go-ethereum/core/blockchain.go

1382 lines
45 KiB
Go
Raw Normal View History

2015-07-07 00:54:22 +00:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 00:54:22 +00:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 00:54:22 +00:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 00:54:22 +00:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 00:54:22 +00:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 00:54:22 +00:00
2015-07-07 03:08:16 +00:00
// Package core implements the Ethereum consensus protocol.
2014-12-04 09:28:02 +00:00
package core
2014-02-14 22:56:09 +00:00
import (
crand "crypto/rand"
"errors"
2014-09-24 09:39:17 +00:00
"fmt"
"io"
"math"
"math/big"
mrand "math/rand"
"runtime"
"sync"
"sync/atomic"
"time"
2015-03-16 10:27:38 +00:00
"github.com/ethereum/go-ethereum/common"
2015-03-23 21:59:19 +00:00
"github.com/ethereum/go-ethereum/core/state"
2015-03-16 22:48:18 +00:00
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
2014-12-03 13:05:19 +00:00
"github.com/ethereum/go-ethereum/event"
2014-10-31 11:56:05 +00:00
"github.com/ethereum/go-ethereum/logger"
2015-04-04 10:40:11 +00:00
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/pow"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
2015-06-19 14:48:55 +00:00
"github.com/hashicorp/golang-lru"
2014-02-14 22:56:09 +00:00
)
var (
chainlogger = logger.NewLogger("CHAIN")
jsonlogger = logger.NewJsonLogger()
blockInsertTimer = metrics.NewTimer("chain/inserts")
ErrNoGenesis = errors.New("Genesis not found in chain")
)
2015-04-20 18:37:40 +00:00
const (
headerCacheLimit = 512
bodyCacheLimit = 256
tdCacheLimit = 1024
2015-06-19 16:16:09 +00:00
blockCacheLimit = 256
2015-06-05 12:07:49 +00:00
maxFutureBlocks = 256
maxTimeFutureBlocks = 30
// must be bumped when consensus algorithm is changed, this forces the upgradedb
// command to be run (forces the blocks to be imported again using the new algorithm)
BlockChainVersion = 3
2015-04-20 18:37:40 +00:00
)
// BlockChain represents the canonical chain given a database with a genesis
// block. The Blockchain manages chain imports, reverts, chain reorganisations.
//
// Importing blocks in to the block chain happens according to the set of rules
// defined by the two stage Validator. Processing of blocks is done using the
// Processor which processes the included transaction. The validation of the state
// is done in the second part of the Validator. Failing results in aborting of
// the import.
//
// The BlockChain also helps in returning blocks from **any** chain included
// in the database as well as blocks that represents the canonical chain. It's
// important to note that GetBlock can return any block and does not need to be
// included in the canonical one where as GetBlockByNumber always represents the
// canonical chain.
type BlockChain struct {
chainDb ethdb.Database
2014-12-03 13:05:19 +00:00
eventMux *event.TypeMux
genesisBlock *types.Block
2014-02-14 22:56:09 +00:00
// Last known total difficulty
2015-05-16 22:55:02 +00:00
mu sync.RWMutex
chainmu sync.RWMutex
tsmu sync.RWMutex
procmu sync.RWMutex
checkpoint int // checkpoint counts towards the new checkpoint
currentHeader *types.Header // Current head of the header chain (may be above the block chain!)
currentBlock *types.Block // Current head of the block chain
currentFastBlock *types.Block // Current head of the fast-sync chain (may be above the block chain!)
2014-02-14 22:56:09 +00:00
headerCache *lru.Cache // Cache for the most recent block headers
bodyCache *lru.Cache // Cache for the most recent block bodies
bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format
tdCache *lru.Cache // Cache for the most recent block total difficulties
blockCache *lru.Cache // Cache for the most recent entire blocks
futureBlocks *lru.Cache // future blocks are blocks added for later processing
quit chan struct{}
running int32 // running must be called automically
// procInterrupt must be atomically called
procInterrupt int32 // interrupt signaler for block processing
wg sync.WaitGroup
pow pow.PoW
rand *mrand.Rand
processor Processor
validator Validator
}
2014-02-14 22:56:09 +00:00
// NewBlockChain returns a fully initialised block chain using information
// available in the database. It initialiser the default Ethereum Validator and
// Processor.
func NewBlockChain(chainDb ethdb.Database, pow pow.PoW, mux *event.TypeMux) (*BlockChain, error) {
headerCache, _ := lru.New(headerCacheLimit)
bodyCache, _ := lru.New(bodyCacheLimit)
bodyRLPCache, _ := lru.New(bodyCacheLimit)
tdCache, _ := lru.New(tdCacheLimit)
blockCache, _ := lru.New(blockCacheLimit)
futureBlocks, _ := lru.New(maxFutureBlocks)
bc := &BlockChain{
chainDb: chainDb,
eventMux: mux,
quit: make(chan struct{}),
headerCache: headerCache,
bodyCache: bodyCache,
bodyRLPCache: bodyRLPCache,
tdCache: tdCache,
blockCache: blockCache,
futureBlocks: futureBlocks,
pow: pow,
2015-04-20 18:37:40 +00:00
}
// Seed a fast but crypto originating random generator
seed, err := crand.Int(crand.Reader, big.NewInt(math.MaxInt64))
if err != nil {
return nil, err
}
bc.rand = mrand.New(mrand.NewSource(seed.Int64()))
bc.SetValidator(NewBlockValidator(bc, pow))
bc.SetProcessor(NewStateProcessor(bc))
bc.genesisBlock = bc.GetBlockByNumber(0)
if bc.genesisBlock == nil {
bc.genesisBlock, err = WriteDefaultGenesisBlock(chainDb)
if err != nil {
return nil, err
}
glog.V(logger.Info).Infoln("WARNING: Wrote default ethereum genesis block")
}
if err := bc.loadLastState(); err != nil {
return nil, err
}
// Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain
for hash, _ := range BadHashes {
if header := bc.GetHeader(hash); header != nil {
glog.V(logger.Error).Infof("Found bad hash, rewinding chain to block #%d [%x…]", header.Number, header.ParentHash[:4])
bc.SetHead(header.Number.Uint64() - 1)
glog.V(logger.Error).Infoln("Chain rewind was successful, resuming normal operation")
}
}
// Take ownership of this particular state
go bc.update()
return bc, nil
2015-02-18 12:14:21 +00:00
}
// loadLastState loads the last known chain state from the database. This method
// assumes that the chain manager mutex is held.
func (self *BlockChain) loadLastState() error {
// Restore the last known head block
head := GetHeadBlockHash(self.chainDb)
if head == (common.Hash{}) {
// Corrupt or empty database, init from scratch
self.Reset()
} else {
if block := self.GetBlock(head); block != nil {
// Block found, set as the current head
self.currentBlock = block
} else {
// Corrupt or empty database, init from scratch
self.Reset()
}
}
// Restore the last known head header
self.currentHeader = self.currentBlock.Header()
if head := GetHeadHeaderHash(self.chainDb); head != (common.Hash{}) {
if header := self.GetHeader(head); header != nil {
self.currentHeader = header
}
}
// Restore the last known head fast block
self.currentFastBlock = self.currentBlock
if head := GetHeadFastBlockHash(self.chainDb); head != (common.Hash{}) {
if block := self.GetBlock(head); block != nil {
self.currentFastBlock = block
}
}
// Issue a status log and return
headerTd := self.GetTd(self.currentHeader.Hash())
blockTd := self.GetTd(self.currentBlock.Hash())
fastTd := self.GetTd(self.currentFastBlock.Hash())
glog.V(logger.Info).Infof("Last header: #%d [%x…] TD=%v", self.currentHeader.Number, self.currentHeader.Hash().Bytes()[:4], headerTd)
glog.V(logger.Info).Infof("Last block: #%d [%x…] TD=%v", self.currentBlock.Number(), self.currentBlock.Hash().Bytes()[:4], blockTd)
glog.V(logger.Info).Infof("Fast block: #%d [%x…] TD=%v", self.currentFastBlock.Number(), self.currentFastBlock.Hash().Bytes()[:4], fastTd)
return nil
}
// SetHead rewinds the local chain to a new head. In the case of headers, everything
// above the new head will be deleted and the new one set. In the case of blocks
// though, the head may be further rewound if block bodies are missing (non-archive
// nodes after a fast sync).
func (bc *BlockChain) SetHead(head uint64) {
bc.mu.Lock()
defer bc.mu.Unlock()
// Figure out the highest known canonical headers and/or blocks
height := uint64(0)
if bc.currentHeader != nil {
if hh := bc.currentHeader.Number.Uint64(); hh > height {
height = hh
}
}
if bc.currentBlock != nil {
if bh := bc.currentBlock.NumberU64(); bh > height {
height = bh
}
}
if bc.currentFastBlock != nil {
if fbh := bc.currentFastBlock.NumberU64(); fbh > height {
height = fbh
}
}
// Gather all the hashes that need deletion
drop := make(map[common.Hash]struct{})
for bc.currentHeader != nil && bc.currentHeader.Number.Uint64() > head {
drop[bc.currentHeader.Hash()] = struct{}{}
bc.currentHeader = bc.GetHeader(bc.currentHeader.ParentHash)
}
for bc.currentBlock != nil && bc.currentBlock.NumberU64() > head {
drop[bc.currentBlock.Hash()] = struct{}{}
bc.currentBlock = bc.GetBlock(bc.currentBlock.ParentHash())
}
for bc.currentFastBlock != nil && bc.currentFastBlock.NumberU64() > head {
drop[bc.currentFastBlock.Hash()] = struct{}{}
bc.currentFastBlock = bc.GetBlock(bc.currentFastBlock.ParentHash())
}
// Roll back the canonical chain numbering
for i := height; i > head; i-- {
DeleteCanonicalHash(bc.chainDb, i)
}
// Delete everything found by the above rewind
for hash, _ := range drop {
DeleteHeader(bc.chainDb, hash)
DeleteBody(bc.chainDb, hash)
DeleteTd(bc.chainDb, hash)
}
// Clear out any stale content from the caches
bc.headerCache.Purge()
bc.bodyCache.Purge()
bc.bodyRLPCache.Purge()
bc.blockCache.Purge()
bc.futureBlocks.Purge()
// Update all computed fields to the new head
if bc.currentBlock == nil {
bc.currentBlock = bc.genesisBlock
}
if bc.currentHeader == nil {
bc.currentHeader = bc.genesisBlock.Header()
}
if bc.currentFastBlock == nil {
bc.currentFastBlock = bc.genesisBlock
}
if err := WriteHeadBlockHash(bc.chainDb, bc.currentBlock.Hash()); err != nil {
glog.Fatalf("failed to reset head block hash: %v", err)
}
if err := WriteHeadHeaderHash(bc.chainDb, bc.currentHeader.Hash()); err != nil {
glog.Fatalf("failed to reset head header hash: %v", err)
}
if err := WriteHeadFastBlockHash(bc.chainDb, bc.currentFastBlock.Hash()); err != nil {
glog.Fatalf("failed to reset head fast block hash: %v", err)
}
bc.loadLastState()
}
// FastSyncCommitHead sets the current head block to the one defined by the hash
// irrelevant what the chain contents were prior.
func (self *BlockChain) FastSyncCommitHead(hash common.Hash) error {
// Make sure that both the block as well at its state trie exists
block := self.GetBlock(hash)
if block == nil {
return fmt.Errorf("non existent block [%x…]", hash[:4])
}
if _, err := trie.NewSecure(block.Root(), self.chainDb); err != nil {
return err
}
// If all checks out, manually set the head block
self.mu.Lock()
self.currentBlock = block
self.mu.Unlock()
glog.V(logger.Info).Infof("committed block #%d [%x…] as new head", block.Number(), hash[:4])
return nil
}
// GasLimit returns the gas limit of the current HEAD block.
func (self *BlockChain) GasLimit() *big.Int {
self.mu.RLock()
defer self.mu.RUnlock()
2014-12-10 18:59:12 +00:00
return self.currentBlock.GasLimit()
}
// LastBlockHash return the hash of the HEAD block.
func (self *BlockChain) LastBlockHash() common.Hash {
self.mu.RLock()
defer self.mu.RUnlock()
return self.currentBlock.Hash()
}
// CurrentHeader retrieves the current head header of the canonical chain. The
// header is retrieved from the blockchain's internal cache.
func (self *BlockChain) CurrentHeader() *types.Header {
2014-12-18 12:17:24 +00:00
self.mu.RLock()
defer self.mu.RUnlock()
return self.currentHeader
2014-12-18 12:17:24 +00:00
}
// CurrentBlock retrieves the current head block of the canonical chain. The
// block is retrieved from the blockchain's internal cache.
func (self *BlockChain) CurrentBlock() *types.Block {
self.mu.RLock()
defer self.mu.RUnlock()
return self.currentBlock
2014-02-14 22:56:09 +00:00
}
// CurrentFastBlock retrieves the current fast-sync head block of the canonical
// chain. The block is retrieved from the blockchain's internal cache.
func (self *BlockChain) CurrentFastBlock() *types.Block {
self.mu.RLock()
defer self.mu.RUnlock()
return self.currentFastBlock
}
// Status returns status information about the current chain such as the HEAD Td,
// the HEAD hash and the hash of the genesis block.
func (self *BlockChain) Status() (td *big.Int, currentBlock common.Hash, genesisBlock common.Hash) {
2014-12-18 12:22:59 +00:00
self.mu.RLock()
defer self.mu.RUnlock()
return self.GetTd(self.currentBlock.Hash()), self.currentBlock.Hash(), self.genesisBlock.Hash()
}
// SetProcessor sets the processor required for making state modifications.
func (self *BlockChain) SetProcessor(processor Processor) {
self.procmu.Lock()
defer self.procmu.Unlock()
self.processor = processor
}
// SetValidator sets the validator which is used to validate incoming blocks.
func (self *BlockChain) SetValidator(validator Validator) {
self.procmu.Lock()
defer self.procmu.Unlock()
self.validator = validator
}
// Validator returns the current validator.
func (self *BlockChain) Validator() Validator {
self.procmu.RLock()
defer self.procmu.RUnlock()
return self.validator
}
// Processor returns the current processor.
func (self *BlockChain) Processor() Processor {
self.procmu.RLock()
defer self.procmu.RUnlock()
return self.processor
}
// AuxValidator returns the auxiliary validator (Proof of work atm)
func (self *BlockChain) AuxValidator() pow.PoW { return self.pow }
// State returns a new mutable state based on the current HEAD block.
func (self *BlockChain) State() (*state.StateDB, error) {
return state.New(self.CurrentBlock().Root(), self.chainDb)
2014-12-10 18:59:12 +00:00
}
// Reset purges the entire blockchain, restoring it to its genesis state.
func (bc *BlockChain) Reset() {
bc.ResetWithGenesisBlock(bc.genesisBlock)
}
// ResetWithGenesisBlock purges the entire blockchain, restoring it to the
// specified genesis state.
func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) {
// Dump the entire block chain and purge the caches
bc.SetHead(0)
bc.mu.Lock()
defer bc.mu.Unlock()
// Prepare the genesis block and reinitialise the chain
if err := WriteTd(bc.chainDb, genesis.Hash(), genesis.Difficulty()); err != nil {
glog.Fatalf("failed to write genesis block TD: %v", err)
}
if err := WriteBlock(bc.chainDb, genesis); err != nil {
glog.Fatalf("failed to write genesis block: %v", err)
}
bc.genesisBlock = genesis
bc.insert(bc.genesisBlock)
bc.currentBlock = bc.genesisBlock
bc.currentHeader = bc.genesisBlock.Header()
bc.currentFastBlock = bc.genesisBlock
}
// Export writes the active chain to the given writer.
func (self *BlockChain) Export(w io.Writer) error {
2015-06-06 14:59:56 +00:00
if err := self.ExportN(w, uint64(0), self.currentBlock.NumberU64()); err != nil {
2015-06-06 03:01:54 +00:00
return err
}
return nil
}
// ExportN writes a subset of the active chain to the given writer.
func (self *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
self.mu.RLock()
defer self.mu.RUnlock()
2015-04-04 21:04:19 +00:00
2015-06-06 03:01:54 +00:00
if first > last {
return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
}
2015-06-06 13:50:23 +00:00
glog.V(logger.Info).Infof("exporting %d blocks...\n", last-first+1)
2015-06-06 03:01:54 +00:00
for nr := first; nr <= last; nr++ {
block := self.GetBlockByNumber(nr)
if block == nil {
return fmt.Errorf("export failed on #%d: not found", nr)
}
if err := block.EncodeRLP(w); err != nil {
return err
}
2014-12-17 11:57:35 +00:00
}
return nil
2014-12-17 11:57:35 +00:00
}
// insert injects a new head block into the current block chain. This method
// assumes that the block is indeed a true head. It will also reset the head
// header and the head fast sync block to this very same block if they are older
// or if they are on a different side chain.
//
// Note, this function assumes that the `mu` mutex is held!
func (bc *BlockChain) insert(block *types.Block) {
// If the block is on a side chain or an unknown one, force other heads onto it too
updateHeads := GetCanonicalHash(bc.chainDb, block.NumberU64()) != block.Hash()
// Add the block to the canonical chain number scheme and mark as the head
if err := WriteCanonicalHash(bc.chainDb, block.Hash(), block.NumberU64()); err != nil {
glog.Fatalf("failed to insert block number: %v", err)
}
if err := WriteHeadBlockHash(bc.chainDb, block.Hash()); err != nil {
glog.Fatalf("failed to insert head block hash: %v", err)
}
bc.currentBlock = block
// If the block is better than out head or is on a different chain, force update heads
if updateHeads {
if err := WriteHeadHeaderHash(bc.chainDb, block.Hash()); err != nil {
glog.Fatalf("failed to insert head header hash: %v", err)
}
bc.currentHeader = block.Header()
if err := WriteHeadFastBlockHash(bc.chainDb, block.Hash()); err != nil {
glog.Fatalf("failed to insert head fast block hash: %v", err)
}
bc.currentFastBlock = block
}
}
2014-11-17 11:12:55 +00:00
// Accessors
func (bc *BlockChain) Genesis() *types.Block {
2014-02-14 22:56:09 +00:00
return bc.genesisBlock
}
// HasHeader checks if a block header is present in the database or not, caching
// it if present.
func (bc *BlockChain) HasHeader(hash common.Hash) bool {
return bc.GetHeader(hash) != nil
}
// GetHeader retrieves a block header from the database by hash, caching it if
// found.
func (self *BlockChain) GetHeader(hash common.Hash) *types.Header {
// Short circuit if the header's already in the cache, retrieve otherwise
if header, ok := self.headerCache.Get(hash); ok {
return header.(*types.Header)
}
header := GetHeader(self.chainDb, hash)
if header == nil {
return nil
}
// Cache the found header for next time and return
self.headerCache.Add(header.Hash(), header)
return header
}
// GetHeaderByNumber retrieves a block header from the database by number,
// caching it (associated with its hash) if found.
func (self *BlockChain) GetHeaderByNumber(number uint64) *types.Header {
hash := GetCanonicalHash(self.chainDb, number)
if hash == (common.Hash{}) {
return nil
}
return self.GetHeader(hash)
2014-11-17 11:12:55 +00:00
}
// GetBody retrieves a block body (transactions and uncles) from the database by
// hash, caching it if found.
func (self *BlockChain) GetBody(hash common.Hash) *types.Body {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := self.bodyCache.Get(hash); ok {
body := cached.(*types.Body)
return body
}
body := GetBody(self.chainDb, hash)
if body == nil {
return nil
}
// Cache the found body for next time and return
self.bodyCache.Add(hash, body)
return body
}
2015-01-28 20:12:26 +00:00
// GetBodyRLP retrieves a block body in RLP encoding from the database by hash,
// caching it if found.
func (self *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := self.bodyRLPCache.Get(hash); ok {
return cached.(rlp.RawValue)
}
body := GetBodyRLP(self.chainDb, hash)
if len(body) == 0 {
return nil
}
// Cache the found body for next time and return
self.bodyRLPCache.Add(hash, body)
return body
}
// GetTd retrieves a block's total difficulty in the canonical chain from the
// database by hash, caching it if found.
func (self *BlockChain) GetTd(hash common.Hash) *big.Int {
// Short circuit if the td's already in the cache, retrieve otherwise
if cached, ok := self.tdCache.Get(hash); ok {
return cached.(*big.Int)
}
td := GetTd(self.chainDb, hash)
if td == nil {
return nil
}
// Cache the found body for next time and return
self.tdCache.Add(hash, td)
return td
}
// HasBlock checks if a block is fully present in the database or not, caching
// it if present.
func (bc *BlockChain) HasBlock(hash common.Hash) bool {
return bc.GetBlock(hash) != nil
}
// GetBlock retrieves a block from the database by hash, caching it if found.
func (self *BlockChain) GetBlock(hash common.Hash) *types.Block {
// Short circuit if the block's already in the cache, retrieve otherwise
if block, ok := self.blockCache.Get(hash); ok {
return block.(*types.Block)
}
block := GetBlock(self.chainDb, hash)
if block == nil {
return nil
}
// Cache the found block for next time and return
self.blockCache.Add(block.Hash(), block)
return block
2014-02-14 22:56:09 +00:00
}
// GetBlockByNumber retrieves a block from the database by number, caching it
// (associated with its hash) if found.
func (self *BlockChain) GetBlockByNumber(number uint64) *types.Block {
hash := GetCanonicalHash(self.chainDb, number)
if hash == (common.Hash{}) {
return nil
}
return self.GetBlock(hash)
}
// GetBlockHashesFromHash retrieves a number of block hashes starting at a given
// hash, fetching towards the genesis block.
func (self *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash {
// Get the origin header from which to fetch
header := self.GetHeader(hash)
if header == nil {
return nil
}
// Iterate the headers until enough is collected or the genesis reached
chain := make([]common.Hash, 0, max)
for i := uint64(0); i < max; i++ {
if header = self.GetHeader(header.ParentHash); header == nil {
break
}
chain = append(chain, header.Hash())
if header.Number.Cmp(common.Big0) == 0 {
break
}
}
return chain
}
// [deprecated by eth/62]
2015-06-16 10:41:50 +00:00
// GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors.
func (self *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) {
2015-06-16 10:41:50 +00:00
for i := 0; i < n; i++ {
block := self.GetBlock(hash)
if block == nil {
break
}
blocks = append(blocks, block)
hash = block.ParentHash()
}
return
}
// GetUnclesInChain retrieves all the uncles from a given block backwards until
// a specific distance is reached.
func (self *BlockChain) GetUnclesInChain(block *types.Block, length int) []*types.Header {
uncles := []*types.Header{}
for i := 0; block != nil && i < length; i++ {
uncles = append(uncles, block.Uncles()...)
block = self.GetBlock(block.ParentHash())
}
return uncles
2014-11-17 11:12:55 +00:00
}
2014-09-26 11:32:54 +00:00
// Stop stops the blockchain service. If any imports are currently in progress
// it will abort them using the procInterrupt.
func (bc *BlockChain) Stop() {
if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) {
return
}
close(bc.quit)
atomic.StoreInt32(&bc.procInterrupt, 1)
bc.wg.Wait()
glog.V(logger.Info).Infoln("Chain manager stopped")
}
func (self *BlockChain) procFutureBlocks() {
blocks := make([]*types.Block, self.futureBlocks.Len())
for i, hash := range self.futureBlocks.Keys() {
block, _ := self.futureBlocks.Get(hash)
blocks[i] = block.(*types.Block)
}
if len(blocks) > 0 {
types.BlockBy(types.Number).Sort(blocks)
self.InsertChain(blocks)
}
}
type writeStatus byte
const (
NonStatTy writeStatus = iota
CanonStatTy
SplitStatTy
SideStatTy
)
// writeHeader writes a header into the local chain, given that its parent is
// already known. If the total difficulty of the newly inserted header becomes
// greater than the current known TD, the canonical chain is re-routed.
//
// Note: This method is not concurrent-safe with inserting blocks simultaneously
// into the chain, as side effects caused by reorganisations cannot be emulated
// without the real blocks. Hence, writing headers directly should only be done
// in two scenarios: pure-header mode of operation (light clients), or properly
// separated header/block phases (non-archive clients).
func (self *BlockChain) writeHeader(header *types.Header) error {
self.wg.Add(1)
defer self.wg.Done()
// Calculate the total difficulty of the header
ptd := self.GetTd(header.ParentHash)
if ptd == nil {
return ParentError(header.ParentHash)
}
td := new(big.Int).Add(header.Difficulty, ptd)
// Make sure no inconsistent state is leaked during insertion
self.mu.Lock()
defer self.mu.Unlock()
// If the total difficulty is higher than our known, add it to the canonical chain
if td.Cmp(self.GetTd(self.currentHeader.Hash())) > 0 {
// Delete any canonical number assignments above the new head
for i := header.Number.Uint64() + 1; GetCanonicalHash(self.chainDb, i) != (common.Hash{}); i++ {
DeleteCanonicalHash(self.chainDb, i)
}
// Overwrite any stale canonical number assignments
head := self.GetHeader(header.ParentHash)
for GetCanonicalHash(self.chainDb, head.Number.Uint64()) != head.Hash() {
WriteCanonicalHash(self.chainDb, head.Hash(), head.Number.Uint64())
head = self.GetHeader(head.ParentHash)
}
// Extend the canonical chain with the new header
if err := WriteCanonicalHash(self.chainDb, header.Hash(), header.Number.Uint64()); err != nil {
glog.Fatalf("failed to insert header number: %v", err)
}
if err := WriteHeadHeaderHash(self.chainDb, header.Hash()); err != nil {
glog.Fatalf("failed to insert head header hash: %v", err)
}
self.currentHeader = types.CopyHeader(header)
}
// Irrelevant of the canonical status, write the header itself to the database
if err := WriteTd(self.chainDb, header.Hash(), td); err != nil {
glog.Fatalf("failed to write header total difficulty: %v", err)
}
if err := WriteHeader(self.chainDb, header); err != nil {
glog.Fatalf("filed to write header contents: %v", err)
}
return nil
}
// InsertHeaderChain attempts to insert the given header chain in to the local
// chain, possibly creating a reorg. If an error is returned, it will return the
// index number of the failing header as well an error describing what went wrong.
//
// The verify parameter can be used to fine tune whether nonce verification
// should be done or not. The reason behind the optional check is because some
// of the header retrieval mechanisms already need to verfy nonces, as well as
// because nonces can be verified sparsely, not needing to check each.
func (self *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) {
self.wg.Add(1)
defer self.wg.Done()
// Make sure only one thread manipulates the chain at once
self.chainmu.Lock()
defer self.chainmu.Unlock()
// Collect some import statistics to report on
stats := struct{ processed, ignored int }{}
start := time.Now()
// Generate the list of headers that should be POW verified
verify := make([]bool, len(chain))
for i := 0; i < len(verify)/checkFreq; i++ {
index := i*checkFreq + self.rand.Intn(checkFreq)
if index >= len(verify) {
index = len(verify) - 1
}
verify[index] = true
}
verify[len(verify)-1] = true // Last should always be verified to avoid junk
// Create the header verification task queue and worker functions
tasks := make(chan int, len(chain))
for i := 0; i < len(chain); i++ {
tasks <- i
}
close(tasks)
errs, failed := make([]error, len(tasks)), int32(0)
process := func(worker int) {
for index := range tasks {
header, hash := chain[index], chain[index].Hash()
// Short circuit insertion if shutting down or processing failed
if atomic.LoadInt32(&self.procInterrupt) == 1 {
return
}
if atomic.LoadInt32(&failed) > 0 {
return
}
// Short circuit if the header is bad or already known
if BadHashes[hash] {
errs[index] = BadHashError(hash)
atomic.AddInt32(&failed, 1)
return
}
if self.HasHeader(hash) {
continue
}
// Verify that the header honors the chain parameters
checkPow := verify[index]
var err error
if index == 0 {
err = self.Validator().ValidateHeader(header, self.GetHeader(header.ParentHash), checkPow)
} else {
err = self.Validator().ValidateHeader(header, chain[index-1], checkPow)
}
if err != nil {
errs[index] = err
atomic.AddInt32(&failed, 1)
return
}
}
}
// Start as many worker threads as goroutines allowed
pending := new(sync.WaitGroup)
for i := 0; i < runtime.GOMAXPROCS(0); i++ {
pending.Add(1)
go func(id int) {
defer pending.Done()
process(id)
}(i)
}
pending.Wait()
// If anything failed, report
if failed > 0 {
for i, err := range errs {
if err != nil {
return i, err
}
}
}
// All headers passed verification, import them into the database
for i, header := range chain {
// Short circuit insertion if shutting down
if atomic.LoadInt32(&self.procInterrupt) == 1 {
glog.V(logger.Debug).Infoln("premature abort during header chain processing")
break
}
hash := header.Hash()
// If the header's already known, skip it, otherwise store
if self.HasHeader(hash) {
stats.ignored++
continue
}
if err := self.writeHeader(header); err != nil {
return i, err
}
stats.processed++
}
// Report some public statistics so the user has a clue what's going on
first, last := chain[0], chain[len(chain)-1]
glog.V(logger.Info).Infof("imported %d header(s) (%d ignored) in %v. #%v [%x… / %x…]", stats.processed, stats.ignored,
time.Since(start), last.Number, first.Hash().Bytes()[:4], last.Hash().Bytes()[:4])
return 0, nil
}
// Rollback is designed to remove a chain of links from the database that aren't
// certain enough to be valid.
func (self *BlockChain) Rollback(chain []common.Hash) {
self.mu.Lock()
defer self.mu.Unlock()
for i := len(chain) - 1; i >= 0; i-- {
hash := chain[i]
if self.currentHeader.Hash() == hash {
self.currentHeader = self.GetHeader(self.currentHeader.ParentHash)
WriteHeadHeaderHash(self.chainDb, self.currentHeader.Hash())
}
if self.currentFastBlock.Hash() == hash {
self.currentFastBlock = self.GetBlock(self.currentFastBlock.ParentHash())
WriteHeadFastBlockHash(self.chainDb, self.currentFastBlock.Hash())
}
if self.currentBlock.Hash() == hash {
self.currentBlock = self.GetBlock(self.currentBlock.ParentHash())
WriteHeadBlockHash(self.chainDb, self.currentBlock.Hash())
}
}
}
// InsertReceiptChain attempts to complete an already existing header chain with
// transaction and receipt data.
func (self *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
self.wg.Add(1)
defer self.wg.Done()
// Collect some import statistics to report on
stats := struct{ processed, ignored int32 }{}
start := time.Now()
// Create the block importing task queue and worker functions
tasks := make(chan int, len(blockChain))
for i := 0; i < len(blockChain) && i < len(receiptChain); i++ {
tasks <- i
}
close(tasks)
errs, failed := make([]error, len(tasks)), int32(0)
process := func(worker int) {
for index := range tasks {
block, receipts := blockChain[index], receiptChain[index]
// Short circuit insertion if shutting down or processing failed
if atomic.LoadInt32(&self.procInterrupt) == 1 {
return
}
if atomic.LoadInt32(&failed) > 0 {
return
}
// Short circuit if the owner header is unknown
if !self.HasHeader(block.Hash()) {
errs[index] = fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4])
atomic.AddInt32(&failed, 1)
return
}
// Skip if the entire data is already known
if self.HasBlock(block.Hash()) {
atomic.AddInt32(&stats.ignored, 1)
continue
}
// Compute all the non-consensus fields of the receipts
transactions, logIndex := block.Transactions(), uint(0)
for j := 0; j < len(receipts); j++ {
// The transaction hash can be retrieved from the transaction itself
receipts[j].TxHash = transactions[j].Hash()
// The contract address can be derived from the transaction itself
if MessageCreatesContract(transactions[j]) {
from, _ := transactions[j].From()
receipts[j].ContractAddress = crypto.CreateAddress(from, transactions[j].Nonce())
}
// The used gas can be calculated based on previous receipts
if j == 0 {
receipts[j].GasUsed = new(big.Int).Set(receipts[j].CumulativeGasUsed)
} else {
receipts[j].GasUsed = new(big.Int).Sub(receipts[j].CumulativeGasUsed, receipts[j-1].CumulativeGasUsed)
}
// The derived log fields can simply be set from the block and transaction
for k := 0; k < len(receipts[j].Logs); k++ {
receipts[j].Logs[k].BlockNumber = block.NumberU64()
receipts[j].Logs[k].BlockHash = block.Hash()
receipts[j].Logs[k].TxHash = receipts[j].TxHash
receipts[j].Logs[k].TxIndex = uint(j)
receipts[j].Logs[k].Index = logIndex
logIndex++
}
}
// Write all the data out into the database
if err := WriteBody(self.chainDb, block.Hash(), &types.Body{block.Transactions(), block.Uncles()}); err != nil {
errs[index] = fmt.Errorf("failed to write block body: %v", err)
atomic.AddInt32(&failed, 1)
glog.Fatal(errs[index])
return
}
if err := WriteBlockReceipts(self.chainDb, block.Hash(), receipts); err != nil {
errs[index] = fmt.Errorf("failed to write block receipts: %v", err)
atomic.AddInt32(&failed, 1)
glog.Fatal(errs[index])
return
}
if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil {
errs[index] = fmt.Errorf("failed to write log blooms: %v", err)
atomic.AddInt32(&failed, 1)
glog.Fatal(errs[index])
return
}
atomic.AddInt32(&stats.processed, 1)
}
}
// Start as many worker threads as goroutines allowed
pending := new(sync.WaitGroup)
for i := 0; i < runtime.GOMAXPROCS(0); i++ {
pending.Add(1)
go func(id int) {
defer pending.Done()
process(id)
}(i)
}
pending.Wait()
// If anything failed, report
if failed > 0 {
for i, err := range errs {
if err != nil {
return i, err
}
}
}
if atomic.LoadInt32(&self.procInterrupt) == 1 {
glog.V(logger.Debug).Infoln("premature abort during receipt chain processing")
return 0, nil
}
// Update the head fast sync block if better
self.mu.Lock()
head := blockChain[len(errs)-1]
if self.GetTd(self.currentFastBlock.Hash()).Cmp(self.GetTd(head.Hash())) < 0 {
if err := WriteHeadFastBlockHash(self.chainDb, head.Hash()); err != nil {
glog.Fatalf("failed to update head fast block hash: %v", err)
}
self.currentFastBlock = head
}
self.mu.Unlock()
// Report some public statistics so the user has a clue what's going on
first, last := blockChain[0], blockChain[len(blockChain)-1]
glog.V(logger.Info).Infof("imported %d receipt(s) (%d ignored) in %v. #%d [%x… / %x…]", stats.processed, stats.ignored,
time.Since(start), last.Number(), first.Hash().Bytes()[:4], last.Hash().Bytes()[:4])
return 0, nil
}
// WriteBlock writes the block to the chain.
func (self *BlockChain) WriteBlock(block *types.Block) (status writeStatus, err error) {
self.wg.Add(1)
defer self.wg.Done()
// Calculate the total difficulty of the block
ptd := self.GetTd(block.ParentHash())
if ptd == nil {
return NonStatTy, ParentError(block.ParentHash())
}
td := new(big.Int).Add(block.Difficulty(), ptd)
// Make sure no inconsistent state is leaked during insertion
self.mu.Lock()
defer self.mu.Unlock()
// If the total difficulty is higher than our known, add it to the canonical chain
if td.Cmp(self.GetTd(self.currentBlock.Hash())) > 0 {
// Reorganize the chain if the parent is not the head block
if block.ParentHash() != self.currentBlock.Hash() {
if err := self.reorg(self.currentBlock, block); err != nil {
return NonStatTy, err
}
}
// Insert the block as the new head of the chain
self.insert(block)
status = CanonStatTy
} else {
status = SideStatTy
}
// Irrelevant of the canonical status, write the block itself to the database
if err := WriteTd(self.chainDb, block.Hash(), td); err != nil {
glog.Fatalf("failed to write block total difficulty: %v", err)
}
if err := WriteBlock(self.chainDb, block); err != nil {
glog.Fatalf("filed to write block contents: %v", err)
}
self.futureBlocks.Remove(block.Hash())
return
}
// InsertChain will attempt to insert the given chain in to the canonical chain or, otherwise, create a fork. It an error is returned
// it will return the index number of the failing block as well an error describing what went wrong (for possible errors see core/errors.go).
func (self *BlockChain) InsertChain(chain types.Blocks) (int, error) {
self.wg.Add(1)
defer self.wg.Done()
2015-05-16 22:55:02 +00:00
self.chainmu.Lock()
defer self.chainmu.Unlock()
// A queued approach to delivering events. This is generally
// faster than direct delivery and requires much less mutex
// acquiring.
2015-04-04 21:04:19 +00:00
var (
stats struct{ queued, processed, ignored int }
events = make([]interface{}, 0, len(chain))
coalescedLogs vm.Logs
tstart = time.Now()
nonceChecked = make([]bool, len(chain))
2015-04-04 21:04:19 +00:00
)
// Start the parallel nonce verifier.
nonceAbort, nonceResults := verifyNoncesFromBlocks(self.pow, chain)
defer close(nonceAbort)
txcount := 0
for i, block := range chain {
if atomic.LoadInt32(&self.procInterrupt) == 1 {
glog.V(logger.Debug).Infoln("Premature abort during block chain processing")
break
}
bstart := time.Now()
// Wait for block i's nonce to be verified before processing
// its state transition.
for !nonceChecked[i] {
r := <-nonceResults
nonceChecked[r.index] = true
if !r.valid {
block := chain[r.index]
return r.index, &BlockNonceErr{Hash: block.Hash(), Number: block.Number(), Nonce: block.Nonce()}
2014-12-02 10:37:33 +00:00
}
}
if BadHashes[block.Hash()] {
err := BadHashError(block.Hash())
reportBlock(block, err)
return i, err
}
// Stage 1 validation of the block using the chain's validator
// interface.
err := self.Validator().ValidateBlock(block)
if err != nil {
if IsKnownBlockErr(err) {
stats.ignored++
continue
}
if err == BlockFutureErr {
// Allow up to MaxFuture second in the future blocks. If this limit
// is exceeded the chain is discarded and processed at a later time
// if given.
max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks)
if block.Time().Cmp(max) == 1 {
return i, fmt.Errorf("%v: BlockFutureErr, %v > %v", BlockFutureErr, block.Time(), max)
}
2015-03-23 15:14:33 +00:00
self.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
}
2015-04-04 21:04:19 +00:00
if IsParentErr(err) && self.futureBlocks.Contains(block.ParentHash()) {
self.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
}
reportBlock(block, err)
return i, err
}
// Create a new statedb using the parent block and report an
// error if it fails.
statedb, err := state.New(self.GetBlock(block.ParentHash()).Root(), self.chainDb)
if err != nil {
reportBlock(block, err)
return i, err
}
// Process block using the parent state as reference point.
receipts, logs, usedGas, err := self.processor.Process(block, statedb)
if err != nil {
reportBlock(block, err)
return i, err
}
// Validate the state using the default validator
err = self.Validator().ValidateState(block, self.GetBlock(block.ParentHash()), statedb, receipts, usedGas)
if err != nil {
reportBlock(block, err)
return i, err
}
// Write state changes to database
_, err = statedb.Commit()
if err != nil {
return i, err
}
// coalesce logs for later processing
coalescedLogs = append(coalescedLogs, logs...)
if err := WriteBlockReceipts(self.chainDb, block.Hash(), receipts); err != nil {
return i, err
}
txcount += len(block.Transactions())
// write the block to the chain and get the status
status, err := self.WriteBlock(block)
if err != nil {
return i, err
}
switch status {
case CanonStatTy:
if glog.V(logger.Debug) {
glog.Infof("[%v] inserted block #%d (%d TXs %v G %d UNCs) (%x...). Took %v\n", time.Now().UnixNano(), block.Number(), len(block.Transactions()), block.GasUsed(), len(block.Uncles()), block.Hash().Bytes()[0:4], time.Since(bstart))
}
events = append(events, ChainEvent{block, block.Hash(), logs})
// This puts transactions in a extra db for rpc
if err := WriteTransactions(self.chainDb, block); err != nil {
return i, err
}
// store the receipts
if err := WriteReceipts(self.chainDb, receipts); err != nil {
return i, err
}
// Write map map bloom filters
if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil {
return i, err
}
case SideStatTy:
if glog.V(logger.Detail) {
glog.Infof("inserted forked block #%d (TD=%v) (%d TXs %d UNCs) (%x...). Took %v\n", block.Number(), block.Difficulty(), len(block.Transactions()), len(block.Uncles()), block.Hash().Bytes()[0:4], time.Since(bstart))
2015-05-16 22:55:02 +00:00
}
events = append(events, ChainSideEvent{block, logs})
case SplitStatTy:
events = append(events, ChainSplitEvent{block, logs})
}
stats.processed++
}
2015-05-03 12:09:50 +00:00
if (stats.queued > 0 || stats.processed > 0 || stats.ignored > 0) && bool(glog.V(logger.Info)) {
2015-04-05 15:59:38 +00:00
tend := time.Since(tstart)
2015-04-04 10:40:11 +00:00
start, end := chain[0], chain[len(chain)-1]
glog.Infof("imported %d block(s) (%d queued %d ignored) including %d txs in %v. #%v [%x / %x]\n", stats.processed, stats.queued, stats.ignored, txcount, tend, end.Number(), start.Hash().Bytes()[:4], end.Hash().Bytes()[:4])
2015-04-04 10:40:11 +00:00
}
go self.postChainEvents(events, coalescedLogs)
return 0, nil
2014-11-17 11:12:55 +00:00
}
// reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them
// to be part of the new canonical chain and accumulates potential missing transactions and post an
// event about them
func (self *BlockChain) reorg(oldBlock, newBlock *types.Block) error {
var (
newChain types.Blocks
commonBlock *types.Block
oldStart = oldBlock
newStart = newBlock
deletedTxs types.Transactions
deletedLogs vm.Logs
// collectLogs collects the logs that were generated during the
// processing of the block that corresponds with the given hash.
// These logs are later announced as deleted.
collectLogs = func(h common.Hash) {
// Coalesce logs
receipts := GetBlockReceipts(self.chainDb, h)
for _, receipt := range receipts {
deletedLogs = append(deletedLogs, receipt.Logs...)
}
}
)
// first reduce whoever is higher bound
if oldBlock.NumberU64() > newBlock.NumberU64() {
// reduce old chain
2015-05-28 16:18:23 +00:00
for oldBlock = oldBlock; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = self.GetBlock(oldBlock.ParentHash()) {
deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
collectLogs(oldBlock.Hash())
}
} else {
// reduce new chain and append new chain blocks for inserting later on
2015-05-28 16:18:23 +00:00
for newBlock = newBlock; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = self.GetBlock(newBlock.ParentHash()) {
newChain = append(newChain, newBlock)
}
}
2015-05-28 16:18:23 +00:00
if oldBlock == nil {
return fmt.Errorf("Invalid old chain")
2015-05-28 16:18:23 +00:00
}
if newBlock == nil {
return fmt.Errorf("Invalid new chain")
2015-05-28 16:18:23 +00:00
}
numSplit := newBlock.Number()
for {
if oldBlock.Hash() == newBlock.Hash() {
commonBlock = oldBlock
break
}
newChain = append(newChain, newBlock)
deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
collectLogs(oldBlock.Hash())
oldBlock, newBlock = self.GetBlock(oldBlock.ParentHash()), self.GetBlock(newBlock.ParentHash())
if oldBlock == nil {
return fmt.Errorf("Invalid old chain")
}
if newBlock == nil {
return fmt.Errorf("Invalid new chain")
}
}
if glog.V(logger.Debug) {
commonHash := commonBlock.Hash()
glog.Infof("Chain split detected @ %x. Reorganising chain from #%v %x to %x", commonHash[:4], numSplit, oldStart.Hash().Bytes()[:4], newStart.Hash().Bytes()[:4])
}
var addedTxs types.Transactions
// insert blocks. Order does not matter. Last block will be written in ImportChain itself which creates the new head properly
for _, block := range newChain {
// insert the block in the canonical way, re-writing history
self.insert(block)
// write canonical receipts and transactions
if err := WriteTransactions(self.chainDb, block); err != nil {
return err
}
receipts := GetBlockReceipts(self.chainDb, block.Hash())
// write receipts
if err := WriteReceipts(self.chainDb, receipts); err != nil {
return err
}
// Write map map bloom filters
if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil {
return err
}
addedTxs = append(addedTxs, block.Transactions()...)
}
// calculate the difference between deleted and added transactions
diff := types.TxDifference(deletedTxs, addedTxs)
// When transactions get deleted from the database that means the
// receipts that were created in the fork must also be deleted
for _, tx := range diff {
DeleteReceipt(self.chainDb, tx.Hash())
DeleteTransaction(self.chainDb, tx.Hash())
}
// Must be posted in a goroutine because of the transaction pool trying
// to acquire the chain manager lock
if len(diff) > 0 {
go self.eventMux.Post(RemovedTransactionEvent{diff})
}
if len(deletedLogs) > 0 {
go self.eventMux.Post(RemovedLogEvent{deletedLogs})
}
return nil
}
// postChainEvents iterates over the events generated by a chain insertion and
// posts them into the event mux.
func (self *BlockChain) postChainEvents(events []interface{}, logs vm.Logs) {
// post event logs for further processing
self.eventMux.Post(logs)
for _, event := range events {
if event, ok := event.(ChainEvent); ok {
// We need some control over the mining operation. Acquiring locks and waiting for the miner to create new block takes too long
// and in most cases isn't even necessary.
if self.LastBlockHash() == event.Hash {
self.eventMux.Post(ChainHeadEvent{event.Block})
}
}
// Fire the insertion events individually too
self.eventMux.Post(event)
}
}
func (self *BlockChain) update() {
2015-05-01 14:30:02 +00:00
futureTimer := time.Tick(5 * time.Second)
for {
select {
2015-05-01 14:30:02 +00:00
case <-futureTimer:
self.procFutureBlocks()
case <-self.quit:
return
}
}
}
// reportBlock reports the given block and error using the canonical block
// reporting tool. Reporting the block to the service is handled in a separate
// goroutine.
func reportBlock(block *types.Block, err error) {
if glog.V(logger.Error) {
glog.Errorf("Bad block #%v (%s)\n", block.Number(), block.Hash().Hex())
glog.Errorf(" %v", err)
}
go ReportBlock(block, err)
}