go-ethereum/eth/downloader/skeleton.go

1187 lines
47 KiB
Go
Raw Normal View History

// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"encoding/json"
"errors"
"fmt"
"math/rand"
"sort"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
)
// scratchHeaders is the number of headers to store in a scratch space to allow
// concurrent downloads. A header is about 0.5KB in size, so there is no worry
// about using too much memory. The only catch is that we can only validate gaps
2022-10-11 07:37:00 +00:00
// after they're linked to the head, so the bigger the scratch space, the larger
// potential for invalid headers.
//
// The current scratch space of 131072 headers is expected to use 64MB RAM.
const scratchHeaders = 131072
// requestHeaders is the number of header to request from a remote peer in a single
// network packet. Although the skeleton downloader takes into consideration peer
// capacities when picking idlers, the packet size was decided to remain constant
// since headers are relatively small and it's easier to work with fixed batches
// vs. dynamic interval fillings.
const requestHeaders = 512
// errSyncLinked is an internal helper error to signal that the current sync
// cycle linked up to the genesis block, this the skeleton syncer should ping
// the backfiller to resume. Since we already have that logic on sync start,
// piggy-back on that instead of 2 entrypoints.
var errSyncLinked = errors.New("sync linked")
// errSyncMerged is an internal helper error to signal that the current sync
// cycle merged with a previously aborted subchain, thus the skeleton syncer
// should abort and restart with the new state.
var errSyncMerged = errors.New("sync merged")
// errSyncReorged is an internal helper error to signal that the head chain of
// the current sync cycle was (partially) reorged, thus the skeleton syncer
// should abort and restart with the new state.
var errSyncReorged = errors.New("sync reorged")
// errTerminated is returned if the sync mechanism was terminated for this run of
// the process. This is usually the case when Geth is shutting down and some events
// might still be propagating.
var errTerminated = errors.New("terminated")
// errReorgDenied is returned if an attempt is made to extend the beacon chain
// with a new header, but it does not link up to the existing sync.
var errReorgDenied = errors.New("non-forced head reorg denied")
func init() {
// Tuning parameters is nice, but the scratch space must be assignable in
// full to peers. It's a useless cornercase to support a dangling half-group.
if scratchHeaders%requestHeaders != 0 {
panic("Please make scratchHeaders divisible by requestHeaders")
}
}
// subchain is a contiguous header chain segment that is backed by the database,
// but may not be linked to the live chain. The skeleton downloader may produce
// a new one of these every time it is restarted until the subchain grows large
// enough to connect with a previous subchain.
//
// The subchains use the exact same database namespace and are not disjoint from
// each other. As such, extending one to overlap the other entails reducing the
// second one first. This combined buffer model is used to avoid having to move
// data on disk when two subchains are joined together.
type subchain struct {
Head uint64 // Block number of the newest header in the subchain
Tail uint64 // Block number of the oldest header in the subchain
Next common.Hash // Block hash of the next oldest header in the subchain
}
// skeletonProgress is a database entry to allow suspending and resuming a chain
// sync. As the skeleton header chain is downloaded backwards, restarts can and
// will produce temporarily disjoint subchains. There is no way to restart a
// suspended skeleton sync without prior knowledge of all prior suspension points.
type skeletonProgress struct {
Subchains []*subchain // Disjoint subchains downloaded until now
}
// headUpdate is a notification that the beacon sync should switch to a new target.
// The update might request whether to forcefully change the target, or only try to
// extend it and fail if it's not possible.
type headUpdate struct {
header *types.Header // Header to update the sync target to
force bool // Whether to force the update or only extend if possible
errc chan error // Channel to signal acceptance of the new head
}
// headerRequest tracks a pending header request to ensure responses are to
// actual requests and to validate any security constraints.
//
// Concurrency note: header requests and responses are handled concurrently from
// the main runloop to allow Keccak256 hash verifications on the peer's thread and
// to drop on invalid response. The request struct must contain all the data to
// construct the response without accessing runloop internals (i.e. subchains).
// That is only included to allow the runloop to match a response to the task being
// synced without having yet another set of maps.
type headerRequest struct {
peer string // Peer to which this request is assigned
id uint64 // Request ID of this request
deliver chan *headerResponse // Channel to deliver successful response on
revert chan *headerRequest // Channel to deliver request failure on
cancel chan struct{} // Channel to track sync cancellation
stale chan struct{} // Channel to signal the request was dropped
head uint64 // Head number of the requested batch of headers
}
// headerResponse is an already verified remote response to a header request.
type headerResponse struct {
peer *peerConnection // Peer from which this response originates
reqid uint64 // Request ID that this response fulfils
headers []*types.Header // Chain of headers
}
// backfiller is a callback interface through which the skeleton sync can tell
// the downloader that it should suspend or resume backfilling on specific head
// events (e.g. suspend on forks or gaps, resume on successful linkups).
type backfiller interface {
// suspend requests the backfiller to abort any running full or snap sync
// based on the skeleton chain as it might be invalid. The backfiller should
// gracefully handle multiple consecutive suspends without a resume, even
// on initial startup.
//
// The method should return the last block header that has been successfully
// backfilled, or nil if the backfiller was not resumed.
suspend() *types.Header
// resume requests the backfiller to start running fill or snap sync based on
// the skeleton chain as it has successfully been linked. Appending new heads
// to the end of the chain will not result in suspend/resume cycles.
// leaking too much sync logic out to the filler.
resume()
}
// skeleton represents a header chain synchronized after the merge where blocks
// aren't validated any more via PoW in a forward fashion, rather are dictated
// and extended at the head via the beacon chain and backfilled on the original
// Ethereum block sync protocol.
//
// Since the skeleton is grown backwards from head to genesis, it is handled as
// a separate entity, not mixed in with the logical sequential transition of the
// blocks. Once the skeleton is connected to an existing, validated chain, the
// headers will be moved into the main downloader for filling and execution.
//
// Opposed to the original Ethereum block synchronization which is trustless (and
// uses a master peer to minimize the attack surface), post-merge block sync starts
// from a trusted head. As such, there is no need for a master peer any more and
// headers can be requested fully concurrently (though some batches might be
// discarded if they don't link up correctly).
//
// Although a skeleton is part of a sync cycle, it is not recreated, rather stays
// alive throughout the lifetime of the downloader. This allows it to be extended
// concurrently with the sync cycle, since extensions arrive from an API surface,
// not from within (vs. legacy Ethereum sync).
//
// Since the skeleton tracks the entire header chain until it is consumed by the
// forward block filling, it needs 0.5KB/block storage. At current mainnet sizes
// this is only possible with a disk backend. Since the skeleton is separate from
// the node's header chain, storing the headers ephemerally until sync finishes
// is wasted disk IO, but it's a price we're going to pay to keep things simple
// for now.
type skeleton struct {
db ethdb.Database // Database backing the skeleton
filler backfiller // Chain syncer suspended/resumed by head events
peers *peerSet // Set of peers we can sync from
idles map[string]*peerConnection // Set of idle peers in the current sync cycle
drop peerDropFn // Drops a peer for misbehaving
progress *skeletonProgress // Sync progress tracker for resumption and metrics
started time.Time // Timestamp when the skeleton syncer was created
logged time.Time // Timestamp when progress was last logged to the user
pulled uint64 // Number of headers downloaded in this run
scratchSpace []*types.Header // Scratch space to accumulate headers in (first = recent)
scratchOwners []string // Peer IDs owning chunks of the scratch space (pend or delivered)
scratchHead uint64 // Block number of the first item in the scratch space
requests map[uint64]*headerRequest // Header requests currently running
headEvents chan *headUpdate // Notification channel for new heads
terminate chan chan error // Termination channel to abort sync
terminated chan struct{} // Channel to signal that the syncer is dead
// Callback hooks used during testing
syncStarting func() // callback triggered after a sync cycle is inited but before started
}
// newSkeleton creates a new sync skeleton that tracks a potentially dangling
// header chain until it's linked into an existing set of blocks.
func newSkeleton(db ethdb.Database, peers *peerSet, drop peerDropFn, filler backfiller) *skeleton {
sk := &skeleton{
db: db,
filler: filler,
peers: peers,
drop: drop,
requests: make(map[uint64]*headerRequest),
headEvents: make(chan *headUpdate),
terminate: make(chan chan error),
terminated: make(chan struct{}),
}
go sk.startup()
return sk
}
// startup is an initial background loop which waits for an event to start or
// tear the syncer down. This is required to make the skeleton sync loop once
// per process but at the same time not start before the beacon chain announces
// a new (existing) head.
func (s *skeleton) startup() {
// Close a notification channel so anyone sending us events will know if the
// sync loop was torn down for good.
defer close(s.terminated)
// Wait for startup or teardown. This wait might loop a few times if a beacon
// client requests sync head extensions, but not forced reorgs (i.e. they are
// giving us new payloads without setting a starting head initially).
for {
select {
case errc := <-s.terminate:
// No head was announced but Geth is shutting down
errc <- nil
return
case event := <-s.headEvents:
// New head announced, start syncing to it, looping every time a current
// cycle is terminated due to a chain event (head reorg, old chain merge).
if !event.force {
event.errc <- errors.New("forced head needed for startup")
continue
}
event.errc <- nil // forced head accepted for startup
head := event.header
s.started = time.Now()
for {
// If the sync cycle terminated or was terminated, propagate up when
// higher layers request termination. There's no fancy explicit error
// signalling as the sync loop should never terminate (TM).
newhead, err := s.sync(head)
switch {
case err == errSyncLinked:
// Sync cycle linked up to the genesis block. Tear down the loop
// and restart it so, it can properly notify the backfiller. Don't
// account a new head.
head = nil
case err == errSyncMerged:
// Subchains were merged, we just need to reinit the internal
// start to continue on the tail of the merged chain. Don't
// announce a new head,
head = nil
case err == errSyncReorged:
// The subchain being synced got modified at the head in a
// way that requires resyncing it. Restart sync with the new
// head to force a cleanup.
head = newhead
case err == errTerminated:
// Sync was requested to be terminated from within, stop and
// return (no need to pass a message, was already done internally)
return
default:
// Sync either successfully terminated or failed with an unhandled
// error. Abort and wait until Geth requests a termination.
errc := <-s.terminate
errc <- err
return
}
}
}
}
}
// Terminate tears down the syncer indefinitely.
func (s *skeleton) Terminate() error {
// Request termination and fetch any errors
errc := make(chan error)
s.terminate <- errc
err := <-errc
// Wait for full shutdown (not necessary, but cleaner)
<-s.terminated
return err
}
// Sync starts or resumes a previous sync cycle to download and maintain a reverse
// header chain starting at the head and leading towards genesis to an available
// ancestor.
//
// This method does not block, rather it just waits until the syncer receives the
// fed header. What the syncer does with it is the syncer's problem.
func (s *skeleton) Sync(head *types.Header, force bool) error {
log.Trace("New skeleton head announced", "number", head.Number, "hash", head.Hash(), "force", force)
errc := make(chan error)
select {
case s.headEvents <- &headUpdate{header: head, force: force, errc: errc}:
return <-errc
case <-s.terminated:
return errTerminated
}
}
// sync is the internal version of Sync that executes a single sync cycle, either
// until some termination condition is reached, or until the current cycle merges
// with a previously aborted run.
func (s *skeleton) sync(head *types.Header) (*types.Header, error) {
// If we're continuing a previous merge interrupt, just access the existing
// old state without initing from disk.
if head == nil {
head = rawdb.ReadSkeletonHeader(s.db, s.progress.Subchains[0].Head)
} else {
// Otherwise, initialize the sync, trimming and previous leftovers until
// we're consistent with the newly requested chain head
s.initSync(head)
}
// Create the scratch space to fill with concurrently downloaded headers
s.scratchSpace = make([]*types.Header, scratchHeaders)
defer func() { s.scratchSpace = nil }() // don't hold on to references after sync
s.scratchOwners = make([]string, scratchHeaders/requestHeaders)
defer func() { s.scratchOwners = nil }() // don't hold on to references after sync
s.scratchHead = s.progress.Subchains[0].Tail - 1 // tail must not be 0!
// If the sync is already done, resume the backfiller. When the loop stops,
// terminate the backfiller too.
linked := len(s.progress.Subchains) == 1 &&
rawdb.HasHeader(s.db, s.progress.Subchains[0].Next, s.scratchHead) &&
rawdb.HasBody(s.db, s.progress.Subchains[0].Next, s.scratchHead) &&
rawdb.HasReceipts(s.db, s.progress.Subchains[0].Next, s.scratchHead)
if linked {
s.filler.resume()
}
defer func() {
if filled := s.filler.suspend(); filled != nil {
// If something was filled, try to delete stale sync helpers. If
// unsuccessful, warn the user, but not much else we can do (it's
// a programming error, just let users report an issue and don't
// choke in the meantime).
if err := s.cleanStales(filled); err != nil {
log.Error("Failed to clean stale beacon headers", "err", err)
}
}
}()
// Create a set of unique channels for this sync cycle. We need these to be
// ephemeral so a data race doesn't accidentally deliver something stale on
// a persistent channel across syncs (yup, this happened)
var (
requestFails = make(chan *headerRequest)
responses = make(chan *headerResponse)
)
cancel := make(chan struct{})
defer close(cancel)
log.Debug("Starting reverse header sync cycle", "head", head.Number, "hash", head.Hash(), "cont", s.scratchHead)
// Whether sync completed or not, disregard any future packets
defer func() {
log.Debug("Terminating reverse header sync cycle", "head", head.Number, "hash", head.Hash(), "cont", s.scratchHead)
s.requests = make(map[uint64]*headerRequest)
}()
// Start tracking idle peers for task assignments
peering := make(chan *peeringEvent, 64) // arbitrary buffer, just some burst protection
peeringSub := s.peers.SubscribeEvents(peering)
defer peeringSub.Unsubscribe()
s.idles = make(map[string]*peerConnection)
for _, peer := range s.peers.AllPeers() {
s.idles[peer.id] = peer
}
// Nofity any tester listening for startup events
if s.syncStarting != nil {
s.syncStarting()
}
for {
// Something happened, try to assign new tasks to any idle peers
if !linked {
s.assignTasks(responses, requestFails, cancel)
}
// Wait for something to happen
select {
case event := <-peering:
// A peer joined or left, the tasks queue and allocations need to be
// checked for potential assignment or reassignment
peerid := event.peer.id
if event.join {
log.Debug("Joining skeleton peer", "id", peerid)
s.idles[peerid] = event.peer
} else {
log.Debug("Leaving skeleton peer", "id", peerid)
s.revertRequests(peerid)
delete(s.idles, peerid)
}
case errc := <-s.terminate:
errc <- nil
return nil, errTerminated
case event := <-s.headEvents:
// New head was announced, try to integrate it. If successful, nothing
// needs to be done as the head simply extended the last range. For now
// we don't seamlessly integrate reorgs to keep things simple. If the
// network starts doing many mini reorgs, it might be worthwhile handling
// a limited depth without an error.
if reorged := s.processNewHead(event.header, event.force); reorged {
// If a reorg is needed, and we're forcing the new head, signal
// the syncer to tear down and start over. Otherwise, drop the
// non-force reorg.
if event.force {
event.errc <- nil // forced head reorg accepted
return event.header, errSyncReorged
}
event.errc <- errReorgDenied
continue
}
event.errc <- nil // head extension accepted
// New head was integrated into the skeleton chain. If the backfiller
// is still running, it will pick it up. If it already terminated,
// a new cycle needs to be spun up.
if linked {
s.filler.resume()
}
case req := <-requestFails:
s.revertRequest(req)
case res := <-responses:
// Process the batch of headers. If though processing we managed to
// link the current subchain to a previously downloaded one, abort the
// sync and restart with the merged subchains.
//
// If we managed to link to the existing local chain or genesis block,
// abort sync altogether.
linked, merged := s.processResponse(res)
if linked {
log.Debug("Beacon sync linked to local chain")
return nil, errSyncLinked
}
if merged {
log.Debug("Beacon sync merged subchains")
return nil, errSyncMerged
}
// We still have work to do, loop and repeat
}
}
}
// initSync attempts to get the skeleton sync into a consistent state wrt any
// past state on disk and the newly requested head to sync to. If the new head
// is nil, the method will return and continue from the previous head.
func (s *skeleton) initSync(head *types.Header) {
// Extract the head number, we'll need it all over
number := head.Number.Uint64()
// Retrieve the previously saved sync progress
if status := rawdb.ReadSkeletonSyncStatus(s.db); len(status) > 0 {
s.progress = new(skeletonProgress)
if err := json.Unmarshal(status, s.progress); err != nil {
log.Error("Failed to decode skeleton sync status", "err", err)
} else {
// Previous sync was available, print some continuation logs
for _, subchain := range s.progress.Subchains {
log.Debug("Restarting skeleton subchain", "head", subchain.Head, "tail", subchain.Tail)
}
// Create a new subchain for the head (unless the last can be extended),
// trimming anything it would overwrite
headchain := &subchain{
Head: number,
Tail: number,
Next: head.ParentHash,
}
for len(s.progress.Subchains) > 0 {
// If the last chain is above the new head, delete altogether
lastchain := s.progress.Subchains[0]
if lastchain.Tail >= headchain.Tail {
log.Debug("Dropping skeleton subchain", "head", lastchain.Head, "tail", lastchain.Tail)
s.progress.Subchains = s.progress.Subchains[1:]
continue
}
// Otherwise truncate the last chain if needed and abort trimming
if lastchain.Head >= headchain.Tail {
log.Debug("Trimming skeleton subchain", "oldhead", lastchain.Head, "newhead", headchain.Tail-1, "tail", lastchain.Tail)
lastchain.Head = headchain.Tail - 1
}
break
}
// If the last subchain can be extended, we're lucky. Otherwise create
// a new subchain sync task.
var extended bool
if n := len(s.progress.Subchains); n > 0 {
lastchain := s.progress.Subchains[0]
if lastchain.Head == headchain.Tail-1 {
lasthead := rawdb.ReadSkeletonHeader(s.db, lastchain.Head)
if lasthead.Hash() == head.ParentHash {
log.Debug("Extended skeleton subchain with new head", "head", headchain.Tail, "tail", lastchain.Tail)
lastchain.Head = headchain.Tail
extended = true
}
}
}
if !extended {
log.Debug("Created new skeleton subchain", "head", number, "tail", number)
s.progress.Subchains = append([]*subchain{headchain}, s.progress.Subchains...)
}
// Update the database with the new sync stats and insert the new
// head header. We won't delete any trimmed skeleton headers since
// those will be outside the index space of the many subchains and
// the database space will be reclaimed eventually when processing
// blocks above the current head (TODO(karalabe): don't forget).
batch := s.db.NewBatch()
rawdb.WriteSkeletonHeader(batch, head)
s.saveSyncStatus(batch)
if err := batch.Write(); err != nil {
log.Crit("Failed to write skeleton sync status", "err", err)
}
return
}
}
// Either we've failed to decode the previous state, or there was none. Start
// a fresh sync with a single subchain represented by the currently sent
// chain head.
s.progress = &skeletonProgress{
Subchains: []*subchain{
{
Head: number,
Tail: number,
Next: head.ParentHash,
},
},
}
batch := s.db.NewBatch()
rawdb.WriteSkeletonHeader(batch, head)
s.saveSyncStatus(batch)
if err := batch.Write(); err != nil {
log.Crit("Failed to write initial skeleton sync status", "err", err)
}
log.Debug("Created initial skeleton subchain", "head", number, "tail", number)
}
// saveSyncStatus marshals the remaining sync tasks into leveldb.
func (s *skeleton) saveSyncStatus(db ethdb.KeyValueWriter) {
status, err := json.Marshal(s.progress)
if err != nil {
panic(err) // This can only fail during implementation
}
rawdb.WriteSkeletonSyncStatus(db, status)
}
// processNewHead does the internal shuffling for a new head marker and either
// accepts and integrates it into the skeleton or requests a reorg. Upon reorg,
// the syncer will tear itself down and restart with a fresh head. It is simpler
// to reconstruct the sync state than to mutate it and hope for the best.
func (s *skeleton) processNewHead(head *types.Header, force bool) bool {
// If the header cannot be inserted without interruption, return an error for
// the outer loop to tear down the skeleton sync and restart it
number := head.Number.Uint64()
lastchain := s.progress.Subchains[0]
if lastchain.Tail >= number {
// If the chain is down to a single beacon header, and it is re-announced
// once more, ignore it instead of tearing down sync for a noop.
if lastchain.Head == lastchain.Tail {
if current := rawdb.ReadSkeletonHeader(s.db, number); current.Hash() == head.Hash() {
return false
}
}
// Not a noop / double head announce, abort with a reorg
if force {
log.Warn("Beacon chain reorged", "tail", lastchain.Tail, "head", lastchain.Head, "newHead", number)
}
return true
}
if lastchain.Head+1 < number {
if force {
log.Warn("Beacon chain gapped", "head", lastchain.Head, "newHead", number)
}
return true
}
if parent := rawdb.ReadSkeletonHeader(s.db, number-1); parent.Hash() != head.ParentHash {
if force {
log.Warn("Beacon chain forked", "ancestor", parent.Number, "hash", parent.Hash(), "want", head.ParentHash)
}
return true
}
// New header seems to be in the last subchain range. Unwind any extra headers
// from the chain tip and insert the new head. We won't delete any trimmed
// skeleton headers since those will be outside the index space of the many
// subchains and the database space will be reclaimed eventually when processing
// blocks above the current head (TODO(karalabe): don't forget).
batch := s.db.NewBatch()
rawdb.WriteSkeletonHeader(batch, head)
lastchain.Head = number
s.saveSyncStatus(batch)
if err := batch.Write(); err != nil {
log.Crit("Failed to write skeleton sync status", "err", err)
}
return false
}
// assignTasks attempts to match idle peers to pending header retrievals.
func (s *skeleton) assignTasks(success chan *headerResponse, fail chan *headerRequest, cancel chan struct{}) {
// Sort the peers by download capacity to use faster ones if many available
idlers := &peerCapacitySort{
peers: make([]*peerConnection, 0, len(s.idles)),
caps: make([]int, 0, len(s.idles)),
}
targetTTL := s.peers.rates.TargetTimeout()
for _, peer := range s.idles {
idlers.peers = append(idlers.peers, peer)
idlers.caps = append(idlers.caps, s.peers.rates.Capacity(peer.id, eth.BlockHeadersMsg, targetTTL))
}
if len(idlers.peers) == 0 {
return
}
sort.Sort(idlers)
// Find header regions not yet downloading and fill them
for task, owner := range s.scratchOwners {
// If we're out of idle peers, stop assigning tasks
if len(idlers.peers) == 0 {
return
}
// Skip any tasks already filling
if owner != "" {
continue
}
// If we've reached the genesis, stop assigning tasks
if uint64(task*requestHeaders) >= s.scratchHead {
return
}
// Found a task and have peers available, assign it
idle := idlers.peers[0]
idlers.peers = idlers.peers[1:]
idlers.caps = idlers.caps[1:]
// Matched a pending task to an idle peer, allocate a unique request id
var reqid uint64
for {
reqid = uint64(rand.Int63())
if reqid == 0 {
continue
}
if _, ok := s.requests[reqid]; ok {
continue
}
break
}
// Generate the network query and send it to the peer
req := &headerRequest{
peer: idle.id,
id: reqid,
deliver: success,
revert: fail,
cancel: cancel,
stale: make(chan struct{}),
head: s.scratchHead - uint64(task*requestHeaders),
}
s.requests[reqid] = req
delete(s.idles, idle.id)
// Generate the network query and send it to the peer
go s.executeTask(idle, req)
// Inject the request into the task to block further assignments
s.scratchOwners[task] = idle.id
}
}
// executeTask executes a single fetch request, blocking until either a result
// arrives or a timeouts / cancellation is triggered. The method should be run
// on its own goroutine and will deliver on the requested channels.
func (s *skeleton) executeTask(peer *peerConnection, req *headerRequest) {
start := time.Now()
resCh := make(chan *eth.Response)
// Figure out how many headers to fetch. Usually this will be a full batch,
// but for the very tail of the chain, trim the request to the number left.
// Since nodes may or may not return the genesis header for a batch request,
// don't even request it. The parent hash of block #1 is enough to link.
requestCount := requestHeaders
if req.head < requestHeaders {
requestCount = int(req.head)
}
peer.log.Trace("Fetching skeleton headers", "from", req.head, "count", requestCount)
netreq, err := peer.peer.RequestHeadersByNumber(req.head, requestCount, 0, true, resCh)
if err != nil {
peer.log.Trace("Failed to request headers", "err", err)
s.scheduleRevertRequest(req)
return
}
defer netreq.Close()
// Wait until the response arrives, the request is cancelled or times out
ttl := s.peers.rates.TargetTimeout()
timeoutTimer := time.NewTimer(ttl)
defer timeoutTimer.Stop()
select {
case <-req.cancel:
peer.log.Debug("Header request cancelled")
s.scheduleRevertRequest(req)
case <-timeoutTimer.C:
// Header retrieval timed out, update the metrics
peer.log.Warn("Header request timed out, dropping peer", "elapsed", ttl)
headerTimeoutMeter.Mark(1)
s.peers.rates.Update(peer.id, eth.BlockHeadersMsg, 0, 0)
s.scheduleRevertRequest(req)
// At this point we either need to drop the offending peer, or we need a
// mechanism to allow waiting for the response and not cancel it. For now
// lets go with dropping since the header sizes are deterministic and the
// beacon sync runs exclusive (downloader is idle) so there should be no
// other load to make timeouts probable. If we notice that timeouts happen
// more often than we'd like, we can introduce a tracker for the requests
// gone stale and monitor them. However, in that case too, we need a way
// to protect against malicious peers never responding, so it would need
// a second, hard-timeout mechanism.
s.drop(peer.id)
case res := <-resCh:
// Headers successfully retrieved, update the metrics
headers := *res.Res.(*eth.BlockHeadersPacket)
headerReqTimer.Update(time.Since(start))
s.peers.rates.Update(peer.id, eth.BlockHeadersMsg, res.Time, len(headers))
// Cross validate the headers with the requests
switch {
case len(headers) == 0:
// No headers were delivered, reject the response and reschedule
peer.log.Debug("No headers delivered")
res.Done <- errors.New("no headers delivered")
s.scheduleRevertRequest(req)
case headers[0].Number.Uint64() != req.head:
// Header batch anchored at non-requested number
peer.log.Debug("Invalid header response head", "have", headers[0].Number, "want", req.head)
res.Done <- errors.New("invalid header batch anchor")
s.scheduleRevertRequest(req)
case req.head >= requestHeaders && len(headers) != requestHeaders:
// Invalid number of non-genesis headers delivered, reject the response and reschedule
peer.log.Debug("Invalid non-genesis header count", "have", len(headers), "want", requestHeaders)
res.Done <- errors.New("not enough non-genesis headers delivered")
s.scheduleRevertRequest(req)
case req.head < requestHeaders && uint64(len(headers)) != req.head:
// Invalid number of genesis headers delivered, reject the response and reschedule
peer.log.Debug("Invalid genesis header count", "have", len(headers), "want", headers[0].Number.Uint64())
res.Done <- errors.New("not enough genesis headers delivered")
s.scheduleRevertRequest(req)
default:
// Packet seems structurally valid, check hash progression and if it
// is correct too, deliver for storage
for i := 0; i < len(headers)-1; i++ {
if headers[i].ParentHash != headers[i+1].Hash() {
peer.log.Debug("Invalid hash progression", "index", i, "wantparenthash", headers[i].ParentHash, "haveparenthash", headers[i+1].Hash())
res.Done <- errors.New("invalid hash progression")
s.scheduleRevertRequest(req)
return
}
}
// Hash chain is valid. The delivery might still be junk as we're
// downloading batches concurrently (so no way to link the headers
// until gaps are filled); in that case, we'll nuke the peer when
// we detect the fault.
res.Done <- nil
select {
case req.deliver <- &headerResponse{
peer: peer,
reqid: req.id,
headers: headers,
}:
case <-req.cancel:
}
}
}
}
// revertRequests locates all the currently pending requests from a particular
// peer and reverts them, rescheduling for others to fulfill.
func (s *skeleton) revertRequests(peer string) {
// Gather the requests first, revertals need the lock too
var requests []*headerRequest
for _, req := range s.requests {
if req.peer == peer {
requests = append(requests, req)
}
}
// Revert all the requests matching the peer
for _, req := range requests {
s.revertRequest(req)
}
}
// scheduleRevertRequest asks the event loop to clean up a request and return
// all failed retrieval tasks to the scheduler for reassignment.
func (s *skeleton) scheduleRevertRequest(req *headerRequest) {
select {
case req.revert <- req:
// Sync event loop notified
case <-req.cancel:
// Sync cycle got cancelled
case <-req.stale:
// Request already reverted
}
}
// revertRequest cleans up a request and returns all failed retrieval tasks to
// the scheduler for reassignment.
//
// Note, this needs to run on the event runloop thread to reschedule to idle peers.
// On peer threads, use scheduleRevertRequest.
func (s *skeleton) revertRequest(req *headerRequest) {
log.Trace("Reverting header request", "peer", req.peer, "reqid", req.id)
select {
case <-req.stale:
log.Trace("Header request already reverted", "peer", req.peer, "reqid", req.id)
return
default:
}
close(req.stale)
// Remove the request from the tracked set
delete(s.requests, req.id)
// Remove the request from the tracked set and mark the task as not-pending,
// ready for rescheduling
s.scratchOwners[(s.scratchHead-req.head)/requestHeaders] = ""
}
func (s *skeleton) processResponse(res *headerResponse) (linked bool, merged bool) {
res.peer.log.Trace("Processing header response", "head", res.headers[0].Number, "hash", res.headers[0].Hash(), "count", len(res.headers))
// Whether the response is valid, we can mark the peer as idle and notify
// the scheduler to assign a new task. If the response is invalid, we'll
// drop the peer in a bit.
s.idles[res.peer.id] = res.peer
// Ensure the response is for a valid request
if _, ok := s.requests[res.reqid]; !ok {
// Some internal accounting is broken. A request either times out or it
// gets fulfilled successfully. It should not be possible to deliver a
// response to a non-existing request.
res.peer.log.Error("Unexpected header packet")
return false, false
}
delete(s.requests, res.reqid)
// Insert the delivered headers into the scratch space independent of the
// content or continuation; those will be validated in a moment
head := res.headers[0].Number.Uint64()
copy(s.scratchSpace[s.scratchHead-head:], res.headers)
// If there's still a gap in the head of the scratch space, abort
if s.scratchSpace[0] == nil {
return false, false
}
// Try to consume any head headers, validating the boundary conditions
batch := s.db.NewBatch()
for s.scratchSpace[0] != nil {
// Next batch of headers available, cross-reference with the subchain
// we are extending and either accept or discard
if s.progress.Subchains[0].Next != s.scratchSpace[0].Hash() {
// Print a log messages to track what's going on
tail := s.progress.Subchains[0].Tail
want := s.progress.Subchains[0].Next
have := s.scratchSpace[0].Hash()
log.Warn("Invalid skeleton headers", "peer", s.scratchOwners[0], "number", tail-1, "want", want, "have", have)
// The peer delivered junk, or at least not the subchain we are
// syncing to. Free up the scratch space and assignment, reassign
// and drop the original peer.
for i := 0; i < requestHeaders; i++ {
s.scratchSpace[i] = nil
}
s.drop(s.scratchOwners[0])
s.scratchOwners[0] = ""
break
}
// Scratch delivery matches required subchain, deliver the batch of
// headers and push the subchain forward
var consumed int
for _, header := range s.scratchSpace[:requestHeaders] {
if header != nil { // nil when the genesis is reached
consumed++
rawdb.WriteSkeletonHeader(batch, header)
s.pulled++
s.progress.Subchains[0].Tail--
s.progress.Subchains[0].Next = header.ParentHash
// If we've reached an existing block in the chain, stop retrieving
// headers. Note, if we want to support light clients with the same
// code we'd need to switch here based on the downloader mode. That
// said, there's no such functionality for now, so don't complicate.
//
// In the case of full sync it would be enough to check for the body,
// but even a full syncing node will generate a receipt once block
// processing is done, so it's just one more "needless" check.
//
// The weird cascading checks are done to minimize the database reads.
linked = rawdb.HasHeader(s.db, header.ParentHash, header.Number.Uint64()-1) &&
rawdb.HasBody(s.db, header.ParentHash, header.Number.Uint64()-1) &&
rawdb.HasReceipts(s.db, header.ParentHash, header.Number.Uint64()-1)
if linked {
break
}
}
}
head := s.progress.Subchains[0].Head
tail := s.progress.Subchains[0].Tail
next := s.progress.Subchains[0].Next
log.Trace("Primary subchain extended", "head", head, "tail", tail, "next", next)
// If the beacon chain was linked to the local chain, completely swap out
// all internal progress and abort header synchronization.
if linked {
// Linking into the local chain should also mean that there are no
// leftover subchains, but in the case of importing the blocks via
// the engine API, we will not push the subchains forward. This will
// lead to a gap between an old sync cycle and a future one.
if subchains := len(s.progress.Subchains); subchains > 1 {
switch {
// If there are only 2 subchains - the current one and an older
// one - and the old one consists of a single block, then it's
// the expected new sync cycle after some propagated blocks. Log
// it for debugging purposes, explicitly clean and don't escalate.
case subchains == 2 && s.progress.Subchains[1].Head == s.progress.Subchains[1].Tail:
log.Debug("Cleaning previous beacon sync state", "head", s.progress.Subchains[1].Head)
rawdb.DeleteSkeletonHeader(batch, s.progress.Subchains[1].Head)
s.progress.Subchains = s.progress.Subchains[:1]
// If we have more than one header or more than one leftover chain,
// the syncer's internal state is corrupted. Do try to fix it, but
// be very vocal about the fault.
default:
var context []interface{}
for i := range s.progress.Subchains[1:] {
context = append(context, fmt.Sprintf("stale_head_%d", i+1))
context = append(context, s.progress.Subchains[i+1].Head)
context = append(context, fmt.Sprintf("stale_tail_%d", i+1))
context = append(context, s.progress.Subchains[i+1].Tail)
context = append(context, fmt.Sprintf("stale_next_%d", i+1))
context = append(context, s.progress.Subchains[i+1].Next)
}
log.Error("Cleaning spurious beacon sync leftovers", context...)
s.progress.Subchains = s.progress.Subchains[:1]
// Note, here we didn't actually delete the headers at all,
// just the metadata. We could implement a cleanup mechanism,
// but further modifying corrupted state is kind of asking
// for it. Unless there's a good enough reason to risk it,
// better to live with the small database junk.
}
}
break
}
// Batch of headers consumed, shift the download window forward
copy(s.scratchSpace, s.scratchSpace[requestHeaders:])
for i := 0; i < requestHeaders; i++ {
s.scratchSpace[scratchHeaders-i-1] = nil
}
copy(s.scratchOwners, s.scratchOwners[1:])
s.scratchOwners[scratchHeaders/requestHeaders-1] = ""
s.scratchHead -= uint64(consumed)
// If the subchain extended into the next subchain, we need to handle
// the overlap. Since there could be many overlaps (come on), do this
// in a loop.
for len(s.progress.Subchains) > 1 && s.progress.Subchains[1].Head >= s.progress.Subchains[0].Tail {
// Extract some stats from the second subchain
head := s.progress.Subchains[1].Head
tail := s.progress.Subchains[1].Tail
next := s.progress.Subchains[1].Next
// Since we just overwrote part of the next subchain, we need to trim
// its head independent of matching or mismatching content
if s.progress.Subchains[1].Tail >= s.progress.Subchains[0].Tail {
// Fully overwritten, get rid of the subchain as a whole
log.Debug("Previous subchain fully overwritten", "head", head, "tail", tail, "next", next)
s.progress.Subchains = append(s.progress.Subchains[:1], s.progress.Subchains[2:]...)
continue
} else {
// Partially overwritten, trim the head to the overwritten size
log.Debug("Previous subchain partially overwritten", "head", head, "tail", tail, "next", next)
s.progress.Subchains[1].Head = s.progress.Subchains[0].Tail - 1
}
// If the old subchain is an extension of the new one, merge the two
// and let the skeleton syncer restart (to clean internal state)
if rawdb.ReadSkeletonHeader(s.db, s.progress.Subchains[1].Head).Hash() == s.progress.Subchains[0].Next {
log.Debug("Previous subchain merged", "head", head, "tail", tail, "next", next)
s.progress.Subchains[0].Tail = s.progress.Subchains[1].Tail
s.progress.Subchains[0].Next = s.progress.Subchains[1].Next
s.progress.Subchains = append(s.progress.Subchains[:1], s.progress.Subchains[2:]...)
merged = true
}
}
// If subchains were merged, all further available headers in the scratch
// space are invalid since we skipped ahead. Stop processing the scratch
// space to avoid dropping peers thinking they delivered invalid data.
if merged {
break
}
}
s.saveSyncStatus(batch)
if err := batch.Write(); err != nil {
log.Crit("Failed to write skeleton headers and progress", "err", err)
}
// Print a progress report making the UX a bit nicer
left := s.progress.Subchains[0].Tail - 1
if linked {
left = 0
}
if time.Since(s.logged) > 8*time.Second || left == 0 {
s.logged = time.Now()
if s.pulled == 0 {
log.Info("Beacon sync starting", "left", left)
} else {
eta := float64(time.Since(s.started)) / float64(s.pulled) * float64(left)
log.Info("Syncing beacon headers", "downloaded", s.pulled, "left", left, "eta", common.PrettyDuration(eta))
}
}
return linked, merged
}
// cleanStales removes previously synced beacon headers that have become stale
// due to the downloader backfilling past the tracked tail.
func (s *skeleton) cleanStales(filled *types.Header) error {
number := filled.Number.Uint64()
log.Trace("Cleaning stale beacon headers", "filled", number, "hash", filled.Hash())
// If the filled header is below the linked subchain, something's
// corrupted internally. Report and error and refuse to do anything.
if number < s.progress.Subchains[0].Tail {
return fmt.Errorf("filled header below beacon header tail: %d < %d", number, s.progress.Subchains[0].Tail)
}
// Subchain seems trimmable, push the tail forward up to the last
// filled header and delete everything before it - if available. In
// case we filled past the head, recreate the subchain with a new
// head to keep it consistent with the data on disk.
var (
start = s.progress.Subchains[0].Tail // start deleting from the first known header
end = number // delete until the requested threshold
)
s.progress.Subchains[0].Tail = number
s.progress.Subchains[0].Next = filled.ParentHash
if s.progress.Subchains[0].Head < number {
// If more headers were filled than available, push the entire
// subchain forward to keep tracking the node's block imports
end = s.progress.Subchains[0].Head + 1 // delete the entire original range, including the head
s.progress.Subchains[0].Head = number // assign a new head (tail is already assigned to this)
}
// Execute the trimming and the potential rewiring of the progress
batch := s.db.NewBatch()
if end != number {
// The entire original skeleton chain was deleted and a new one
// defined. Make sure the new single-header chain gets pushed to
// disk to keep internal state consistent.
rawdb.WriteSkeletonHeader(batch, filled)
}
s.saveSyncStatus(batch)
for n := start; n < end; n++ {
// If the batch grew too big, flush it and continue with a new batch.
// The catch is that the sync metadata needs to reflect the actually
// flushed state, so temporarily change the subchain progress and
// revert after the flush.
if batch.ValueSize() >= ethdb.IdealBatchSize {
tmpTail := s.progress.Subchains[0].Tail
tmpNext := s.progress.Subchains[0].Next
s.progress.Subchains[0].Tail = n
s.progress.Subchains[0].Next = rawdb.ReadSkeletonHeader(s.db, n).ParentHash
s.saveSyncStatus(batch)
if err := batch.Write(); err != nil {
log.Crit("Failed to write beacon trim data", "err", err)
}
batch.Reset()
s.progress.Subchains[0].Tail = tmpTail
s.progress.Subchains[0].Next = tmpNext
s.saveSyncStatus(batch)
}
rawdb.DeleteSkeletonHeader(batch, n)
}
if err := batch.Write(); err != nil {
log.Crit("Failed to write beacon trim data", "err", err)
}
return nil
}
// Bounds retrieves the current head and tail tracked by the skeleton syncer.
// This method is used by the backfiller, whose life cycle is controlled by the
// skeleton syncer.
//
// Note, the method will not use the internal state of the skeleton, but will
// rather blindly pull stuff from the database. This is fine, because the back-
// filler will only run when the skeleton chain is fully downloaded and stable.
// There might be new heads appended, but those are atomic from the perspective
// of this method. Any head reorg will first tear down the backfiller and only
// then make the modification.
func (s *skeleton) Bounds() (head *types.Header, tail *types.Header, err error) {
// Read the current sync progress from disk and figure out the current head.
// Although there's a lot of error handling here, these are mostly as sanity
// checks to avoid crashing if a programming error happens. These should not
// happen in live code.
status := rawdb.ReadSkeletonSyncStatus(s.db)
if len(status) == 0 {
return nil, nil, errors.New("beacon sync not yet started")
}
progress := new(skeletonProgress)
if err := json.Unmarshal(status, progress); err != nil {
return nil, nil, err
}
head = rawdb.ReadSkeletonHeader(s.db, progress.Subchains[0].Head)
tail = rawdb.ReadSkeletonHeader(s.db, progress.Subchains[0].Tail)
return head, tail, nil
}
// Header retrieves a specific header tracked by the skeleton syncer. This method
// is meant to be used by the backfiller, whose life cycle is controlled by the
// skeleton syncer.
//
// Note, outside the permitted runtimes, this method might return nil results and
// subsequent calls might return headers from different chains.
func (s *skeleton) Header(number uint64) *types.Header {
return rawdb.ReadSkeletonHeader(s.db, number)
}