go-ethereum/p2p/message.go

241 lines
6.2 KiB
Go
Raw Normal View History

2014-10-23 15:57:54 +00:00
package p2p
import (
2014-11-04 12:21:44 +00:00
"bytes"
"encoding/binary"
2014-12-12 10:39:07 +00:00
"errors"
2015-01-05 16:10:42 +00:00
"fmt"
2014-11-04 12:21:44 +00:00
"io"
"io/ioutil"
"math/big"
2014-12-12 10:39:07 +00:00
"sync/atomic"
2014-11-04 12:21:44 +00:00
"github.com/ethereum/go-ethereum/ethutil"
2014-11-24 18:02:48 +00:00
"github.com/ethereum/go-ethereum/rlp"
2014-10-23 15:57:54 +00:00
)
2014-11-04 12:21:44 +00:00
// Msg defines the structure of a p2p message.
//
// Note that a Msg can only be sent once since the Payload reader is
// consumed during sending. It is not possible to create a Msg and
// send it any number of times. If you want to reuse an encoded
// structure, encode the payload into a byte array and create a
// separate Msg with a bytes.Reader as Payload for each send.
2014-10-23 15:57:54 +00:00
type Msg struct {
Code uint64
2014-11-04 12:21:44 +00:00
Size uint32 // size of the paylod
Payload io.Reader
2014-10-23 15:57:54 +00:00
}
2014-11-04 12:21:44 +00:00
// NewMsg creates an RLP-encoded message with the given code.
func NewMsg(code uint64, params ...interface{}) Msg {
2014-11-04 12:21:44 +00:00
buf := new(bytes.Buffer)
for _, p := range params {
buf.Write(ethutil.Encode(p))
}
return Msg{Code: code, Size: uint32(buf.Len()), Payload: buf}
2014-10-23 15:57:54 +00:00
}
2014-11-04 12:21:44 +00:00
func encodePayload(params ...interface{}) []byte {
buf := new(bytes.Buffer)
for _, p := range params {
buf.Write(ethutil.Encode(p))
}
return buf.Bytes()
2014-10-23 15:57:54 +00:00
}
2014-11-25 11:25:31 +00:00
// Decode parse the RLP content of a message into
// the given value, which must be a pointer.
//
// For the decoding rules, please see package rlp.
func (msg Msg) Decode(val interface{}) error {
s := rlp.NewListStream(msg.Payload, uint64(msg.Size))
2015-01-05 16:10:42 +00:00
if err := s.Decode(val); err != nil {
return newPeerError(errInvalidMsg, "(code %#x) (size %d) %v", msg.Code, msg.Size, err)
}
return nil
}
func (msg Msg) String() string {
return fmt.Sprintf("msg #%v (%v bytes)", msg.Code, msg.Size)
2014-11-25 11:25:31 +00:00
}
2014-11-04 12:21:44 +00:00
// Discard reads any remaining payload data into a black hole.
func (msg Msg) Discard() error {
_, err := io.Copy(ioutil.Discard, msg.Payload)
return err
}
type MsgReader interface {
ReadMsg() (Msg, error)
}
type MsgWriter interface {
// WriteMsg sends an existing message.
// The Payload reader of the message is consumed.
// Note that messages can be sent only once.
WriteMsg(Msg) error
// EncodeMsg writes an RLP-encoded message with the given
// code and data elements.
EncodeMsg(code uint64, data ...interface{}) error
}
// MsgReadWriter provides reading and writing of encoded messages.
type MsgReadWriter interface {
MsgReader
MsgWriter
}
2014-11-04 12:21:44 +00:00
var magicToken = []byte{34, 64, 8, 145}
func writeMsg(w io.Writer, msg Msg) error {
// TODO: handle case when Size + len(code) + len(listhdr) overflows uint32
code := ethutil.Encode(uint32(msg.Code))
listhdr := makeListHeader(msg.Size + uint32(len(code)))
payloadLen := uint32(len(listhdr)) + uint32(len(code)) + msg.Size
start := make([]byte, 8)
copy(start, magicToken)
binary.BigEndian.PutUint32(start[4:], payloadLen)
for _, b := range [][]byte{start, listhdr, code} {
if _, err := w.Write(b); err != nil {
return err
}
}
_, err := io.CopyN(w, msg.Payload, int64(msg.Size))
return err
2014-10-23 15:57:54 +00:00
}
2014-11-04 12:21:44 +00:00
func makeListHeader(length uint32) []byte {
if length < 56 {
return []byte{byte(length + 0xc0)}
2014-10-23 15:57:54 +00:00
}
2014-11-04 12:21:44 +00:00
enc := big.NewInt(int64(length)).Bytes()
lenb := byte(len(enc)) + 0xf7
return append([]byte{lenb}, enc...)
2014-10-23 15:57:54 +00:00
}
2014-11-05 00:28:46 +00:00
// readMsg reads a message header from r.
2014-11-24 18:02:48 +00:00
// It takes an rlp.ByteReader to ensure that the decoding doesn't buffer.
func readMsg(r rlp.ByteReader) (msg Msg, err error) {
2014-11-04 12:21:44 +00:00
// read magic and payload size
start := make([]byte, 8)
if _, err = io.ReadFull(r, start); err != nil {
return msg, newPeerError(errRead, "%v", err)
2014-11-04 12:21:44 +00:00
}
if !bytes.HasPrefix(start, magicToken) {
return msg, newPeerError(errMagicTokenMismatch, "got %x, want %x", start[:4], magicToken)
2014-11-04 12:21:44 +00:00
}
size := binary.BigEndian.Uint32(start[4:])
// decode start of RLP message to get the message code
2014-11-24 18:02:48 +00:00
posr := &postrack{r, 0}
s := rlp.NewStream(posr)
if _, err := s.List(); err != nil {
2014-11-04 12:21:44 +00:00
return msg, err
}
2014-11-24 18:02:48 +00:00
code, err := s.Uint()
2014-11-04 12:21:44 +00:00
if err != nil {
return msg, err
}
2014-11-24 18:02:48 +00:00
payloadsize := size - posr.p
return Msg{code, payloadsize, io.LimitReader(r, int64(payloadsize))}, nil
}
2014-11-04 12:21:44 +00:00
2014-11-24 18:02:48 +00:00
// postrack wraps an rlp.ByteReader with a position counter.
type postrack struct {
r rlp.ByteReader
p uint32
2014-11-04 12:21:44 +00:00
}
2014-11-24 18:02:48 +00:00
func (r *postrack) Read(buf []byte) (int, error) {
n, err := r.r.Read(buf)
r.p += uint32(n)
return n, err
2014-11-04 12:21:44 +00:00
}
2014-11-24 18:02:48 +00:00
func (r *postrack) ReadByte() (byte, error) {
b, err := r.r.ReadByte()
if err == nil {
r.p++
2014-10-23 15:57:54 +00:00
}
2014-11-24 18:02:48 +00:00
return b, err
2014-10-23 15:57:54 +00:00
}
2014-12-12 10:39:07 +00:00
// MsgPipe creates a message pipe. Reads on one end are matched
// with writes on the other. The pipe is full-duplex, both ends
// implement MsgReadWriter.
func MsgPipe() (*MsgPipeRW, *MsgPipeRW) {
var (
c1, c2 = make(chan Msg), make(chan Msg)
closing = make(chan struct{})
closed = new(int32)
rw1 = &MsgPipeRW{c1, c2, closing, closed}
rw2 = &MsgPipeRW{c2, c1, closing, closed}
)
return rw1, rw2
}
// ErrPipeClosed is returned from pipe operations after the
// pipe has been closed.
var ErrPipeClosed = errors.New("p2p: read or write on closed message pipe")
// MsgPipeRW is an endpoint of a MsgReadWriter pipe.
type MsgPipeRW struct {
w chan<- Msg
r <-chan Msg
closing chan struct{}
closed *int32
}
// WriteMsg sends a messsage on the pipe.
// It blocks until the receiver has consumed the message payload.
func (p *MsgPipeRW) WriteMsg(msg Msg) error {
if atomic.LoadInt32(p.closed) == 0 {
consumed := make(chan struct{}, 1)
msg.Payload = &eofSignal{msg.Payload, int64(msg.Size), consumed}
select {
case p.w <- msg:
if msg.Size > 0 {
// wait for payload read or discard
<-consumed
}
return nil
case <-p.closing:
}
}
return ErrPipeClosed
}
// EncodeMsg is a convenient shorthand for sending an RLP-encoded message.
func (p *MsgPipeRW) EncodeMsg(code uint64, data ...interface{}) error {
return p.WriteMsg(NewMsg(code, data...))
}
// ReadMsg returns a message sent on the other end of the pipe.
func (p *MsgPipeRW) ReadMsg() (Msg, error) {
if atomic.LoadInt32(p.closed) == 0 {
select {
case msg := <-p.r:
return msg, nil
case <-p.closing:
}
}
return Msg{}, ErrPipeClosed
}
// Close unblocks any pending ReadMsg and WriteMsg calls on both ends
// of the pipe. They will return ErrPipeClosed. Note that Close does
// not interrupt any reads from a message payload.
func (p *MsgPipeRW) Close() error {
if atomic.AddInt32(p.closed, 1) != 1 {
// someone else is already closing
atomic.StoreInt32(p.closed, 1) // avoid overflow
return nil
}
close(p.closing)
return nil
}