go-ethereum/consensus/ethash/consensus.go

492 lines
17 KiB
Go
Raw Normal View History

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package ethash
import (
"bytes"
"errors"
"fmt"
"math/big"
"runtime"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/misc"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/params"
set "gopkg.in/fatih/set.v0"
)
// Ethash proof-of-work protocol constants.
var (
blockReward *big.Int = big.NewInt(5e+18) // Block reward in wei for successfully mining a block
maxUncles = 2 // Maximum number of uncles allowed in a single block
)
var (
ErrInvalidChain = errors.New("invalid header chain")
ErrTooManyUncles = errors.New("too many uncles")
ErrDuplicateUncle = errors.New("duplicate uncle")
ErrUncleIsAncestor = errors.New("uncle is ancestor")
ErrDanglingUncle = errors.New("uncle's parent is not ancestor")
ErrNonceOutOfRange = errors.New("nonce out of range")
ErrInvalidDifficulty = errors.New("non-positive difficulty")
ErrInvalidMixDigest = errors.New("invalid mix digest")
ErrInvalidPoW = errors.New("invalid proof-of-work")
)
// VerifyHeader checks whether a header conforms to the consensus rules of the
// stock Ethereum ethash engine.
func (ethash *Ethash) VerifyHeader(chain consensus.ChainReader, header *types.Header, seal bool) error {
// If we're running a full engine faking, accept any input as valid
if ethash.fakeFull {
return nil
}
// Short circuit if the header is known, or it's parent not
number := header.Number.Uint64()
if chain.GetHeader(header.Hash(), number) != nil {
return nil
}
parent := chain.GetHeader(header.ParentHash, number-1)
if parent == nil {
return consensus.ErrUnknownAncestor
}
// Sanity checks passed, do a proper verification
return ethash.verifyHeader(chain, header, parent, false, seal)
}
// VerifyHeaders is similar to VerifyHeader, but verifies a batch of headers
// concurrently. The method returns a quit channel to abort the operations and
// a results channel to retrieve the async verifications.
func (ethash *Ethash) VerifyHeaders(chain consensus.ChainReader, headers []*types.Header, seals []bool) (chan<- struct{}, <-chan error) {
// If we're running a full engine faking, accept any input as valid
if ethash.fakeFull {
abort, results := make(chan struct{}), make(chan error, len(headers))
for i := 0; i < len(headers); i++ {
results <- nil
}
return abort, results
}
// Spawn as many workers as allowed threads
workers := runtime.GOMAXPROCS(0)
if len(headers) < workers {
workers = len(headers)
}
// Create a task channel and spawn the verifiers
type result struct {
index int
err error
}
inputs := make(chan int, workers)
outputs := make(chan result, len(headers))
var badblock uint64
for i := 0; i < workers; i++ {
go func() {
for index := range inputs {
// If we've found a bad block already before this, stop validating
if bad := atomic.LoadUint64(&badblock); bad != 0 && bad <= headers[index].Number.Uint64() {
outputs <- result{index: index, err: ErrInvalidChain}
continue
}
// We need to look up the first parent
var parent *types.Header
if index == 0 {
parent = chain.GetHeader(headers[0].ParentHash, headers[0].Number.Uint64()-1)
} else if headers[index-1].Hash() == headers[index].ParentHash {
parent = headers[index-1]
}
// Ensure the validation is useful and execute it
var failure error
switch {
case chain.GetHeader(headers[index].Hash(), headers[index].Number.Uint64()-1) != nil:
outputs <- result{index: index, err: nil}
case parent == nil:
failure = consensus.ErrUnknownAncestor
outputs <- result{index: index, err: failure}
default:
failure = ethash.verifyHeader(chain, headers[index], parent, false, seals[index])
outputs <- result{index: index, err: failure}
}
// If a validation failure occurred, mark subsequent blocks invalid
if failure != nil {
number := headers[index].Number.Uint64()
if prev := atomic.LoadUint64(&badblock); prev == 0 || prev > number {
// This two step atomic op isn't thread-safe in that `badblock` might end
// up slightly higher than the block number of the first failure (if many
// workers try to write at the same time), but it's fine as we're mostly
// interested to avoid large useless work, we don't care about 1-2 extra
// runs. Doing "full thread safety" would involve mutexes, which would be
// a noticeable sync overhead on the fast spinning worker routines.
atomic.StoreUint64(&badblock, number)
}
}
}
}()
}
// Feed item indices to the workers until done, sorting and feeding the results to the caller
dones := make([]bool, len(headers))
errors := make([]error, len(headers))
abort := make(chan struct{})
returns := make(chan error, len(headers))
go func() {
defer close(inputs)
input, output := 0, 0
for i := 0; i < len(headers)*2; i++ {
var res result
// If there are tasks left, push to workers
if input < len(headers) {
select {
case inputs <- input:
input++
continue
case <-abort:
return
case res = <-outputs:
}
} else {
// Otherwise keep waiting for results
select {
case <-abort:
return
case res = <-outputs:
}
}
// A result arrived, save and propagate if next
dones[res.index], errors[res.index] = true, res.err
for output < len(headers) && dones[output] {
returns <- errors[output]
output++
}
}
}()
return abort, returns
}
// VerifyUncles verifies that the given block's uncles conform to the consensus
// rules of the stock Ethereum ethash engine.
func (ethash *Ethash) VerifyUncles(chain consensus.ChainReader, block *types.Block) error {
// If we're running a full engine faking, accept any input as valid
if ethash.fakeFull {
return nil
}
// Verify that there are at most 2 uncles included in this block
if len(block.Uncles()) > maxUncles {
return ErrTooManyUncles
}
// Gather the set of past uncles and ancestors
uncles, ancestors := set.New(), make(map[common.Hash]*types.Header)
number, parent := block.NumberU64()-1, block.ParentHash()
for i := 0; i < 7; i++ {
ancestor := chain.GetBlock(parent, number)
if ancestor == nil {
break
}
ancestors[ancestor.Hash()] = ancestor.Header()
for _, uncle := range ancestor.Uncles() {
uncles.Add(uncle.Hash())
}
parent, number = ancestor.ParentHash(), number-1
}
ancestors[block.Hash()] = block.Header()
uncles.Add(block.Hash())
// Verify each of the uncles that it's recent, but not an ancestor
for _, uncle := range block.Uncles() {
// Make sure every uncle is rewarded only once
hash := uncle.Hash()
if uncles.Has(hash) {
return ErrDuplicateUncle
}
uncles.Add(hash)
// Make sure the uncle has a valid ancestry
if ancestors[hash] != nil {
return ErrUncleIsAncestor
}
if ancestors[uncle.ParentHash] == nil || uncle.ParentHash == block.ParentHash() {
return ErrDanglingUncle
}
if err := ethash.verifyHeader(chain, uncle, ancestors[uncle.ParentHash], true, true); err != nil {
return err
}
}
return nil
}
// verifyHeader checks whether a header conforms to the consensus rules of the
// stock Ethereum ethash engine.
//
// See YP section 4.3.4. "Block Header Validity"
func (ethash *Ethash) verifyHeader(chain consensus.ChainReader, header, parent *types.Header, uncle bool, seal bool) error {
// Ensure that the header's extra-data section is of a reasonable size
if uint64(len(header.Extra)) > params.MaximumExtraDataSize {
return fmt.Errorf("extra-data too long: %d > %d", len(header.Extra), params.MaximumExtraDataSize)
}
// Verify the header's timestamp
if uncle {
if header.Time.Cmp(math.MaxBig256) > 0 {
return consensus.ErrLargeBlockTime
}
} else {
if header.Time.Cmp(big.NewInt(time.Now().Unix())) > 0 {
return consensus.ErrFutureBlock
}
}
if header.Time.Cmp(parent.Time) <= 0 {
return consensus.ErrZeroBlockTime
}
// Verify the block's difficulty based in it's timestamp and parent's difficulty
expected := CalcDifficulty(chain.Config(), header.Time.Uint64(), parent.Time.Uint64(), parent.Number, parent.Difficulty)
if expected.Cmp(header.Difficulty) != 0 {
return fmt.Errorf("invalid difficulty: have %v, want %v", header.Difficulty, expected)
}
// Verify that the gas limit remains within allowed bounds
diff := new(big.Int).Set(parent.GasLimit)
diff = diff.Sub(diff, header.GasLimit)
diff.Abs(diff)
limit := new(big.Int).Set(parent.GasLimit)
limit = limit.Div(limit, params.GasLimitBoundDivisor)
if diff.Cmp(limit) >= 0 || header.GasLimit.Cmp(params.MinGasLimit) < 0 {
return fmt.Errorf("invalid gas limit: have %v, want %v += %v", header.GasLimit, parent.GasLimit, limit)
}
// Verify that the block number is parent's +1
if diff := new(big.Int).Sub(header.Number, parent.Number); diff.Cmp(big.NewInt(1)) != 0 {
return consensus.ErrInvalidNumber
}
// Verify the engine specific seal securing the block
if seal {
if err := ethash.VerifySeal(chain, header); err != nil {
return err
}
}
// If all checks passed, validate any special fields for hard forks
if err := misc.VerifyDAOHeaderExtraData(chain.Config(), header); err != nil {
return err
}
if err := misc.VerifyForkHashes(chain.Config(), header, uncle); err != nil {
return err
}
return nil
}
// CalcDifficulty is the difficulty adjustment algorithm. It returns the difficulty
// that a new block should have when created at time given the parent block's time
// and difficulty.
//
// TODO (karalabe): Move the chain maker into this package and make this private!
func CalcDifficulty(config *params.ChainConfig, time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
if config.IsHomestead(new(big.Int).Add(parentNumber, common.Big1)) {
return calcDifficultyHomestead(time, parentTime, parentNumber, parentDiff)
}
return calcDifficultyFrontier(time, parentTime, parentNumber, parentDiff)
}
// Some weird constants to avoid constant memory allocs for them.
var (
expDiffPeriod = big.NewInt(100000)
big10 = big.NewInt(10)
bigMinus99 = big.NewInt(-99)
)
// calcDifficultyHomestead is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Homestead rules.
func calcDifficultyHomestead(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki
// algorithm:
// diff = (parent_diff +
// (parent_diff / 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
// ) + 2^(periodCount - 2)
bigTime := new(big.Int).SetUint64(time)
bigParentTime := new(big.Int).SetUint64(parentTime)
// holds intermediate values to make the algo easier to read & audit
x := new(big.Int)
y := new(big.Int)
// 1 - (block_timestamp -parent_timestamp) // 10
x.Sub(bigTime, bigParentTime)
x.Div(x, big10)
x.Sub(common.Big1, x)
// max(1 - (block_timestamp - parent_timestamp) // 10, -99)))
if x.Cmp(bigMinus99) < 0 {
x.Set(bigMinus99)
}
// (parent_diff + parent_diff // 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
y.Div(parentDiff, params.DifficultyBoundDivisor)
x.Mul(y, x)
x.Add(parentDiff, x)
// minimum difficulty can ever be (before exponential factor)
if x.Cmp(params.MinimumDifficulty) < 0 {
x.Set(params.MinimumDifficulty)
}
// for the exponential factor
periodCount := new(big.Int).Add(parentNumber, common.Big1)
periodCount.Div(periodCount, expDiffPeriod)
// the exponential factor, commonly referred to as "the bomb"
// diff = diff + 2^(periodCount - 2)
if periodCount.Cmp(common.Big1) > 0 {
y.Sub(periodCount, common.Big2)
y.Exp(common.Big2, y, nil)
x.Add(x, y)
}
return x
}
// calcDifficultyFrontier is the difficulty adjustment algorithm. It returns the
// difficulty that a new block should have when created at time given the parent
// block's time and difficulty. The calculation uses the Frontier rules.
func calcDifficultyFrontier(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
diff := new(big.Int)
adjust := new(big.Int).Div(parentDiff, params.DifficultyBoundDivisor)
bigTime := new(big.Int)
bigParentTime := new(big.Int)
bigTime.SetUint64(time)
bigParentTime.SetUint64(parentTime)
if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 {
diff.Add(parentDiff, adjust)
} else {
diff.Sub(parentDiff, adjust)
}
if diff.Cmp(params.MinimumDifficulty) < 0 {
diff.Set(params.MinimumDifficulty)
}
periodCount := new(big.Int).Add(parentNumber, common.Big1)
periodCount.Div(periodCount, expDiffPeriod)
if periodCount.Cmp(common.Big1) > 0 {
// diff = diff + 2^(periodCount - 2)
expDiff := periodCount.Sub(periodCount, common.Big2)
expDiff.Exp(common.Big2, expDiff, nil)
diff.Add(diff, expDiff)
diff = math.BigMax(diff, params.MinimumDifficulty)
}
return diff
}
// VerifySeal implements consensus.Engine, checking whether the given block satisfies
// the PoW difficulty requirements.
func (ethash *Ethash) VerifySeal(chain consensus.ChainReader, header *types.Header) error {
// If we're running a fake PoW, accept any seal as valid
if ethash.fakeMode {
time.Sleep(ethash.fakeDelay)
if ethash.fakeFail == header.Number.Uint64() {
return ErrInvalidPoW
}
return nil
}
// If we're running a shared PoW, delegate verification to it
if ethash.shared != nil {
return ethash.shared.VerifySeal(chain, header)
}
// Sanity check that the block number is below the lookup table size (60M blocks)
number := header.Number.Uint64()
if number/epochLength >= uint64(len(cacheSizes)) {
// Go < 1.7 cannot calculate new cache/dataset sizes (no fast prime check)
return ErrNonceOutOfRange
}
// Ensure that we have a valid difficulty for the block
if header.Difficulty.Sign() <= 0 {
return ErrInvalidDifficulty
}
// Recompute the digest and PoW value and verify against the header
cache := ethash.cache(number)
size := datasetSize(number)
if ethash.tester {
size = 32 * 1024
}
digest, result := hashimotoLight(size, cache, header.HashNoNonce().Bytes(), header.Nonce.Uint64())
if !bytes.Equal(header.MixDigest[:], digest) {
return ErrInvalidMixDigest
}
target := new(big.Int).Div(maxUint256, header.Difficulty)
if new(big.Int).SetBytes(result).Cmp(target) > 0 {
return ErrInvalidPoW
}
return nil
}
// Prepare implements consensus.Engine, initializing the difficulty field of a
// header to conform to the ethash protocol. The changes are done inline.
func (ethash *Ethash) Prepare(chain consensus.ChainReader, header *types.Header) error {
parent := chain.GetHeader(header.ParentHash, header.Number.Uint64()-1)
if parent == nil {
return consensus.ErrUnknownAncestor
}
header.Difficulty = CalcDifficulty(chain.Config(), header.Time.Uint64(),
parent.Time.Uint64(), parent.Number, parent.Difficulty)
return nil
}
// Finalize implements consensus.Engine, accumulating the block and uncle rewards,
// setting the final state and assembling the block.
func (ethash *Ethash) Finalize(chain consensus.ChainReader, header *types.Header, state *state.StateDB, txs []*types.Transaction, uncles []*types.Header, receipts []*types.Receipt) (*types.Block, error) {
// Accumulate any block and uncle rewards and commit the final state root
AccumulateRewards(state, header, uncles)
header.Root = state.IntermediateRoot(chain.Config().IsEIP158(header.Number))
// Header seems complete, assemble into a block and return
return types.NewBlock(header, txs, uncles, receipts), nil
}
// Some weird constants to avoid constant memory allocs for them.
var (
big8 = big.NewInt(8)
big32 = big.NewInt(32)
)
// AccumulateRewards credits the coinbase of the given block with the mining
// reward. The total reward consists of the static block reward and rewards for
// included uncles. The coinbase of each uncle block is also rewarded.
//
// TODO (karalabe): Move the chain maker into this package and make this private!
func AccumulateRewards(state *state.StateDB, header *types.Header, uncles []*types.Header) {
reward := new(big.Int).Set(blockReward)
r := new(big.Int)
for _, uncle := range uncles {
r.Add(uncle.Number, big8)
r.Sub(r, header.Number)
r.Mul(r, blockReward)
r.Div(r, big8)
state.AddBalance(uncle.Coinbase, r)
r.Div(blockReward, big32)
reward.Add(reward, r)
}
state.AddBalance(header.Coinbase, reward)
}