go-ethereum/les/vflux/server/clientpool.go

329 lines
12 KiB
Go
Raw Normal View History

// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package server
import (
"errors"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/les/utils"
"github.com/ethereum/go-ethereum/les/vflux"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/nodestate"
"github.com/ethereum/go-ethereum/rlp"
)
var (
ErrNotConnected = errors.New("client not connected")
ErrNoPriority = errors.New("priority too low to raise capacity")
ErrCantFindMaximum = errors.New("unable to find maximum allowed capacity")
)
// ClientPool implements a client database that assigns a priority to each client
// based on a positive and negative balance. Positive balance is externally assigned
// to prioritized clients and is decreased with connection time and processed
// requests (unless the price factors are zero). If the positive balance is zero
// then negative balance is accumulated.
//
// Balance tracking and priority calculation for connected clients is done by
// balanceTracker. PriorityQueue ensures that clients with the lowest positive or
// highest negative balance get evicted when the total capacity allowance is full
// and new clients with a better balance want to connect.
//
// Already connected nodes receive a small bias in their favor in order to avoid
// accepting and instantly kicking out clients. In theory, we try to ensure that
// each client can have several minutes of connection time.
//
// Balances of disconnected clients are stored in nodeDB including positive balance
2022-10-11 07:37:00 +00:00
// and negative balance. Both positive balance and negative balance will decrease
// exponentially. If the balance is low enough, then the record will be dropped.
type ClientPool struct {
*priorityPool
*balanceTracker
setup *serverSetup
clock mclock.Clock
ns *nodestate.NodeStateMachine
synced func() bool
lock sync.RWMutex
connectedBias time.Duration
minCap uint64 // the minimal capacity value allowed for any client
capReqNode *enode.Node // node that is requesting capacity change; only used inside NSM operation
}
// clientPeer represents a peer in the client pool. None of the callbacks should block.
type clientPeer interface {
Node() *enode.Node
FreeClientId() string // unique id for non-priority clients (typically a prefix of the network address)
InactiveAllowance() time.Duration // disconnection timeout for inactive non-priority peers
UpdateCapacity(newCap uint64, requested bool) // signals a capacity update (requested is true if it is a result of a SetCapacity call on the given peer
Disconnect() // initiates disconnection (Unregister should always be called)
}
// NewClientPool creates a new client pool
func NewClientPool(balanceDb ethdb.KeyValueStore, minCap uint64, connectedBias time.Duration, clock mclock.Clock, synced func() bool) *ClientPool {
setup := newServerSetup()
ns := nodestate.NewNodeStateMachine(nil, nil, clock, setup.setup)
cp := &ClientPool{
priorityPool: newPriorityPool(ns, setup, clock, minCap, connectedBias, 4, 100),
balanceTracker: newBalanceTracker(ns, setup, balanceDb, clock, &utils.Expirer{}, &utils.Expirer{}),
setup: setup,
ns: ns,
clock: clock,
minCap: minCap,
connectedBias: connectedBias,
synced: synced,
}
ns.SubscribeState(nodestate.MergeFlags(setup.activeFlag, setup.inactiveFlag, setup.priorityFlag), func(node *enode.Node, oldState, newState nodestate.Flags) {
if newState.Equals(setup.inactiveFlag) {
// set timeout for non-priority inactive client
var timeout time.Duration
if c, ok := ns.GetField(node, setup.clientField).(clientPeer); ok {
timeout = c.InactiveAllowance()
}
ns.AddTimeout(node, setup.inactiveFlag, timeout)
}
if oldState.Equals(setup.inactiveFlag) && newState.Equals(setup.inactiveFlag.Or(setup.priorityFlag)) {
ns.SetStateSub(node, setup.inactiveFlag, nodestate.Flags{}, 0) // priority gained; remove timeout
}
if newState.Equals(setup.activeFlag) {
// active with no priority; limit capacity to minCap
cap, _ := ns.GetField(node, setup.capacityField).(uint64)
if cap > minCap {
cp.requestCapacity(node, minCap, minCap, 0)
}
}
if newState.Equals(nodestate.Flags{}) {
if c, ok := ns.GetField(node, setup.clientField).(clientPeer); ok {
c.Disconnect()
}
}
})
ns.SubscribeField(setup.capacityField, func(node *enode.Node, state nodestate.Flags, oldValue, newValue interface{}) {
if c, ok := ns.GetField(node, setup.clientField).(clientPeer); ok {
newCap, _ := newValue.(uint64)
c.UpdateCapacity(newCap, node == cp.capReqNode)
}
})
// add metrics
cp.ns.SubscribeState(nodestate.MergeFlags(cp.setup.activeFlag, cp.setup.inactiveFlag), func(node *enode.Node, oldState, newState nodestate.Flags) {
if oldState.IsEmpty() && !newState.IsEmpty() {
clientConnectedMeter.Mark(1)
}
if !oldState.IsEmpty() && newState.IsEmpty() {
clientDisconnectedMeter.Mark(1)
}
if oldState.HasNone(cp.setup.activeFlag) && oldState.HasAll(cp.setup.activeFlag) {
clientActivatedMeter.Mark(1)
}
if oldState.HasAll(cp.setup.activeFlag) && oldState.HasNone(cp.setup.activeFlag) {
clientDeactivatedMeter.Mark(1)
}
activeCount, activeCap := cp.Active()
totalActiveCountGauge.Update(int64(activeCount))
totalActiveCapacityGauge.Update(int64(activeCap))
totalInactiveCountGauge.Update(int64(cp.Inactive()))
})
return cp
}
// Start starts the client pool. Should be called before Register/Unregister.
func (cp *ClientPool) Start() {
cp.ns.Start()
}
// Stop shuts the client pool down. The clientPeer interface callbacks will not be called
// after Stop. Register calls will return nil.
func (cp *ClientPool) Stop() {
cp.balanceTracker.stop()
cp.ns.Stop()
}
// Register registers the peer into the client pool. If the peer has insufficient
// priority and remains inactive for longer than the allowed timeout then it will be
// disconnected by calling the Disconnect function of the clientPeer interface.
func (cp *ClientPool) Register(peer clientPeer) ConnectedBalance {
cp.ns.SetField(peer.Node(), cp.setup.clientField, peerWrapper{peer})
balance, _ := cp.ns.GetField(peer.Node(), cp.setup.balanceField).(*nodeBalance)
return balance
}
// Unregister removes the peer from the client pool
func (cp *ClientPool) Unregister(peer clientPeer) {
cp.ns.SetField(peer.Node(), cp.setup.clientField, nil)
}
// SetConnectedBias sets the connection bias, which is applied to already connected clients
// So that already connected client won't be kicked out very soon and we can ensure all
// connected clients can have enough time to request or sync some data.
func (cp *ClientPool) SetConnectedBias(bias time.Duration) {
cp.lock.Lock()
cp.connectedBias = bias
cp.setActiveBias(bias)
cp.lock.Unlock()
}
// SetCapacity sets the assigned capacity of a connected client
func (cp *ClientPool) SetCapacity(node *enode.Node, reqCap uint64, bias time.Duration, requested bool) (capacity uint64, err error) {
cp.lock.RLock()
if cp.connectedBias > bias {
bias = cp.connectedBias
}
cp.lock.RUnlock()
cp.ns.Operation(func() {
balance, _ := cp.ns.GetField(node, cp.setup.balanceField).(*nodeBalance)
if balance == nil {
err = ErrNotConnected
return
}
capacity, _ = cp.ns.GetField(node, cp.setup.capacityField).(uint64)
if capacity == 0 {
// if the client is inactive then it has insufficient priority for the minimal capacity
// (will be activated automatically with minCap when possible)
return
}
if reqCap < cp.minCap {
// can't request less than minCap; switching between 0 (inactive state) and minCap is
// performed by the server automatically as soon as necessary/possible
reqCap = cp.minCap
}
if reqCap > cp.minCap && cp.ns.GetState(node).HasNone(cp.setup.priorityFlag) {
err = ErrNoPriority
return
}
if reqCap == capacity {
return
}
if requested {
// mark the requested node so that the UpdateCapacity callback can signal
// whether the update is the direct result of a SetCapacity call on the given node
cp.capReqNode = node
defer func() {
cp.capReqNode = nil
}()
}
var minTarget, maxTarget uint64
if reqCap > capacity {
// Estimate maximum available capacity at the current priority level and request
// the estimated amount.
// Note: requestCapacity could find the highest available capacity between the
// current and the requested capacity but it could cost a lot of iterations with
// fine step adjustment if the requested capacity is very high. By doing a quick
// estimation of the maximum available capacity based on the capacity curve we
// can limit the number of required iterations.
curve := cp.getCapacityCurve().exclude(node.ID())
maxTarget = curve.maxCapacity(func(capacity uint64) int64 {
return balance.estimatePriority(capacity, 0, 0, bias, false)
})
if maxTarget < reqCap {
return
}
maxTarget = reqCap
// Specify a narrow target range that allows a limited number of fine step
// iterations
minTarget = maxTarget - maxTarget/20
if minTarget < capacity {
minTarget = capacity
}
} else {
minTarget, maxTarget = reqCap, reqCap
}
if newCap := cp.requestCapacity(node, minTarget, maxTarget, bias); newCap >= minTarget && newCap <= maxTarget {
capacity = newCap
return
}
// we should be able to find the maximum allowed capacity in a few iterations
log.Error("Unable to find maximum allowed capacity")
err = ErrCantFindMaximum
})
return
}
// serveCapQuery serves a vflux capacity query. It receives multiple token amount values
// and a bias time value. For each given token amount it calculates the maximum achievable
// capacity in case the amount is added to the balance.
func (cp *ClientPool) serveCapQuery(id enode.ID, freeID string, data []byte) []byte {
var req vflux.CapacityQueryReq
if rlp.DecodeBytes(data, &req) != nil {
return nil
}
if l := len(req.AddTokens); l == 0 || l > vflux.CapacityQueryMaxLen {
return nil
}
result := make(vflux.CapacityQueryReply, len(req.AddTokens))
if !cp.synced() {
capacityQueryZeroMeter.Mark(1)
reply, _ := rlp.EncodeToBytes(&result)
return reply
}
bias := time.Second * time.Duration(req.Bias)
cp.lock.RLock()
if cp.connectedBias > bias {
bias = cp.connectedBias
}
cp.lock.RUnlock()
// use capacityCurve to answer request for multiple newly bought token amounts
curve := cp.getCapacityCurve().exclude(id)
cp.BalanceOperation(id, freeID, func(balance AtomicBalanceOperator) {
pb, _ := balance.GetBalance()
for i, addTokens := range req.AddTokens {
add := addTokens.Int64()
result[i] = curve.maxCapacity(func(capacity uint64) int64 {
return balance.estimatePriority(capacity, add, 0, bias, false) / int64(capacity)
})
if add <= 0 && uint64(-add) >= pb && result[i] > cp.minCap {
result[i] = cp.minCap
}
if result[i] < cp.minCap {
result[i] = 0
}
}
})
// add first result to metrics (don't care about priority client multi-queries yet)
if result[0] == 0 {
capacityQueryZeroMeter.Mark(1)
} else {
capacityQueryNonZeroMeter.Mark(1)
}
reply, _ := rlp.EncodeToBytes(&result)
return reply
}
// Handle implements Service
func (cp *ClientPool) Handle(id enode.ID, address string, name string, data []byte) []byte {
switch name {
case vflux.CapacityQueryName:
return cp.serveCapQuery(id, address, data)
default:
return nil
}
}