte {
|
|||||||
panic("not at leaf")
|
panic("not at leaf")
|
||||||
}
|
}
|
||||||
|
|
||||||
func (it *nodeIterator) LeafKey() []byte {
|
func (it *nodeIterator) LeafProof() [][]byte {
|
||||||
if len(it.stack) > 0 {
|
if len(it.stack) > 0 {
|
||||||
if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
|
||||||
return hexToKeybytes(it.path)
|
hasher := newHasher(0, 0, nil)
|
||||||
|
proofs := make([][]byte, 0, len(it.stack))
|
||||||
|
|
||||||
|
for i, item := range it.stack[:len(it.stack)-1] {
|
||||||
|
// Gather nodes that end up as hash nodes (or the root)
|
||||||
|
node, _, _ := hasher.hashChildren(item.node, nil)
|
||||||
|
hashed, _ := hasher.store(node, nil, false)
|
||||||
|
if _, ok := hashed.(hashNode); ok || i == 0 {
|
||||||
|
enc, _ := rlp.EncodeToBytes(node)
|
||||||
|
proofs = append(proofs, enc)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return proofs
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
panic("not at leaf")
|
panic("not at leaf")
|
||||||
@ -361,12 +402,16 @@ func (it *differenceIterator) Leaf() bool {
|
|||||||
return it.b.Leaf()
|
return it.b.Leaf()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (it *differenceIterator) LeafKey() []byte {
|
||||||
|
return it.b.LeafKey()
|
||||||
|
}
|
||||||
|
|
||||||
func (it *differenceIterator) LeafBlob() []byte {
|
func (it *differenceIterator) LeafBlob() []byte {
|
||||||
return it.b.LeafBlob()
|
return it.b.LeafBlob()
|
||||||
}
|
}
|
||||||
|
|
||||||
func (it *differenceIterator) LeafKey() []byte {
|
func (it *differenceIterator) LeafProof() [][]byte {
|
||||||
return it.b.LeafKey()
|
return it.b.LeafProof()
|
||||||
}
|
}
|
||||||
|
|
||||||
func (it *differenceIterator) Path() []byte {
|
func (it *differenceIterator) Path() []byte {
|
||||||
@ -464,12 +509,16 @@ func (it *unionIterator) Leaf() bool {
|
|||||||
return (*it.items)[0].Leaf()
|
return (*it.items)[0].Leaf()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (it *unionIterator) LeafKey() []byte {
|
||||||
|
return (*it.items)[0].LeafKey()
|
||||||
|
}
|
||||||
|
|
||||||
func (it *unionIterator) LeafBlob() []byte {
|
func (it *unionIterator) LeafBlob() []byte {
|
||||||
return (*it.items)[0].LeafBlob()
|
return (*it.items)[0].LeafBlob()
|
||||||
}
|
}
|
||||||
|
|
||||||
func (it *unionIterator) LeafKey() []byte {
|
func (it *unionIterator) LeafProof() [][]byte {
|
||||||
return (*it.items)[0].LeafKey()
|
return (*it.items)[0].LeafProof()
|
||||||
}
|
}
|
||||||
|
|
||||||
func (it *unionIterator) Path() []byte {
|
func (it *unionIterator) Path() []byte {
|
||||||
@ -509,12 +558,10 @@ func (it *unionIterator) Next(descend bool) bool {
|
|||||||
heap.Push(it.items, skipped)
|
heap.Push(it.items, skipped)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if least.Next(descend) {
|
if least.Next(descend) {
|
||||||
it.count++
|
it.count++
|
||||||
heap.Push(it.items, least)
|
heap.Push(it.items, least)
|
||||||
}
|
}
|
||||||
|
|
||||||
return len(*it.items) > 0
|
return len(*it.items) > 0
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -32,20 +32,46 @@ func init() {
|
|||||||
mrand.Seed(time.Now().Unix())
|
mrand.Seed(time.Now().Unix())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// makeProvers creates Merkle trie provers based on different implementations to
|
||||||
|
// test all variations.
|
||||||
|
func makeProvers(trie *Trie) []func(key []byte) *ethdb.MemDatabase {
|
||||||
|
var provers []func(key []byte) *ethdb.MemDatabase
|
||||||
|
|
||||||
|
// Create a direct trie based Merkle prover
|
||||||
|
provers = append(provers, func(key []byte) *ethdb.MemDatabase {
|
||||||
|
proof := ethdb.NewMemDatabase()
|
||||||
|
trie.Prove(key, 0, proof)
|
||||||
|
return proof
|
||||||
|
})
|
||||||
|
// Create a leaf iterator based Merkle prover
|
||||||
|
provers = append(provers, func(key []byte) *ethdb.MemDatabase {
|
||||||
|
proof := ethdb.NewMemDatabase()
|
||||||
|
if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
|
||||||
|
for _, p := range it.Prove() {
|
||||||
|
proof.Put(crypto.Keccak256(p), p)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return proof
|
||||||
|
})
|
||||||
|
return provers
|
||||||
|
}
|
||||||
|
|
||||||
func TestProof(t *testing.T) {
|
func TestProof(t *testing.T) {
|
||||||
trie, vals := randomTrie(500)
|
trie, vals := randomTrie(500)
|
||||||
root := trie.Hash()
|
root := trie.Hash()
|
||||||
|
for i, prover := range makeProvers(trie) {
|
||||||
for _, kv := range vals {
|
for _, kv := range vals {
|
||||||
proofs := ethdb.NewMemDatabase()
|
proof := prover(kv.k)
|
||||||
if trie.Prove(kv.k, 0, proofs) != nil {
|
if proof == nil {
|
||||||
t.Fatalf("missing key %x while constructing proof", kv.k)
|
t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
|
||||||
}
|
}
|
||||||
val, _, err := VerifyProof(root, kv.k, proofs)
|
val, _, err := VerifyProof(root, kv.k, proof)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatalf("VerifyProof error for key %x: %v\nraw proof: %v", kv.k, err, proofs)
|
t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
|
||||||
}
|
}
|
||||||
if !bytes.Equal(val, kv.v) {
|
if !bytes.Equal(val, kv.v) {
|
||||||
t.Fatalf("VerifyProof returned wrong value for key %x: got %x, want %x", kv.k, val, kv.v)
|
t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -53,37 +79,66 @@ func TestProof(t *testing.T) {
|
|||||||
func TestOneElementProof(t *testing.T) {
|
func TestOneElementProof(t *testing.T) {
|
||||||
trie := new(Trie)
|
trie := new(Trie)
|
||||||
updateString(trie, "k", "v")
|
updateString(trie, "k", "v")
|
||||||
proofs := ethdb.NewMemDatabase()
|
for i, prover := range makeProvers(trie) {
|
||||||
trie.Prove([]byte("k"), 0, proofs)
|
proof := prover([]byte("k"))
|
||||||
if len(proofs.Keys()) != 1 {
|
if proof == nil {
|
||||||
t.Error("proof should have one element")
|
t.Fatalf("prover %d: nil proof", i)
|
||||||
}
|
}
|
||||||
val, _, err := VerifyProof(trie.Hash(), []byte("k"), proofs)
|
if proof.Len() != 1 {
|
||||||
|
t.Errorf("prover %d: proof should have one element", i)
|
||||||
|
}
|
||||||
|
val, _, err := VerifyProof(trie.Hash(), []byte("k"), proof)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatalf("VerifyProof error: %v\nproof hashes: %v", err, proofs.Keys())
|
t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
||||||
}
|
}
|
||||||
if !bytes.Equal(val, []byte("v")) {
|
if !bytes.Equal(val, []byte("v")) {
|
||||||
t.Fatalf("VerifyProof returned wrong value: got %x, want 'k'", val)
|
t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestVerifyBadProof(t *testing.T) {
|
func TestBadProof(t *testing.T) {
|
||||||
trie, vals := randomTrie(800)
|
trie, vals := randomTrie(800)
|
||||||
root := trie.Hash()
|
root := trie.Hash()
|
||||||
|
for i, prover := range makeProvers(trie) {
|
||||||
for _, kv := range vals {
|
for _, kv := range vals {
|
||||||
proofs := ethdb.NewMemDatabase()
|
proof := prover(kv.k)
|
||||||
trie.Prove(kv.k, 0, proofs)
|
if proof == nil {
|
||||||
if len(proofs.Keys()) == 0 {
|
t.Fatalf("prover %d: nil proof", i)
|
||||||
t.Fatal("zero length proof")
|
|
||||||
}
|
}
|
||||||
keys := proofs.Keys()
|
key := proof.Keys()[mrand.Intn(proof.Len())]
|
||||||
key := keys[mrand.Intn(len(keys))]
|
val, _ := proof.Get(key)
|
||||||
node, _ := proofs.Get(key)
|
proof.Delete(key)
|
||||||
proofs.Delete(key)
|
|
||||||
mutateByte(node)
|
mutateByte(val)
|
||||||
proofs.Put(crypto.Keccak256(node), node)
|
proof.Put(crypto.Keccak256(val), val)
|
||||||
if _, _, err := VerifyProof(root, kv.k, proofs); err == nil {
|
|
||||||
t.Fatalf("expected proof to fail for key %x", kv.k)
|
if _, _, err := VerifyProof(root, kv.k, proof); err == nil {
|
||||||
|
t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tests that missing keys can also be proven. The test explicitly uses a single
|
||||||
|
// entry trie and checks for missing keys both before and after the single entry.
|
||||||
|
func TestMissingKeyProof(t *testing.T) {
|
||||||
|
trie := new(Trie)
|
||||||
|
updateString(trie, "k", "v")
|
||||||
|
|
||||||
|
for i, key := range []string{"a", "j", "l", "z"} {
|
||||||
|
proof := ethdb.NewMemDatabase()
|
||||||
|
trie.Prove([]byte(key), 0, proof)
|
||||||
|
|
||||||
|
if proof.Len() != 1 {
|
||||||
|
t.Errorf("test %d: proof should have one element", i)
|
||||||
|
}
|
||||||
|
val, _, err := VerifyProof(trie.Hash(), []byte(key), proof)
|
||||||
|
if err != nil {
|
||||||
|
t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
||||||
|
}
|
||||||
|
if val != nil {
|
||||||
|
t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user