go-ethereum/p2p/discv5/table.go

306 lines
8.5 KiB
Go
Raw Normal View History

2016-11-09 01:01:56 +00:00
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package discv5 implements the RLPx v5 Topic Discovery Protocol.
//
// The Topic Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discv5
import (
"crypto/rand"
"encoding/binary"
"net"
"sort"
"github.com/ethereum/go-ethereum/common"
)
const (
alpha = 3 // Kademlia concurrency factor
bucketSize = 16 // Kademlia bucket size
hashBits = len(common.Hash{}) * 8
nBuckets = hashBits + 1 // Number of buckets
maxBondingPingPongs = 16
maxFindnodeFailures = 5
)
type Table struct {
count int // number of nodes
buckets [nBuckets]*bucket // index of known nodes by distance
nodeAddedHook func(*Node) // for testing
self *Node // metadata of the local node
}
// bucket contains nodes, ordered by their last activity. the entry
// that was most recently active is the first element in entries.
type bucket struct {
entries []*Node
replacements []*Node
}
func newTable(ourID NodeID, ourAddr *net.UDPAddr) *Table {
self := NewNode(ourID, ourAddr.IP, uint16(ourAddr.Port), uint16(ourAddr.Port))
tab := &Table{self: self}
for i := range tab.buckets {
tab.buckets[i] = new(bucket)
}
return tab
}
func (tab *Table) chooseBucketFillTarget() common.Hash {
bucketCount := nBuckets
for bucketCount > 0 && len(tab.buckets[nBuckets-bucketCount].entries) == 0 {
bucketCount--
}
var bucket int
for {
// select a target hash that could go into a certain randomly selected bucket
// buckets are chosen with an even chance out of the existing ones that contain
// less that bucketSize entries, plus a potential new one beyond these
bucket = nBuckets - 1 - int(randUint(uint32(bucketCount+1)))
if bucket == bucketCount || len(tab.buckets[bucket].entries) < bucketSize {
break
}
}
// calculate target that has the desired log distance from our own address hash
target := tab.self.sha.Bytes()
prefix := binary.BigEndian.Uint64(target[0:8])
shift := uint(nBuckets - 1 - bucket)
if bucket != bucketCount {
shift++
}
var b [8]byte
rand.Read(b[:])
rnd := binary.BigEndian.Uint64(b[:])
rndMask := (^uint64(0)) >> shift
addrMask := ^rndMask
xorMask := uint64(0)
if bucket != bucketCount {
xorMask = rndMask + 1
}
prefix = (prefix&addrMask ^ xorMask) | (rnd & rndMask)
binary.BigEndian.PutUint64(target[0:8], prefix)
rand.Read(target[8:])
return common.BytesToHash(target)
}
// readRandomNodes fills the given slice with random nodes from the
// table. It will not write the same node more than once. The nodes in
// the slice are copies and can be modified by the caller.
func (tab *Table) readRandomNodes(buf []*Node) (n int) {
// TODO: tree-based buckets would help here
// Find all non-empty buckets and get a fresh slice of their entries.
var buckets [][]*Node
for _, b := range tab.buckets {
if len(b.entries) > 0 {
buckets = append(buckets, b.entries[:])
}
}
if len(buckets) == 0 {
return 0
}
// Shuffle the buckets.
for i := uint32(len(buckets)) - 1; i > 0; i-- {
j := randUint(i)
buckets[i], buckets[j] = buckets[j], buckets[i]
}
// Move head of each bucket into buf, removing buckets that become empty.
var i, j int
for ; i < len(buf); i, j = i+1, (j+1)%len(buckets) {
b := buckets[j]
buf[i] = &(*b[0])
buckets[j] = b[1:]
if len(b) == 1 {
buckets = append(buckets[:j], buckets[j+1:]...)
}
if len(buckets) == 0 {
break
}
}
return i + 1
}
func randUint(max uint32) uint32 {
if max < 2 {
return 0
}
var b [4]byte
rand.Read(b[:])
return binary.BigEndian.Uint32(b[:]) % max
}
func randUint64n(max uint64) uint64 {
if max < 2 {
return 0
}
var b [8]byte
rand.Read(b[:])
return binary.BigEndian.Uint64(b[:]) % max
}
// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
func (tab *Table) closest(target common.Hash, nresults int) *nodesByDistance {
// This is a very wasteful way to find the closest nodes but
// obviously correct. I believe that tree-based buckets would make
// this easier to implement efficiently.
close := &nodesByDistance{target: target}
for _, b := range tab.buckets {
for _, n := range b.entries {
close.push(n, nresults)
}
}
return close
}
// add attempts to add the given node its corresponding bucket. If the
// bucket has space available, adding the node succeeds immediately.
// Otherwise, the node is added to the replacement cache for the bucket.
func (tab *Table) add(n *Node) (contested *Node) {
b := tab.buckets[logdist(tab.self.sha, n.sha)]
switch {
case b.bump(n):
// n exists in b.
return nil
case len(b.entries) < bucketSize:
// b has space available.
b.addFront(n)
tab.count++
if tab.nodeAddedHook != nil {
tab.nodeAddedHook(n)
}
return nil
default:
// b has no space left, add to replacement cache
// and revalidate the last entry.
// TODO: drop previous node
b.replacements = append(b.replacements, n)
if len(b.replacements) > bucketSize {
copy(b.replacements, b.replacements[1:])
b.replacements = b.replacements[:len(b.replacements)-1]
}
return b.entries[len(b.entries)-1]
}
}
// stuff adds nodes the table to the end of their corresponding bucket
// if the bucket is not full.
func (tab *Table) stuff(nodes []*Node) {
outer:
for _, n := range nodes {
if n.ID == tab.self.ID {
continue // don't add self
}
bucket := tab.buckets[logdist(tab.self.sha, n.sha)]
for i := range bucket.entries {
if bucket.entries[i].ID == n.ID {
continue outer // already in bucket
}
}
if len(bucket.entries) < bucketSize {
bucket.entries = append(bucket.entries, n)
tab.count++
if tab.nodeAddedHook != nil {
tab.nodeAddedHook(n)
}
}
}
}
// delete removes an entry from the node table (used to evacuate
// failed/non-bonded discovery peers).
func (tab *Table) delete(node *Node) {
bucket := tab.buckets[logdist(tab.self.sha, node.sha)]
for i := range bucket.entries {
if bucket.entries[i].ID == node.ID {
bucket.entries = append(bucket.entries[:i], bucket.entries[i+1:]...)
tab.count--
return
}
}
}
func (tab *Table) deleteReplace(node *Node) {
b := tab.buckets[logdist(tab.self.sha, node.sha)]
i := 0
for i < len(b.entries) {
if b.entries[i].ID == node.ID {
b.entries = append(b.entries[:i], b.entries[i+1:]...)
tab.count--
} else {
i++
}
}
// refill from replacement cache
// TODO: maybe use random index
if len(b.entries) < bucketSize && len(b.replacements) > 0 {
ri := len(b.replacements) - 1
b.addFront(b.replacements[ri])
tab.count++
b.replacements[ri] = nil
b.replacements = b.replacements[:ri]
}
}
func (b *bucket) addFront(n *Node) {
b.entries = append(b.entries, nil)
copy(b.entries[1:], b.entries)
b.entries[0] = n
}
func (b *bucket) bump(n *Node) bool {
for i := range b.entries {
if b.entries[i].ID == n.ID {
// move it to the front
copy(b.entries[1:], b.entries[:i])
b.entries[0] = n
return true
}
}
return false
}
// nodesByDistance is a list of nodes, ordered by
// distance to target.
type nodesByDistance struct {
entries []*Node
target common.Hash
}
// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *Node, maxElems int) {
ix := sort.Search(len(h.entries), func(i int) bool {
return distcmp(h.target, h.entries[i].sha, n.sha) > 0
})
if len(h.entries) < maxElems {
h.entries = append(h.entries, n)
}
if ix == len(h.entries) {
// farther away than all nodes we already have.
// if there was room for it, the node is now the last element.
} else {
// slide existing entries down to make room
// this will overwrite the entry we just appended.
copy(h.entries[ix+1:], h.entries[ix:])
h.entries[ix] = n
}
}