p2p: fix ecies dependency in tests
We forgot to update this reference when moving ecies into the go-ethereum repo.
This commit is contained in:
		
							parent
							
								
									643eda5c2d
								
							
						
					
					
						commit
						34d0e1b2c3
					
				
							
								
								
									
										6
									
								
								Godeps/Godeps.json
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										6
									
								
								Godeps/Godeps.json
									
									
									
										generated
									
									
									
								
							| @ -1,6 +1,6 @@ | ||||
| { | ||||
| 	"ImportPath": "github.com/ethereum/go-ethereum", | ||||
| 	"GoVersion": "go1.4", | ||||
| 	"GoVersion": "go1.4.1", | ||||
| 	"Packages": [ | ||||
| 		"./..." | ||||
| 	], | ||||
| @ -57,10 +57,6 @@ | ||||
| 			"ImportPath": "github.com/jackpal/go-nat-pmp", | ||||
| 			"Rev": "a45aa3d54aef73b504e15eb71bea0e5565b5e6e1" | ||||
| 		}, | ||||
| 		{ | ||||
| 			"ImportPath": "github.com/obscuren/ecies", | ||||
| 			"Rev": "d899334bba7bf4a157cab19d8ad836dcb1de0c34" | ||||
| 		}, | ||||
| 		{ | ||||
| 			"ImportPath": "github.com/obscuren/otto", | ||||
| 			"Rev": "cf13cc4228c5e5ce0fe27a7aea90bc10091c4f19" | ||||
|  | ||||
							
								
								
									
										24
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/.gitignore
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										24
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/.gitignore
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -1,24 +0,0 @@ | ||||
| # Compiled Object files, Static and Dynamic libs (Shared Objects) | ||||
| *.o | ||||
| *.a | ||||
| *.so | ||||
| 
 | ||||
| # Folders | ||||
| _obj | ||||
| _test | ||||
| 
 | ||||
| # Architecture specific extensions/prefixes | ||||
| *.[568vq] | ||||
| [568vq].out | ||||
| 
 | ||||
| *.cgo1.go | ||||
| *.cgo2.c | ||||
| _cgo_defun.c | ||||
| _cgo_gotypes.go | ||||
| _cgo_export.* | ||||
| 
 | ||||
| _testmain.go | ||||
| 
 | ||||
| *.exe | ||||
| 
 | ||||
| *~ | ||||
							
								
								
									
										28
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/LICENSE
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										28
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/LICENSE
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -1,28 +0,0 @@ | ||||
| Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is> | ||||
| Copyright (c) 2012 The Go Authors. All rights reserved. | ||||
| 
 | ||||
| Redistribution and use in source and binary forms, with or without | ||||
| modification, are permitted provided that the following conditions are | ||||
| met: | ||||
| 
 | ||||
|    * Redistributions of source code must retain the above copyright | ||||
| notice, this list of conditions and the following disclaimer. | ||||
|    * Redistributions in binary form must reproduce the above | ||||
| copyright notice, this list of conditions and the following disclaimer | ||||
| in the documentation and/or other materials provided with the | ||||
| distribution. | ||||
|    * Neither the name of Google Inc. nor the names of its | ||||
| contributors may be used to endorse or promote products derived from | ||||
| this software without specific prior written permission. | ||||
| 
 | ||||
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||||
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||||
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||||
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||||
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||||
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||||
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||||
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||||
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||||
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||||
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||||
							
								
								
									
										94
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/README
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										94
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/README
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -1,94 +0,0 @@ | ||||
| # NOTE | ||||
| 
 | ||||
| This implementation is direct fork of Kylom's implementation. I claim no authorship over this code apart from some minor modifications. | ||||
| Please be aware this code **has not yet been reviewed**. | ||||
| 
 | ||||
| ecies implements the Elliptic Curve Integrated Encryption Scheme. | ||||
| 
 | ||||
| The package is designed to be compliant with the appropriate NIST | ||||
| standards, and therefore doesn't support the full SEC 1 algorithm set. | ||||
| 
 | ||||
| 
 | ||||
| STATUS: | ||||
| 
 | ||||
| ecies should be ready for use. The ASN.1 support is only complete so | ||||
| far as to supported the listed algorithms before. | ||||
| 
 | ||||
| 
 | ||||
| CAVEATS | ||||
| 
 | ||||
| 1. CMAC support is currently not present. | ||||
| 
 | ||||
| 
 | ||||
| SUPPORTED ALGORITHMS | ||||
| 
 | ||||
|         SYMMETRIC CIPHERS               HASH FUNCTIONS | ||||
|              AES128                         SHA-1 | ||||
|              AES192                        SHA-224 | ||||
|              AES256                        SHA-256 | ||||
|                                            SHA-384 | ||||
|         ELLIPTIC CURVE                     SHA-512 | ||||
|              P256 | ||||
|              P384		    KEY DERIVATION FUNCTION | ||||
|              P521	       NIST SP 800-65a Concatenation KDF | ||||
| 
 | ||||
| Curve P224 isn't supported because it does not provide a minimum security | ||||
| level of AES128 with HMAC-SHA1. According to NIST SP 800-57, the security | ||||
| level of P224 is 112 bits of security. Symmetric ciphers use CTR-mode; | ||||
| message tags are computed using HMAC-<HASH> function. | ||||
| 
 | ||||
| 
 | ||||
| CURVE SELECTION | ||||
| 
 | ||||
| According to NIST SP 800-57, the following curves should be selected: | ||||
| 
 | ||||
|     +----------------+-------+ | ||||
|     | SYMMETRIC SIZE | CURVE | | ||||
|     +----------------+-------+ | ||||
|     |     128-bit    |  P256 | | ||||
|     +----------------+-------+ | ||||
|     |     192-bit    |  P384 | | ||||
|     +----------------+-------+ | ||||
|     |     256-bit    |  P521 | | ||||
|     +----------------+-------+ | ||||
| 
 | ||||
| 
 | ||||
| TODO | ||||
| 
 | ||||
| 1. Look at serialising the parameters with the SEC 1 ASN.1 module. | ||||
| 2. Validate ASN.1 formats with SEC 1. | ||||
| 
 | ||||
| 
 | ||||
| TEST VECTORS | ||||
| 
 | ||||
| The only test vectors I've found so far date from 1993, predating AES | ||||
| and including only 163-bit curves. Therefore, there are no published | ||||
| test vectors to compare to. | ||||
| 
 | ||||
| 
 | ||||
| LICENSE | ||||
| 
 | ||||
| ecies is released under the same license as the Go source code. See the | ||||
| LICENSE file for details. | ||||
| 
 | ||||
| 
 | ||||
| REFERENCES | ||||
| 
 | ||||
| * SEC (Standard for Efficient Cryptography) 1, version 2.0: Elliptic | ||||
|   Curve Cryptography; Certicom, May 2009. | ||||
|   http://www.secg.org/sec1-v2.pdf | ||||
| * GEC (Guidelines for Efficient Cryptography) 2, version 0.3: Test | ||||
|   Vectors for SEC 1; Certicom, September 1999. | ||||
|   http://read.pudn.com/downloads168/doc/772358/TestVectorsforSEC%201-gec2.pdf | ||||
| * NIST SP 800-56a: Recommendation for Pair-Wise Key Establishment Schemes | ||||
|   Using Discrete Logarithm Cryptography. National Institute of Standards | ||||
|   and Technology, May 2007. | ||||
|   http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf | ||||
| * Suite B Implementer’s Guide to NIST SP 800-56A. National Security | ||||
|   Agency, July 28, 2009. | ||||
|   http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf | ||||
| * NIST SP 800-57: Recommendation for Key Management – Part 1: General | ||||
|   (Revision 3). National Institute of Standards and Technology, July | ||||
|   2012. | ||||
|   http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf | ||||
| 
 | ||||
							
								
								
									
										556
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/asn1.go
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										556
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/asn1.go
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -1,556 +0,0 @@ | ||||
| package ecies | ||||
| 
 | ||||
| import ( | ||||
| 	"bytes" | ||||
| 	"crypto" | ||||
| 	"crypto/elliptic" | ||||
| 	"crypto/sha1" | ||||
| 	"crypto/sha256" | ||||
| 	"crypto/sha512" | ||||
| 	"encoding/asn1" | ||||
| 	"encoding/pem" | ||||
| 	"fmt" | ||||
| 	"hash" | ||||
| 	"math/big" | ||||
| ) | ||||
| 
 | ||||
| var ( | ||||
| 	secgScheme     = []int{1, 3, 132, 1} | ||||
| 	shaScheme      = []int{2, 16, 840, 1, 101, 3, 4, 2} | ||||
| 	ansiX962Scheme = []int{1, 2, 840, 10045} | ||||
| 	x963Scheme     = []int{1, 2, 840, 63, 0} | ||||
| ) | ||||
| 
 | ||||
| var ErrInvalidPrivateKey = fmt.Errorf("ecies: invalid private key") | ||||
| 
 | ||||
| func doScheme(base, v []int) asn1.ObjectIdentifier { | ||||
| 	var oidInts asn1.ObjectIdentifier | ||||
| 	oidInts = append(oidInts, base...) | ||||
| 	return append(oidInts, v...) | ||||
| } | ||||
| 
 | ||||
| // curve OID code taken from crypto/x509, including
 | ||||
| //	- oidNameCurve*
 | ||||
| //	- namedCurveFromOID
 | ||||
| //	- oidFromNamedCurve
 | ||||
| // RFC 5480, 2.1.1.1. Named Curve
 | ||||
| //
 | ||||
| // secp224r1 OBJECT IDENTIFIER ::= {
 | ||||
| //   iso(1) identified-organization(3) certicom(132) curve(0) 33 }
 | ||||
| //
 | ||||
| // secp256r1 OBJECT IDENTIFIER ::= {
 | ||||
| //   iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
 | ||||
| //   prime(1) 7 }
 | ||||
| //
 | ||||
| // secp384r1 OBJECT IDENTIFIER ::= {
 | ||||
| //   iso(1) identified-organization(3) certicom(132) curve(0) 34 }
 | ||||
| //
 | ||||
| // secp521r1 OBJECT IDENTIFIER ::= {
 | ||||
| //   iso(1) identified-organization(3) certicom(132) curve(0) 35 }
 | ||||
| //
 | ||||
| // NB: secp256r1 is equivalent to prime256v1
 | ||||
| type secgNamedCurve asn1.ObjectIdentifier | ||||
| 
 | ||||
| var ( | ||||
| 	secgNamedCurveP224 = secgNamedCurve{1, 3, 132, 0, 33} | ||||
| 	secgNamedCurveP256 = secgNamedCurve{1, 2, 840, 10045, 3, 1, 7} | ||||
| 	secgNamedCurveP384 = secgNamedCurve{1, 3, 132, 0, 34} | ||||
| 	secgNamedCurveP521 = secgNamedCurve{1, 3, 132, 0, 35} | ||||
| 	rawCurveP224       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 3} | ||||
| 	rawCurveP256       = []byte{6, 8, 4, 2, 1, 3, 4, 7, 2, 2, 0, 6, 6, 1, 3, 1, 7} | ||||
| 	rawCurveP384       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 4} | ||||
| 	rawCurveP521       = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 5} | ||||
| ) | ||||
| 
 | ||||
| func rawCurve(curve elliptic.Curve) []byte { | ||||
| 	switch curve { | ||||
| 	case elliptic.P224(): | ||||
| 		return rawCurveP224 | ||||
| 	case elliptic.P256(): | ||||
| 		return rawCurveP256 | ||||
| 	case elliptic.P384(): | ||||
| 		return rawCurveP384 | ||||
| 	case elliptic.P521(): | ||||
| 		return rawCurveP521 | ||||
| 	default: | ||||
| 		return nil | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| func (curve secgNamedCurve) Equal(curve2 secgNamedCurve) bool { | ||||
| 	if len(curve) != len(curve2) { | ||||
| 		return false | ||||
| 	} | ||||
| 	for i, _ := range curve { | ||||
| 		if curve[i] != curve2[i] { | ||||
| 			return false | ||||
| 		} | ||||
| 	} | ||||
| 	return true | ||||
| } | ||||
| 
 | ||||
| func namedCurveFromOID(curve secgNamedCurve) elliptic.Curve { | ||||
| 	switch { | ||||
| 	case curve.Equal(secgNamedCurveP224): | ||||
| 		return elliptic.P224() | ||||
| 	case curve.Equal(secgNamedCurveP256): | ||||
| 		return elliptic.P256() | ||||
| 	case curve.Equal(secgNamedCurveP384): | ||||
| 		return elliptic.P384() | ||||
| 	case curve.Equal(secgNamedCurveP521): | ||||
| 		return elliptic.P521() | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
| 
 | ||||
| func oidFromNamedCurve(curve elliptic.Curve) (secgNamedCurve, bool) { | ||||
| 	switch curve { | ||||
| 	case elliptic.P224(): | ||||
| 		return secgNamedCurveP224, true | ||||
| 	case elliptic.P256(): | ||||
| 		return secgNamedCurveP256, true | ||||
| 	case elliptic.P384(): | ||||
| 		return secgNamedCurveP384, true | ||||
| 	case elliptic.P521(): | ||||
| 		return secgNamedCurveP521, true | ||||
| 	} | ||||
| 
 | ||||
| 	return nil, false | ||||
| } | ||||
| 
 | ||||
| // asnAlgorithmIdentifier represents the ASN.1 structure of the same name. See RFC
 | ||||
| // 5280, section 4.1.1.2.
 | ||||
| type asnAlgorithmIdentifier struct { | ||||
| 	Algorithm  asn1.ObjectIdentifier | ||||
| 	Parameters asn1.RawValue `asn1:"optional"` | ||||
| } | ||||
| 
 | ||||
| func (a asnAlgorithmIdentifier) Cmp(b asnAlgorithmIdentifier) bool { | ||||
| 	if len(a.Algorithm) != len(b.Algorithm) { | ||||
| 		return false | ||||
| 	} | ||||
| 	for i, _ := range a.Algorithm { | ||||
| 		if a.Algorithm[i] != b.Algorithm[i] { | ||||
| 			return false | ||||
| 		} | ||||
| 	} | ||||
| 	return true | ||||
| } | ||||
| 
 | ||||
| type asnHashFunction asnAlgorithmIdentifier | ||||
| 
 | ||||
| var ( | ||||
| 	oidSHA1   = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 26} | ||||
| 	oidSHA224 = doScheme(shaScheme, []int{4}) | ||||
| 	oidSHA256 = doScheme(shaScheme, []int{1}) | ||||
| 	oidSHA384 = doScheme(shaScheme, []int{2}) | ||||
| 	oidSHA512 = doScheme(shaScheme, []int{3}) | ||||
| ) | ||||
| 
 | ||||
| func hashFromOID(oid asn1.ObjectIdentifier) func() hash.Hash { | ||||
| 	switch { | ||||
| 	case oid.Equal(oidSHA1): | ||||
| 		return sha1.New | ||||
| 	case oid.Equal(oidSHA224): | ||||
| 		return sha256.New224 | ||||
| 	case oid.Equal(oidSHA256): | ||||
| 		return sha256.New | ||||
| 	case oid.Equal(oidSHA384): | ||||
| 		return sha512.New384 | ||||
| 	case oid.Equal(oidSHA512): | ||||
| 		return sha512.New | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
| 
 | ||||
| func oidFromHash(hash crypto.Hash) (asn1.ObjectIdentifier, bool) { | ||||
| 	switch hash { | ||||
| 	case crypto.SHA1: | ||||
| 		return oidSHA1, true | ||||
| 	case crypto.SHA224: | ||||
| 		return oidSHA224, true | ||||
| 	case crypto.SHA256: | ||||
| 		return oidSHA256, true | ||||
| 	case crypto.SHA384: | ||||
| 		return oidSHA384, true | ||||
| 	case crypto.SHA512: | ||||
| 		return oidSHA512, true | ||||
| 	default: | ||||
| 		return nil, false | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| var ( | ||||
| 	asnAlgoSHA1 = asnHashFunction{ | ||||
| 		Algorithm: oidSHA1, | ||||
| 	} | ||||
| 	asnAlgoSHA224 = asnHashFunction{ | ||||
| 		Algorithm: oidSHA224, | ||||
| 	} | ||||
| 	asnAlgoSHA256 = asnHashFunction{ | ||||
| 		Algorithm: oidSHA256, | ||||
| 	} | ||||
| 	asnAlgoSHA384 = asnHashFunction{ | ||||
| 		Algorithm: oidSHA384, | ||||
| 	} | ||||
| 	asnAlgoSHA512 = asnHashFunction{ | ||||
| 		Algorithm: oidSHA512, | ||||
| 	} | ||||
| ) | ||||
| 
 | ||||
| // type ASNasnSubjectPublicKeyInfo struct {
 | ||||
| //
 | ||||
| // }
 | ||||
| //
 | ||||
| 
 | ||||
| type asnSubjectPublicKeyInfo struct { | ||||
| 	Algorithm   asn1.ObjectIdentifier | ||||
| 	PublicKey   asn1.BitString | ||||
| 	Supplements ecpksSupplements `asn1:"optional"` | ||||
| } | ||||
| 
 | ||||
| type asnECPKAlgorithms struct { | ||||
| 	Type asn1.ObjectIdentifier | ||||
| } | ||||
| 
 | ||||
| var idPublicKeyType = doScheme(ansiX962Scheme, []int{2}) | ||||
| var idEcPublicKey = doScheme(idPublicKeyType, []int{1}) | ||||
| var idEcPublicKeySupplemented = doScheme(idPublicKeyType, []int{0}) | ||||
| 
 | ||||
| func curveToRaw(curve elliptic.Curve) (rv asn1.RawValue, ok bool) { | ||||
| 	switch curve { | ||||
| 	case elliptic.P224(), elliptic.P256(), elliptic.P384(), elliptic.P521(): | ||||
| 		raw := rawCurve(curve) | ||||
| 		return asn1.RawValue{ | ||||
| 			Tag:       30, | ||||
| 			Bytes:     raw[2:], | ||||
| 			FullBytes: raw, | ||||
| 		}, true | ||||
| 	default: | ||||
| 		return rv, false | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| func asnECPublicKeyType(curve elliptic.Curve) (algo asnAlgorithmIdentifier, ok bool) { | ||||
| 	raw, ok := curveToRaw(curve) | ||||
| 	if !ok { | ||||
| 		return | ||||
| 	} else { | ||||
| 		return asnAlgorithmIdentifier{Algorithm: idEcPublicKey, | ||||
| 			Parameters: raw}, true | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| type asnECPrivKeyVer int | ||||
| 
 | ||||
| var asnECPrivKeyVer1 asnECPrivKeyVer = 1 | ||||
| 
 | ||||
| type asnPrivateKey struct { | ||||
| 	Version asnECPrivKeyVer | ||||
| 	Private []byte | ||||
| 	Curve   secgNamedCurve `asn1:"optional"` | ||||
| 	Public  asn1.BitString | ||||
| } | ||||
| 
 | ||||
| var asnECDH = doScheme(secgScheme, []int{12}) | ||||
| 
 | ||||
| type asnECDHAlgorithm asnAlgorithmIdentifier | ||||
| 
 | ||||
| var ( | ||||
| 	dhSinglePass_stdDH_sha1kdf = asnECDHAlgorithm{ | ||||
| 		Algorithm: doScheme(x963Scheme, []int{2}), | ||||
| 	} | ||||
| 	dhSinglePass_stdDH_sha256kdf = asnECDHAlgorithm{ | ||||
| 		Algorithm: doScheme(secgScheme, []int{11, 1}), | ||||
| 	} | ||||
| 	dhSinglePass_stdDH_sha384kdf = asnECDHAlgorithm{ | ||||
| 		Algorithm: doScheme(secgScheme, []int{11, 2}), | ||||
| 	} | ||||
| 	dhSinglePass_stdDH_sha224kdf = asnECDHAlgorithm{ | ||||
| 		Algorithm: doScheme(secgScheme, []int{11, 0}), | ||||
| 	} | ||||
| 	dhSinglePass_stdDH_sha512kdf = asnECDHAlgorithm{ | ||||
| 		Algorithm: doScheme(secgScheme, []int{11, 3}), | ||||
| 	} | ||||
| ) | ||||
| 
 | ||||
| func (a asnECDHAlgorithm) Cmp(b asnECDHAlgorithm) bool { | ||||
| 	if len(a.Algorithm) != len(b.Algorithm) { | ||||
| 		return false | ||||
| 	} | ||||
| 	for i, _ := range a.Algorithm { | ||||
| 		if a.Algorithm[i] != b.Algorithm[i] { | ||||
| 			return false | ||||
| 		} | ||||
| 	} | ||||
| 	return true | ||||
| } | ||||
| 
 | ||||
| // asnNISTConcatenation is the only supported KDF at this time.
 | ||||
| type asnKeyDerivationFunction asnAlgorithmIdentifier | ||||
| 
 | ||||
| var asnNISTConcatenationKDF = asnKeyDerivationFunction{ | ||||
| 	Algorithm: doScheme(secgScheme, []int{17, 1}), | ||||
| } | ||||
| 
 | ||||
| func (a asnKeyDerivationFunction) Cmp(b asnKeyDerivationFunction) bool { | ||||
| 	if len(a.Algorithm) != len(b.Algorithm) { | ||||
| 		return false | ||||
| 	} | ||||
| 	for i, _ := range a.Algorithm { | ||||
| 		if a.Algorithm[i] != b.Algorithm[i] { | ||||
| 			return false | ||||
| 		} | ||||
| 	} | ||||
| 	return true | ||||
| } | ||||
| 
 | ||||
| var eciesRecommendedParameters = doScheme(secgScheme, []int{7}) | ||||
| var eciesSpecifiedParameters = doScheme(secgScheme, []int{8}) | ||||
| 
 | ||||
| type asnECIESParameters struct { | ||||
| 	KDF asnKeyDerivationFunction     `asn1:"optional"` | ||||
| 	Sym asnSymmetricEncryption       `asn1:"optional"` | ||||
| 	MAC asnMessageAuthenticationCode `asn1:"optional"` | ||||
| } | ||||
| 
 | ||||
| type asnSymmetricEncryption asnAlgorithmIdentifier | ||||
| 
 | ||||
| var ( | ||||
| 	aes128CTRinECIES = asnSymmetricEncryption{ | ||||
| 		Algorithm: doScheme(secgScheme, []int{21, 0}), | ||||
| 	} | ||||
| 	aes192CTRinECIES = asnSymmetricEncryption{ | ||||
| 		Algorithm: doScheme(secgScheme, []int{21, 1}), | ||||
| 	} | ||||
| 	aes256CTRinECIES = asnSymmetricEncryption{ | ||||
| 		Algorithm: doScheme(secgScheme, []int{21, 2}), | ||||
| 	} | ||||
| ) | ||||
| 
 | ||||
| func (a asnSymmetricEncryption) Cmp(b asnSymmetricEncryption) bool { | ||||
| 	if len(a.Algorithm) != len(b.Algorithm) { | ||||
| 		return false | ||||
| 	} | ||||
| 	for i, _ := range a.Algorithm { | ||||
| 		if a.Algorithm[i] != b.Algorithm[i] { | ||||
| 			return false | ||||
| 		} | ||||
| 	} | ||||
| 	return true | ||||
| } | ||||
| 
 | ||||
| type asnMessageAuthenticationCode asnAlgorithmIdentifier | ||||
| 
 | ||||
| var ( | ||||
| 	hmacFull = asnMessageAuthenticationCode{ | ||||
| 		Algorithm: doScheme(secgScheme, []int{22}), | ||||
| 	} | ||||
| ) | ||||
| 
 | ||||
| func (a asnMessageAuthenticationCode) Cmp(b asnMessageAuthenticationCode) bool { | ||||
| 	if len(a.Algorithm) != len(b.Algorithm) { | ||||
| 		return false | ||||
| 	} | ||||
| 	for i, _ := range a.Algorithm { | ||||
| 		if a.Algorithm[i] != b.Algorithm[i] { | ||||
| 			return false | ||||
| 		} | ||||
| 	} | ||||
| 	return true | ||||
| } | ||||
| 
 | ||||
| type ecpksSupplements struct { | ||||
| 	ECDomain      secgNamedCurve | ||||
| 	ECCAlgorithms eccAlgorithmSet | ||||
| } | ||||
| 
 | ||||
| type eccAlgorithmSet struct { | ||||
| 	ECDH  asnECDHAlgorithm   `asn1:"optional"` | ||||
| 	ECIES asnECIESParameters `asn1:"optional"` | ||||
| } | ||||
| 
 | ||||
| func marshalSubjectPublicKeyInfo(pub *PublicKey) (subj asnSubjectPublicKeyInfo, err error) { | ||||
| 	subj.Algorithm = idEcPublicKeySupplemented | ||||
| 	curve, ok := oidFromNamedCurve(pub.Curve) | ||||
| 	if !ok { | ||||
| 		err = ErrInvalidPublicKey | ||||
| 		return | ||||
| 	} | ||||
| 	subj.Supplements.ECDomain = curve | ||||
| 	if pub.Params != nil { | ||||
| 		subj.Supplements.ECCAlgorithms.ECDH = paramsToASNECDH(pub.Params) | ||||
| 		subj.Supplements.ECCAlgorithms.ECIES = paramsToASNECIES(pub.Params) | ||||
| 	} | ||||
| 	pubkey := elliptic.Marshal(pub.Curve, pub.X, pub.Y) | ||||
| 	subj.PublicKey = asn1.BitString{ | ||||
| 		BitLength: len(pubkey) * 8, | ||||
| 		Bytes:     pubkey, | ||||
| 	} | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // Encode a public key to DER format.
 | ||||
| func MarshalPublic(pub *PublicKey) ([]byte, error) { | ||||
| 	subj, err := marshalSubjectPublicKeyInfo(pub) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	return asn1.Marshal(subj) | ||||
| } | ||||
| 
 | ||||
| // Decode a DER-encoded public key.
 | ||||
| func UnmarshalPublic(in []byte) (pub *PublicKey, err error) { | ||||
| 	var subj asnSubjectPublicKeyInfo | ||||
| 
 | ||||
| 	if _, err = asn1.Unmarshal(in, &subj); err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	if !subj.Algorithm.Equal(idEcPublicKeySupplemented) { | ||||
| 		err = ErrInvalidPublicKey | ||||
| 		return | ||||
| 	} | ||||
| 	pub = new(PublicKey) | ||||
| 	pub.Curve = namedCurveFromOID(subj.Supplements.ECDomain) | ||||
| 	x, y := elliptic.Unmarshal(pub.Curve, subj.PublicKey.Bytes) | ||||
| 	if x == nil { | ||||
| 		err = ErrInvalidPublicKey | ||||
| 		return | ||||
| 	} | ||||
| 	pub.X = x | ||||
| 	pub.Y = y | ||||
| 	pub.Params = new(ECIESParams) | ||||
| 	asnECIEStoParams(subj.Supplements.ECCAlgorithms.ECIES, pub.Params) | ||||
| 	asnECDHtoParams(subj.Supplements.ECCAlgorithms.ECDH, pub.Params) | ||||
| 	if pub.Params == nil { | ||||
| 		if pub.Params = ParamsFromCurve(pub.Curve); pub.Params == nil { | ||||
| 			err = ErrInvalidPublicKey | ||||
| 		} | ||||
| 	} | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| func marshalPrivateKey(prv *PrivateKey) (ecprv asnPrivateKey, err error) { | ||||
| 	ecprv.Version = asnECPrivKeyVer1 | ||||
| 	ecprv.Private = prv.D.Bytes() | ||||
| 
 | ||||
| 	var ok bool | ||||
| 	ecprv.Curve, ok = oidFromNamedCurve(prv.PublicKey.Curve) | ||||
| 	if !ok { | ||||
| 		err = ErrInvalidPrivateKey | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	var pub []byte | ||||
| 	if pub, err = MarshalPublic(&prv.PublicKey); err != nil { | ||||
| 		return | ||||
| 	} else { | ||||
| 		ecprv.Public = asn1.BitString{ | ||||
| 			BitLength: len(pub) * 8, | ||||
| 			Bytes:     pub, | ||||
| 		} | ||||
| 	} | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // Encode a private key to DER format.
 | ||||
| func MarshalPrivate(prv *PrivateKey) ([]byte, error) { | ||||
| 	ecprv, err := marshalPrivateKey(prv) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	return asn1.Marshal(ecprv) | ||||
| } | ||||
| 
 | ||||
| // Decode a private key from a DER-encoded format.
 | ||||
| func UnmarshalPrivate(in []byte) (prv *PrivateKey, err error) { | ||||
| 	var ecprv asnPrivateKey | ||||
| 
 | ||||
| 	if _, err = asn1.Unmarshal(in, &ecprv); err != nil { | ||||
| 		return | ||||
| 	} else if ecprv.Version != asnECPrivKeyVer1 { | ||||
| 		err = ErrInvalidPrivateKey | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	privateCurve := namedCurveFromOID(ecprv.Curve) | ||||
| 	if privateCurve == nil { | ||||
| 		err = ErrInvalidPrivateKey | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	prv = new(PrivateKey) | ||||
| 	prv.D = new(big.Int).SetBytes(ecprv.Private) | ||||
| 
 | ||||
| 	if pub, err := UnmarshalPublic(ecprv.Public.Bytes); err != nil { | ||||
| 		return nil, err | ||||
| 	} else { | ||||
| 		prv.PublicKey = *pub | ||||
| 	} | ||||
| 
 | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // Export a public key to PEM format.
 | ||||
| func ExportPublicPEM(pub *PublicKey) (out []byte, err error) { | ||||
| 	der, err := MarshalPublic(pub) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	var block pem.Block | ||||
| 	block.Type = "ELLIPTIC CURVE PUBLIC KEY" | ||||
| 	block.Bytes = der | ||||
| 
 | ||||
| 	buf := new(bytes.Buffer) | ||||
| 	err = pem.Encode(buf, &block) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} else { | ||||
| 		out = buf.Bytes() | ||||
| 	} | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // Export a private key to PEM format.
 | ||||
| func ExportPrivatePEM(prv *PrivateKey) (out []byte, err error) { | ||||
| 	der, err := MarshalPrivate(prv) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	var block pem.Block | ||||
| 	block.Type = "ELLIPTIC CURVE PRIVATE KEY" | ||||
| 	block.Bytes = der | ||||
| 
 | ||||
| 	buf := new(bytes.Buffer) | ||||
| 	err = pem.Encode(buf, &block) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} else { | ||||
| 		out = buf.Bytes() | ||||
| 	} | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // Import a PEM-encoded public key.
 | ||||
| func ImportPublicPEM(in []byte) (pub *PublicKey, err error) { | ||||
| 	p, _ := pem.Decode(in) | ||||
| 	if p == nil || p.Type != "ELLIPTIC CURVE PUBLIC KEY" { | ||||
| 		return nil, ErrInvalidPublicKey | ||||
| 	} | ||||
| 
 | ||||
| 	pub, err = UnmarshalPublic(p.Bytes) | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // Import a PEM-encoded private key.
 | ||||
| func ImportPrivatePEM(in []byte) (prv *PrivateKey, err error) { | ||||
| 	p, _ := pem.Decode(in) | ||||
| 	if p == nil || p.Type != "ELLIPTIC CURVE PRIVATE KEY" { | ||||
| 		return nil, ErrInvalidPrivateKey | ||||
| 	} | ||||
| 
 | ||||
| 	prv, err = UnmarshalPrivate(p.Bytes) | ||||
| 	return | ||||
| } | ||||
							
								
								
									
										326
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/ecies.go
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										326
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/ecies.go
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -1,326 +0,0 @@ | ||||
| package ecies | ||||
| 
 | ||||
| import ( | ||||
| 	"crypto/cipher" | ||||
| 	"crypto/ecdsa" | ||||
| 	"crypto/elliptic" | ||||
| 	"crypto/hmac" | ||||
| 	"crypto/subtle" | ||||
| 	"fmt" | ||||
| 	"hash" | ||||
| 	"io" | ||||
| 	"math/big" | ||||
| ) | ||||
| 
 | ||||
| var ( | ||||
| 	ErrImport           = fmt.Errorf("ecies: failed to import key") | ||||
| 	ErrInvalidCurve     = fmt.Errorf("ecies: invalid elliptic curve") | ||||
| 	ErrInvalidParams    = fmt.Errorf("ecies: invalid ECIES parameters") | ||||
| 	ErrInvalidPublicKey = fmt.Errorf("ecies: invalid public key") | ||||
| 	ErrSharedKeyTooBig  = fmt.Errorf("ecies: shared key is too big") | ||||
| ) | ||||
| 
 | ||||
| // PublicKey is a representation of an elliptic curve public key.
 | ||||
| type PublicKey struct { | ||||
| 	X *big.Int | ||||
| 	Y *big.Int | ||||
| 	elliptic.Curve | ||||
| 	Params *ECIESParams | ||||
| } | ||||
| 
 | ||||
| // Export an ECIES public key as an ECDSA public key.
 | ||||
| func (pub *PublicKey) ExportECDSA() *ecdsa.PublicKey { | ||||
| 	return &ecdsa.PublicKey{pub.Curve, pub.X, pub.Y} | ||||
| } | ||||
| 
 | ||||
| // Import an ECDSA public key as an ECIES public key.
 | ||||
| func ImportECDSAPublic(pub *ecdsa.PublicKey) *PublicKey { | ||||
| 	return &PublicKey{ | ||||
| 		X:      pub.X, | ||||
| 		Y:      pub.Y, | ||||
| 		Curve:  pub.Curve, | ||||
| 		Params: ParamsFromCurve(pub.Curve), | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // PrivateKey is a representation of an elliptic curve private key.
 | ||||
| type PrivateKey struct { | ||||
| 	PublicKey | ||||
| 	D *big.Int | ||||
| } | ||||
| 
 | ||||
| // Export an ECIES private key as an ECDSA private key.
 | ||||
| func (prv *PrivateKey) ExportECDSA() *ecdsa.PrivateKey { | ||||
| 	pub := &prv.PublicKey | ||||
| 	pubECDSA := pub.ExportECDSA() | ||||
| 	return &ecdsa.PrivateKey{*pubECDSA, prv.D} | ||||
| } | ||||
| 
 | ||||
| // Import an ECDSA private key as an ECIES private key.
 | ||||
| func ImportECDSA(prv *ecdsa.PrivateKey) *PrivateKey { | ||||
| 	pub := ImportECDSAPublic(&prv.PublicKey) | ||||
| 	return &PrivateKey{*pub, prv.D} | ||||
| } | ||||
| 
 | ||||
| // Generate an elliptic curve public / private keypair. If params is nil,
 | ||||
| // the recommended default paramters for the key will be chosen.
 | ||||
| func GenerateKey(rand io.Reader, curve elliptic.Curve, params *ECIESParams) (prv *PrivateKey, err error) { | ||||
| 	pb, x, y, err := elliptic.GenerateKey(curve, rand) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	prv = new(PrivateKey) | ||||
| 	prv.PublicKey.X = x | ||||
| 	prv.PublicKey.Y = y | ||||
| 	prv.PublicKey.Curve = curve | ||||
| 	prv.D = new(big.Int).SetBytes(pb) | ||||
| 	if params == nil { | ||||
| 		params = ParamsFromCurve(curve) | ||||
| 	} | ||||
| 	prv.PublicKey.Params = params | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // MaxSharedKeyLength returns the maximum length of the shared key the
 | ||||
| // public key can produce.
 | ||||
| func MaxSharedKeyLength(pub *PublicKey) int { | ||||
| 	return (pub.Curve.Params().BitSize + 7) / 8 | ||||
| } | ||||
| 
 | ||||
| // ECDH key agreement method used to establish secret keys for encryption.
 | ||||
| func (prv *PrivateKey) GenerateShared(pub *PublicKey, skLen, macLen int) (sk []byte, err error) { | ||||
| 	if prv.PublicKey.Curve != pub.Curve { | ||||
| 		err = ErrInvalidCurve | ||||
| 		return | ||||
| 	} | ||||
| 	x, _ := pub.Curve.ScalarMult(pub.X, pub.Y, prv.D.Bytes()) | ||||
| 	if x == nil || (x.BitLen()+7)/8 < (skLen+macLen) { | ||||
| 		err = ErrSharedKeyTooBig | ||||
| 		return | ||||
| 	} | ||||
| 	sk = x.Bytes()[:skLen+macLen] | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| var ( | ||||
| 	ErrKeyDataTooLong = fmt.Errorf("ecies: can't supply requested key data") | ||||
| 	ErrSharedTooLong  = fmt.Errorf("ecies: shared secret is too long") | ||||
| 	ErrInvalidMessage = fmt.Errorf("ecies: invalid message") | ||||
| ) | ||||
| 
 | ||||
| var ( | ||||
| 	big2To32   = new(big.Int).Exp(big.NewInt(2), big.NewInt(32), nil) | ||||
| 	big2To32M1 = new(big.Int).Sub(big2To32, big.NewInt(1)) | ||||
| ) | ||||
| 
 | ||||
| func incCounter(ctr []byte) { | ||||
| 	if ctr[3]++; ctr[3] != 0 { | ||||
| 		return | ||||
| 	} else if ctr[2]++; ctr[2] != 0 { | ||||
| 		return | ||||
| 	} else if ctr[1]++; ctr[1] != 0 { | ||||
| 		return | ||||
| 	} else if ctr[0]++; ctr[0] != 0 { | ||||
| 		return | ||||
| 	} | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1).
 | ||||
| func concatKDF(hash hash.Hash, z, s1 []byte, kdLen int) (k []byte, err error) { | ||||
| 	if s1 == nil { | ||||
| 		s1 = make([]byte, 0) | ||||
| 	} | ||||
| 
 | ||||
| 	reps := ((kdLen + 7) * 8) / (hash.BlockSize() * 8) | ||||
| 	if big.NewInt(int64(reps)).Cmp(big2To32M1) > 0 { | ||||
| 		fmt.Println(big2To32M1) | ||||
| 		return nil, ErrKeyDataTooLong | ||||
| 	} | ||||
| 
 | ||||
| 	counter := []byte{0, 0, 0, 1} | ||||
| 	k = make([]byte, 0) | ||||
| 
 | ||||
| 	for i := 0; i <= reps; i++ { | ||||
| 		hash.Write(counter) | ||||
| 		hash.Write(z) | ||||
| 		hash.Write(s1) | ||||
| 		k = append(k, hash.Sum(nil)...) | ||||
| 		hash.Reset() | ||||
| 		incCounter(counter) | ||||
| 	} | ||||
| 
 | ||||
| 	k = k[:kdLen] | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // messageTag computes the MAC of a message (called the tag) as per
 | ||||
| // SEC 1, 3.5.
 | ||||
| func messageTag(hash func() hash.Hash, km, msg, shared []byte) []byte { | ||||
| 	if shared == nil { | ||||
| 		shared = make([]byte, 0) | ||||
| 	} | ||||
| 	mac := hmac.New(hash, km) | ||||
| 	mac.Write(msg) | ||||
| 	tag := mac.Sum(nil) | ||||
| 	return tag | ||||
| } | ||||
| 
 | ||||
| // Generate an initialisation vector for CTR mode.
 | ||||
| func generateIV(params *ECIESParams, rand io.Reader) (iv []byte, err error) { | ||||
| 	iv = make([]byte, params.BlockSize) | ||||
| 	_, err = io.ReadFull(rand, iv) | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // symEncrypt carries out CTR encryption using the block cipher specified in the
 | ||||
| // parameters.
 | ||||
| func symEncrypt(rand io.Reader, params *ECIESParams, key, m []byte) (ct []byte, err error) { | ||||
| 	c, err := params.Cipher(key) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	iv, err := generateIV(params, rand) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	ctr := cipher.NewCTR(c, iv) | ||||
| 
 | ||||
| 	ct = make([]byte, len(m)+params.BlockSize) | ||||
| 	copy(ct, iv) | ||||
| 	ctr.XORKeyStream(ct[params.BlockSize:], m) | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // symDecrypt carries out CTR decryption using the block cipher specified in
 | ||||
| // the parameters
 | ||||
| func symDecrypt(rand io.Reader, params *ECIESParams, key, ct []byte) (m []byte, err error) { | ||||
| 	c, err := params.Cipher(key) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	ctr := cipher.NewCTR(c, ct[:params.BlockSize]) | ||||
| 
 | ||||
| 	m = make([]byte, len(ct)-params.BlockSize) | ||||
| 	ctr.XORKeyStream(m, ct[params.BlockSize:]) | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // Encrypt encrypts a message using ECIES as specified in SEC 1, 5.1. If
 | ||||
| // the shared information parameters aren't being used, they should be
 | ||||
| // nil.
 | ||||
| func Encrypt(rand io.Reader, pub *PublicKey, m, s1, s2 []byte) (ct []byte, err error) { | ||||
| 	params := pub.Params | ||||
| 	if params == nil { | ||||
| 		if params = ParamsFromCurve(pub.Curve); params == nil { | ||||
| 			err = ErrUnsupportedECIESParameters | ||||
| 			return | ||||
| 		} | ||||
| 	} | ||||
| 	R, err := GenerateKey(rand, pub.Curve, params) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	hash := params.Hash() | ||||
| 	z, err := R.GenerateShared(pub, params.KeyLen, params.KeyLen) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	Ke := K[:params.KeyLen] | ||||
| 	Km := K[params.KeyLen:] | ||||
| 	hash.Write(Km) | ||||
| 	Km = hash.Sum(nil) | ||||
| 	hash.Reset() | ||||
| 
 | ||||
| 	em, err := symEncrypt(rand, params, Ke, m) | ||||
| 	if err != nil || len(em) <= params.BlockSize { | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	d := messageTag(params.Hash, Km, em, s2) | ||||
| 
 | ||||
| 	Rb := elliptic.Marshal(pub.Curve, R.PublicKey.X, R.PublicKey.Y) | ||||
| 	ct = make([]byte, len(Rb)+len(em)+len(d)) | ||||
| 	copy(ct, Rb) | ||||
| 	copy(ct[len(Rb):], em) | ||||
| 	copy(ct[len(Rb)+len(em):], d) | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // Decrypt decrypts an ECIES ciphertext.
 | ||||
| func (prv *PrivateKey) Decrypt(rand io.Reader, c, s1, s2 []byte) (m []byte, err error) { | ||||
| 	if c == nil || len(c) == 0 { | ||||
| 		err = ErrInvalidMessage | ||||
| 		return | ||||
| 	} | ||||
| 	params := prv.PublicKey.Params | ||||
| 	if params == nil { | ||||
| 		if params = ParamsFromCurve(prv.PublicKey.Curve); params == nil { | ||||
| 			err = ErrUnsupportedECIESParameters | ||||
| 			return | ||||
| 		} | ||||
| 	} | ||||
| 	hash := params.Hash() | ||||
| 
 | ||||
| 	var ( | ||||
| 		rLen   int | ||||
| 		hLen   int = hash.Size() | ||||
| 		mStart int | ||||
| 		mEnd   int | ||||
| 	) | ||||
| 
 | ||||
| 	switch c[0] { | ||||
| 	case 2, 3, 4: | ||||
| 		rLen = ((prv.PublicKey.Curve.Params().BitSize + 7) / 4) | ||||
| 		if len(c) < (rLen + hLen + 1) { | ||||
| 			err = ErrInvalidMessage | ||||
| 			return | ||||
| 		} | ||||
| 	default: | ||||
| 		err = ErrInvalidPublicKey | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	mStart = rLen | ||||
| 	mEnd = len(c) - hLen | ||||
| 
 | ||||
| 	R := new(PublicKey) | ||||
| 	R.Curve = prv.PublicKey.Curve | ||||
| 	R.X, R.Y = elliptic.Unmarshal(R.Curve, c[:rLen]) | ||||
| 	if R.X == nil { | ||||
| 		err = ErrInvalidPublicKey | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	z, err := prv.GenerateShared(R, params.KeyLen, params.KeyLen) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	K, err := concatKDF(hash, z, s1, params.KeyLen+params.KeyLen) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	Ke := K[:params.KeyLen] | ||||
| 	Km := K[params.KeyLen:] | ||||
| 	hash.Write(Km) | ||||
| 	Km = hash.Sum(nil) | ||||
| 	hash.Reset() | ||||
| 
 | ||||
| 	d := messageTag(params.Hash, Km, c[mStart:mEnd], s2) | ||||
| 	if subtle.ConstantTimeCompare(c[mEnd:], d) != 1 { | ||||
| 		err = ErrInvalidMessage | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	m, err = symDecrypt(rand, params, Ke, c[mStart:mEnd]) | ||||
| 	return | ||||
| } | ||||
							
								
								
									
										489
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/ecies_test.go
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										489
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/ecies_test.go
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -1,489 +0,0 @@ | ||||
| package ecies | ||||
| 
 | ||||
| import ( | ||||
| 	"bytes" | ||||
| 	"crypto/elliptic" | ||||
| 	"crypto/rand" | ||||
| 	"crypto/sha256" | ||||
| 	"flag" | ||||
| 	"fmt" | ||||
| 	"io/ioutil" | ||||
| 	"testing" | ||||
| ) | ||||
| 
 | ||||
| var dumpEnc bool | ||||
| 
 | ||||
| func init() { | ||||
| 	flDump := flag.Bool("dump", false, "write encrypted test message to file") | ||||
| 	flag.Parse() | ||||
| 	dumpEnc = *flDump | ||||
| } | ||||
| 
 | ||||
| // Ensure the KDF generates appropriately sized keys.
 | ||||
| func TestKDF(t *testing.T) { | ||||
| 	msg := []byte("Hello, world") | ||||
| 	h := sha256.New() | ||||
| 
 | ||||
| 	k, err := concatKDF(h, msg, nil, 64) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 	if len(k) != 64 { | ||||
| 		fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n", | ||||
| 			len(k)) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| var skLen int | ||||
| var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match") | ||||
| 
 | ||||
| // cmpParams compares a set of ECIES parameters. We assume, as per the
 | ||||
| // docs, that AES is the only supported symmetric encryption algorithm.
 | ||||
| func cmpParams(p1, p2 *ECIESParams) bool { | ||||
| 	if p1.hashAlgo != p2.hashAlgo { | ||||
| 		return false | ||||
| 	} else if p1.KeyLen != p2.KeyLen { | ||||
| 		return false | ||||
| 	} else if p1.BlockSize != p2.BlockSize { | ||||
| 		return false | ||||
| 	} | ||||
| 	return true | ||||
| } | ||||
| 
 | ||||
| // cmpPublic returns true if the two public keys represent the same pojnt.
 | ||||
| func cmpPublic(pub1, pub2 PublicKey) bool { | ||||
| 	if pub1.X == nil || pub1.Y == nil { | ||||
| 		fmt.Println(ErrInvalidPublicKey.Error()) | ||||
| 		return false | ||||
| 	} | ||||
| 	if pub2.X == nil || pub2.Y == nil { | ||||
| 		fmt.Println(ErrInvalidPublicKey.Error()) | ||||
| 		return false | ||||
| 	} | ||||
| 	pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y) | ||||
| 	pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y) | ||||
| 
 | ||||
| 	return bytes.Equal(pub1Out, pub2Out) | ||||
| } | ||||
| 
 | ||||
| // cmpPrivate returns true if the two private keys are the same.
 | ||||
| func cmpPrivate(prv1, prv2 *PrivateKey) bool { | ||||
| 	if prv1 == nil || prv1.D == nil { | ||||
| 		return false | ||||
| 	} else if prv2 == nil || prv2.D == nil { | ||||
| 		return false | ||||
| 	} else if prv1.D.Cmp(prv2.D) != 0 { | ||||
| 		return false | ||||
| 	} else { | ||||
| 		return cmpPublic(prv1.PublicKey, prv2.PublicKey) | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Validate the ECDH component.
 | ||||
| func TestSharedKey(t *testing.T) { | ||||
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 	skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2 | ||||
| 
 | ||||
| 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	if !bytes.Equal(sk1, sk2) { | ||||
| 		fmt.Println(ErrBadSharedKeys.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Verify that the key generation code fails when too much key data is
 | ||||
| // requested.
 | ||||
| func TestTooBigSharedKey(t *testing.T) { | ||||
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	_, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2) | ||||
| 	if err != ErrSharedKeyTooBig { | ||||
| 		fmt.Println("ecdh: shared key should be too large for curve") | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	_, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2) | ||||
| 	if err != ErrSharedKeyTooBig { | ||||
| 		fmt.Println("ecdh: shared key should be too large for curve") | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Ensure a public key can be successfully marshalled and unmarshalled, and
 | ||||
| // that the decoded key is the same as the original.
 | ||||
| func TestMarshalPublic(t *testing.T) { | ||||
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	out, err := MarshalPublic(&prv.PublicKey) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	pub, err := UnmarshalPublic(out) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	if !cmpPublic(prv.PublicKey, *pub) { | ||||
| 		fmt.Println("ecies: failed to unmarshal public key") | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Ensure that a private key can be encoded into DER format, and that
 | ||||
| // the resulting key is properly parsed back into a public key.
 | ||||
| func TestMarshalPrivate(t *testing.T) { | ||||
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	out, err := MarshalPrivate(prv) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	if dumpEnc { | ||||
| 		ioutil.WriteFile("test.out", out, 0644) | ||||
| 	} | ||||
| 
 | ||||
| 	prv2, err := UnmarshalPrivate(out) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	if !cmpPrivate(prv, prv2) { | ||||
| 		fmt.Println("ecdh: private key import failed") | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Ensure that a private key can be successfully encoded to PEM format, and
 | ||||
| // the resulting key is properly parsed back in.
 | ||||
| func TestPrivatePEM(t *testing.T) { | ||||
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	out, err := ExportPrivatePEM(prv) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	if dumpEnc { | ||||
| 		ioutil.WriteFile("test.key", out, 0644) | ||||
| 	} | ||||
| 
 | ||||
| 	prv2, err := ImportPrivatePEM(out) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} else if !cmpPrivate(prv, prv2) { | ||||
| 		fmt.Println("ecdh: import from PEM failed") | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Ensure that a public key can be successfully encoded to PEM format, and
 | ||||
| // the resulting key is properly parsed back in.
 | ||||
| func TestPublicPEM(t *testing.T) { | ||||
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	out, err := ExportPublicPEM(&prv.PublicKey) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	if dumpEnc { | ||||
| 		ioutil.WriteFile("test.pem", out, 0644) | ||||
| 	} | ||||
| 
 | ||||
| 	pub2, err := ImportPublicPEM(out) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} else if !cmpPublic(prv.PublicKey, *pub2) { | ||||
| 		fmt.Println("ecdh: import from PEM failed") | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Benchmark the generation of P256 keys.
 | ||||
| func BenchmarkGenerateKeyP256(b *testing.B) { | ||||
| 	for i := 0; i < b.N; i++ { | ||||
| 		if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil { | ||||
| 			fmt.Println(err.Error()) | ||||
| 			b.FailNow() | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Benchmark the generation of P256 shared keys.
 | ||||
| func BenchmarkGenSharedKeyP256(b *testing.B) { | ||||
| 	prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		b.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	for i := 0; i < b.N; i++ { | ||||
| 		_, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen) | ||||
| 		if err != nil { | ||||
| 			fmt.Println(err.Error()) | ||||
| 			b.FailNow() | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Verify that an encrypted message can be successfully decrypted.
 | ||||
| func TestEncryptDecrypt(t *testing.T) { | ||||
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	message := []byte("Hello, world.") | ||||
| 	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	if !bytes.Equal(pt, message) { | ||||
| 		fmt.Println("ecies: plaintext doesn't match message") | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil) | ||||
| 	if err == nil { | ||||
| 		fmt.Println("ecies: encryption should not have succeeded") | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // TestMarshalEncryption validates the encode/decode produces a valid
 | ||||
| // ECIES encryption key.
 | ||||
| func TestMarshalEncryption(t *testing.T) { | ||||
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	out, err := MarshalPrivate(prv1) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	prv2, err := UnmarshalPrivate(out) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	message := []byte("Hello, world.") | ||||
| 	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	if !bytes.Equal(pt, message) { | ||||
| 		fmt.Println("ecies: plaintext doesn't match message") | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| type testCase struct { | ||||
| 	Curve    elliptic.Curve | ||||
| 	Name     string | ||||
| 	Expected bool | ||||
| } | ||||
| 
 | ||||
| var testCases = []testCase{ | ||||
| 	testCase{ | ||||
| 		Curve:    elliptic.P224(), | ||||
| 		Name:     "P224", | ||||
| 		Expected: false, | ||||
| 	}, | ||||
| 	testCase{ | ||||
| 		Curve:    elliptic.P256(), | ||||
| 		Name:     "P256", | ||||
| 		Expected: true, | ||||
| 	}, | ||||
| 	testCase{ | ||||
| 		Curve:    elliptic.P384(), | ||||
| 		Name:     "P384", | ||||
| 		Expected: true, | ||||
| 	}, | ||||
| 	testCase{ | ||||
| 		Curve:    elliptic.P521(), | ||||
| 		Name:     "P521", | ||||
| 		Expected: true, | ||||
| 	}, | ||||
| } | ||||
| 
 | ||||
| // Test parameter selection for each curve, and that P224 fails automatic
 | ||||
| // parameter selection (see README for a discussion of P224). Ensures that
 | ||||
| // selecting a set of parameters automatically for the given curve works.
 | ||||
| func TestParamSelection(t *testing.T) { | ||||
| 	for _, c := range testCases { | ||||
| 		testParamSelection(t, c) | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| func testParamSelection(t *testing.T, c testCase) { | ||||
| 	params := ParamsFromCurve(c.Curve) | ||||
| 	if params == nil && c.Expected { | ||||
| 		fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name) | ||||
| 		t.FailNow() | ||||
| 	} else if params != nil && !c.Expected { | ||||
| 		fmt.Printf("ecies: parameters should be invalid (%s)\n", | ||||
| 			c.Name) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Printf("%s (%s)\n", err.Error(), c.Name) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Printf("%s (%s)\n", err.Error(), c.Name) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	message := []byte("Hello, world.") | ||||
| 	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Printf("%s (%s)\n", err.Error(), c.Name) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Printf("%s (%s)\n", err.Error(), c.Name) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	if !bytes.Equal(pt, message) { | ||||
| 		fmt.Printf("ecies: plaintext doesn't match message (%s)\n", | ||||
| 			c.Name) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil) | ||||
| 	if err == nil { | ||||
| 		fmt.Printf("ecies: encryption should not have succeeded (%s)\n", | ||||
| 			c.Name) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| // Ensure that the basic public key validation in the decryption operation
 | ||||
| // works.
 | ||||
| func TestBasicKeyValidation(t *testing.T) { | ||||
| 	badBytes := []byte{0, 1, 5, 6, 7, 8, 9} | ||||
| 
 | ||||
| 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	message := []byte("Hello, world.") | ||||
| 	ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil) | ||||
| 	if err != nil { | ||||
| 		fmt.Println(err.Error()) | ||||
| 		t.FailNow() | ||||
| 	} | ||||
| 
 | ||||
| 	for _, b := range badBytes { | ||||
| 		ct[0] = b | ||||
| 		_, err := prv.Decrypt(rand.Reader, ct, nil, nil) | ||||
| 		if err != ErrInvalidPublicKey { | ||||
| 			fmt.Println("ecies: validated an invalid key") | ||||
| 			t.FailNow() | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
							
								
								
									
										187
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/params.go
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										187
									
								
								Godeps/_workspace/src/github.com/obscuren/ecies/params.go
									
									
									
										generated
									
									
										vendored
									
									
								
							| @ -1,187 +0,0 @@ | ||||
| package ecies | ||||
| 
 | ||||
| // This file contains parameters for ECIES encryption, specifying the
 | ||||
| // symmetric encryption and HMAC parameters.
 | ||||
| 
 | ||||
| import ( | ||||
| 	"crypto" | ||||
| 	"crypto/aes" | ||||
| 	"crypto/cipher" | ||||
| 	"crypto/elliptic" | ||||
| 	"crypto/sha256" | ||||
| 	"crypto/sha512" | ||||
| 	"fmt" | ||||
| 	"hash" | ||||
| ) | ||||
| 
 | ||||
| // The default curve for this package is the NIST P256 curve, which
 | ||||
| // provides security equivalent to AES-128.
 | ||||
| var DefaultCurve = elliptic.P256() | ||||
| 
 | ||||
| var ( | ||||
| 	ErrUnsupportedECDHAlgorithm   = fmt.Errorf("ecies: unsupported ECDH algorithm") | ||||
| 	ErrUnsupportedECIESParameters = fmt.Errorf("ecies: unsupported ECIES parameters") | ||||
| ) | ||||
| 
 | ||||
| type ECIESParams struct { | ||||
| 	Hash      func() hash.Hash // hash function
 | ||||
| 	hashAlgo  crypto.Hash | ||||
| 	Cipher    func([]byte) (cipher.Block, error) // symmetric cipher
 | ||||
| 	BlockSize int                                // block size of symmetric cipher
 | ||||
| 	KeyLen    int                                // length of symmetric key
 | ||||
| } | ||||
| 
 | ||||
| // Standard ECIES parameters:
 | ||||
| // * ECIES using AES128 and HMAC-SHA-256-16
 | ||||
| // * ECIES using AES256 and HMAC-SHA-256-32
 | ||||
| // * ECIES using AES256 and HMAC-SHA-384-48
 | ||||
| // * ECIES using AES256 and HMAC-SHA-512-64
 | ||||
| var ( | ||||
| 	ECIES_AES128_SHA256 *ECIESParams | ||||
| 	ECIES_AES256_SHA256 *ECIESParams | ||||
| 	ECIES_AES256_SHA384 *ECIESParams | ||||
| 	ECIES_AES256_SHA512 *ECIESParams | ||||
| ) | ||||
| 
 | ||||
| func init() { | ||||
| 	ECIES_AES128_SHA256 = &ECIESParams{ | ||||
| 		Hash:      sha256.New, | ||||
| 		hashAlgo:  crypto.SHA256, | ||||
| 		Cipher:    aes.NewCipher, | ||||
| 		BlockSize: aes.BlockSize, | ||||
| 		KeyLen:    16, | ||||
| 	} | ||||
| 
 | ||||
| 	ECIES_AES256_SHA256 = &ECIESParams{ | ||||
| 		Hash:      sha256.New, | ||||
| 		hashAlgo:  crypto.SHA256, | ||||
| 		Cipher:    aes.NewCipher, | ||||
| 		BlockSize: aes.BlockSize, | ||||
| 		KeyLen:    32, | ||||
| 	} | ||||
| 
 | ||||
| 	ECIES_AES256_SHA384 = &ECIESParams{ | ||||
| 		Hash:      sha512.New384, | ||||
| 		hashAlgo:  crypto.SHA384, | ||||
| 		Cipher:    aes.NewCipher, | ||||
| 		BlockSize: aes.BlockSize, | ||||
| 		KeyLen:    32, | ||||
| 	} | ||||
| 
 | ||||
| 	ECIES_AES256_SHA512 = &ECIESParams{ | ||||
| 		Hash:      sha512.New, | ||||
| 		hashAlgo:  crypto.SHA512, | ||||
| 		Cipher:    aes.NewCipher, | ||||
| 		BlockSize: aes.BlockSize, | ||||
| 		KeyLen:    32, | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| var paramsFromCurve = map[elliptic.Curve]*ECIESParams{ | ||||
| 	elliptic.P256(): ECIES_AES128_SHA256, | ||||
| 	elliptic.P384(): ECIES_AES256_SHA384, | ||||
| 	elliptic.P521(): ECIES_AES256_SHA512, | ||||
| } | ||||
| 
 | ||||
| func AddParamsForCurve(curve elliptic.Curve, params *ECIESParams) { | ||||
| 	paramsFromCurve[curve] = params | ||||
| } | ||||
| 
 | ||||
| // ParamsFromCurve selects parameters optimal for the selected elliptic curve.
 | ||||
| // Only the curves P256, P384, and P512 are supported.
 | ||||
| func ParamsFromCurve(curve elliptic.Curve) (params *ECIESParams) { | ||||
| 	return paramsFromCurve[curve] | ||||
| 
 | ||||
| 	/* | ||||
| 		switch curve { | ||||
| 		case elliptic.P256(): | ||||
| 			return ECIES_AES128_SHA256 | ||||
| 		case elliptic.P384(): | ||||
| 			return ECIES_AES256_SHA384 | ||||
| 		case elliptic.P521(): | ||||
| 			return ECIES_AES256_SHA512 | ||||
| 		default: | ||||
| 			return nil | ||||
| 		} | ||||
| 	*/ | ||||
| } | ||||
| 
 | ||||
| // ASN.1 encode the ECIES parameters relevant to the encryption operations.
 | ||||
| func paramsToASNECIES(params *ECIESParams) (asnParams asnECIESParameters) { | ||||
| 	if nil == params { | ||||
| 		return | ||||
| 	} | ||||
| 	asnParams.KDF = asnNISTConcatenationKDF | ||||
| 	asnParams.MAC = hmacFull | ||||
| 	switch params.KeyLen { | ||||
| 	case 16: | ||||
| 		asnParams.Sym = aes128CTRinECIES | ||||
| 	case 24: | ||||
| 		asnParams.Sym = aes192CTRinECIES | ||||
| 	case 32: | ||||
| 		asnParams.Sym = aes256CTRinECIES | ||||
| 	} | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // ASN.1 encode the ECIES parameters relevant to ECDH.
 | ||||
| func paramsToASNECDH(params *ECIESParams) (algo asnECDHAlgorithm) { | ||||
| 	switch params.hashAlgo { | ||||
| 	case crypto.SHA224: | ||||
| 		algo = dhSinglePass_stdDH_sha224kdf | ||||
| 	case crypto.SHA256: | ||||
| 		algo = dhSinglePass_stdDH_sha256kdf | ||||
| 	case crypto.SHA384: | ||||
| 		algo = dhSinglePass_stdDH_sha384kdf | ||||
| 	case crypto.SHA512: | ||||
| 		algo = dhSinglePass_stdDH_sha512kdf | ||||
| 	} | ||||
| 	return | ||||
| } | ||||
| 
 | ||||
| // ASN.1 decode the ECIES parameters relevant to the encryption stage.
 | ||||
| func asnECIEStoParams(asnParams asnECIESParameters, params *ECIESParams) { | ||||
| 	if !asnParams.KDF.Cmp(asnNISTConcatenationKDF) { | ||||
| 		params = nil | ||||
| 		return | ||||
| 	} else if !asnParams.MAC.Cmp(hmacFull) { | ||||
| 		params = nil | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	switch { | ||||
| 	case asnParams.Sym.Cmp(aes128CTRinECIES): | ||||
| 		params.KeyLen = 16 | ||||
| 		params.BlockSize = 16 | ||||
| 		params.Cipher = aes.NewCipher | ||||
| 	case asnParams.Sym.Cmp(aes192CTRinECIES): | ||||
| 		params.KeyLen = 24 | ||||
| 		params.BlockSize = 16 | ||||
| 		params.Cipher = aes.NewCipher | ||||
| 	case asnParams.Sym.Cmp(aes256CTRinECIES): | ||||
| 		params.KeyLen = 32 | ||||
| 		params.BlockSize = 16 | ||||
| 		params.Cipher = aes.NewCipher | ||||
| 	default: | ||||
| 		params = nil | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // ASN.1 decode the ECIES parameters relevant to ECDH.
 | ||||
| func asnECDHtoParams(asnParams asnECDHAlgorithm, params *ECIESParams) { | ||||
| 	if asnParams.Cmp(dhSinglePass_stdDH_sha224kdf) { | ||||
| 		params.hashAlgo = crypto.SHA224 | ||||
| 		params.Hash = sha256.New224 | ||||
| 	} else if asnParams.Cmp(dhSinglePass_stdDH_sha256kdf) { | ||||
| 		params.hashAlgo = crypto.SHA256 | ||||
| 		params.Hash = sha256.New | ||||
| 	} else if asnParams.Cmp(dhSinglePass_stdDH_sha384kdf) { | ||||
| 		params.hashAlgo = crypto.SHA384 | ||||
| 		params.Hash = sha512.New384 | ||||
| 	} else if asnParams.Cmp(dhSinglePass_stdDH_sha512kdf) { | ||||
| 		params.hashAlgo = crypto.SHA512 | ||||
| 		params.Hash = sha512.New | ||||
| 	} else { | ||||
| 		params = nil | ||||
| 	} | ||||
| } | ||||
| @ -8,7 +8,7 @@ import ( | ||||
| 	"testing" | ||||
| 
 | ||||
| 	"github.com/ethereum/go-ethereum/crypto" | ||||
| 	"github.com/obscuren/ecies" | ||||
| 	"github.com/ethereum/go-ethereum/crypto/ecies" | ||||
| ) | ||||
| 
 | ||||
| func TestPublicKeyEncoding(t *testing.T) { | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user