go-ethereum/trie/iterator.go

366 lines
9.8 KiB
Go
Raw Normal View History

2015-07-07 00:54:22 +00:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 00:54:22 +00:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 00:54:22 +00:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 00:54:22 +00:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 00:54:22 +00:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 00:54:22 +00:00
2014-10-31 13:45:03 +00:00
package trie
2014-10-10 14:56:28 +00:00
import (
"bytes"
"github.com/ethereum/go-ethereum/common"
)
// Iterator is a key-value trie iterator that traverses a Trie.
2014-10-10 14:56:28 +00:00
type Iterator struct {
nodeIt NodeIterator
2014-10-10 14:56:28 +00:00
Key []byte // Current data key on which the iterator is positioned on
Value []byte // Current data value on which the iterator is positioned on
2014-10-10 14:56:28 +00:00
}
// NewIterator creates a new key-value iterator.
2014-10-10 14:56:28 +00:00
func NewIterator(trie *Trie) *Iterator {
return &Iterator{
nodeIt: NewNodeIterator(trie),
}
}
// FromNodeIterator creates a new key-value iterator from a node iterator
func NewIteratorFromNodeIterator(it NodeIterator) *Iterator {
return &Iterator{
nodeIt: it,
}
2014-10-10 14:56:28 +00:00
}
// Next moves the iterator forward one key-value entry.
func (it *Iterator) Next() bool {
for it.nodeIt.Next(true) {
if it.nodeIt.Leaf() {
it.Key = decodeCompact(it.nodeIt.Path())
it.Value = it.nodeIt.LeafBlob()
return true
2014-10-10 14:56:28 +00:00
}
2015-07-05 23:19:48 +00:00
}
it.Key = nil
it.Value = nil
return false
2014-10-10 14:56:28 +00:00
}
// NodeIterator is an iterator to traverse the trie pre-order.
type NodeIterator interface {
// Hash returns the hash of the current node
Hash() common.Hash
// Parent returns the hash of the parent of the current node
Parent() common.Hash
// Leaf returns true iff the current node is a leaf node.
Leaf() bool
// LeafBlob returns the contents of the node, if it is a leaf.
// Callers must not retain references to the return value after calling Next()
LeafBlob() []byte
// Path returns the hex-encoded path to the current node.
// Callers must not retain references to the return value after calling Next()
Path() []byte
// Next moves the iterator to the next node. If the parameter is false, any child
// nodes will be skipped.
Next(bool) bool
// Error returns the error status of the iterator.
Error() error
2014-10-10 14:56:28 +00:00
}
// nodeIteratorState represents the iteration state at one particular node of the
// trie, which can be resumed at a later invocation.
type nodeIteratorState struct {
hash common.Hash // Hash of the node being iterated (nil if not standalone)
node node // Trie node being iterated
parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
child int // Child to be processed next
pathlen int // Length of the path to this node
}
type nodeIterator struct {
trie *Trie // Trie being iterated
stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
err error // Failure set in case of an internal error in the iterator
path []byte // Path to the current node
}
// NewNodeIterator creates an post-order trie iterator.
func NewNodeIterator(trie *Trie) NodeIterator {
if trie.Hash() == emptyState {
return new(nodeIterator)
}
return &nodeIterator{trie: trie}
}
// Hash returns the hash of the current node
func (it *nodeIterator) Hash() common.Hash {
if len(it.stack) == 0 {
return common.Hash{}
}
return it.stack[len(it.stack)-1].hash
}
// Parent returns the hash of the parent node
func (it *nodeIterator) Parent() common.Hash {
if len(it.stack) == 0 {
return common.Hash{}
}
return it.stack[len(it.stack)-1].parent
}
// Leaf returns true if the current node is a leaf
func (it *nodeIterator) Leaf() bool {
if len(it.stack) == 0 {
return false
}
_, ok := it.stack[len(it.stack)-1].node.(valueNode)
return ok
}
// LeafBlob returns the data for the current node, if it is a leaf
func (it *nodeIterator) LeafBlob() []byte {
if len(it.stack) == 0 {
return nil
}
if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
return []byte(node)
}
return nil
}
// Path returns the hex-encoded path to the current node
func (it *nodeIterator) Path() []byte {
return it.path
}
// Error returns the error set in case of an internal error in the iterator
func (it *nodeIterator) Error() error {
return it.err
}
// Next moves the iterator to the next node, returning whether there are any
// further nodes. In case of an internal error this method returns false and
// sets the Error field to the encountered failure. If `descend` is false,
// skips iterating over any subnodes of the current node.
func (it *nodeIterator) Next(descend bool) bool {
// If the iterator failed previously, don't do anything
if it.err != nil {
return false
}
// Otherwise step forward with the iterator and report any errors
if err := it.step(descend); err != nil {
it.err = err
return false
}
return it.trie != nil
}
// step moves the iterator to the next node of the trie.
func (it *nodeIterator) step(descend bool) error {
if it.trie == nil {
// Abort if we reached the end of the iteration
return nil
}
if len(it.stack) == 0 {
// Initialize the iterator if we've just started.
root := it.trie.Hash()
state := &nodeIteratorState{node: it.trie.root, child: -1}
if root != emptyRoot {
state.hash = root
}
it.stack = append(it.stack, state)
return nil
}
if !descend {
// If we're skipping children, pop the current node first
it.path = it.path[:it.stack[len(it.stack)-1].pathlen]
it.stack = it.stack[:len(it.stack)-1]
}
// Continue iteration to the next child
outer:
for {
if len(it.stack) == 0 {
it.trie = nil
return nil
}
parent := it.stack[len(it.stack)-1]
ancestor := parent.hash
if (ancestor == common.Hash{}) {
ancestor = parent.parent
}
if node, ok := parent.node.(*fullNode); ok {
// Full node, iterate over children
for parent.child++; parent.child < len(node.Children); parent.child++ {
child := node.Children[parent.child]
if child != nil {
hash, _ := child.cache()
it.stack = append(it.stack, &nodeIteratorState{
hash: common.BytesToHash(hash),
node: child,
parent: ancestor,
child: -1,
pathlen: len(it.path),
})
it.path = append(it.path, byte(parent.child))
break outer
}
}
} else if node, ok := parent.node.(*shortNode); ok {
// Short node, return the pointer singleton child
if parent.child < 0 {
parent.child++
hash, _ := node.Val.cache()
it.stack = append(it.stack, &nodeIteratorState{
hash: common.BytesToHash(hash),
node: node.Val,
parent: ancestor,
child: -1,
pathlen: len(it.path),
})
if hasTerm(node.Key) {
it.path = append(it.path, node.Key[:len(node.Key)-1]...)
} else {
it.path = append(it.path, node.Key...)
}
break
}
} else if hash, ok := parent.node.(hashNode); ok {
// Hash node, resolve the hash child from the database
if parent.child < 0 {
parent.child++
node, err := it.trie.resolveHash(hash, nil, nil)
if err != nil {
return err
}
it.stack = append(it.stack, &nodeIteratorState{
hash: common.BytesToHash(hash),
node: node,
parent: ancestor,
child: -1,
pathlen: len(it.path),
})
break
}
}
it.path = it.path[:parent.pathlen]
it.stack = it.stack[:len(it.stack)-1]
}
return nil
}
type differenceIterator struct {
a, b NodeIterator // Nodes returned are those in b - a.
eof bool // Indicates a has run out of elements
count int // Number of nodes scanned on either trie
}
// NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
// are not in a. Returns the iterator, and a pointer to an integer recording the number
// of nodes seen.
func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
a.Next(true)
it := &differenceIterator{
a: a,
b: b,
}
return it, &it.count
}
func (it *differenceIterator) Hash() common.Hash {
return it.b.Hash()
}
func (it *differenceIterator) Parent() common.Hash {
return it.b.Parent()
}
func (it *differenceIterator) Leaf() bool {
return it.b.Leaf()
}
func (it *differenceIterator) LeafBlob() []byte {
return it.b.LeafBlob()
}
func (it *differenceIterator) Path() []byte {
return it.b.Path()
}
func (it *differenceIterator) Next(bool) bool {
// Invariants:
// - We always advance at least one element in b.
// - At the start of this function, a's path is lexically greater than b's.
if !it.b.Next(true) {
return false
}
it.count += 1
if it.eof {
// a has reached eof, so we just return all elements from b
return true
}
for {
apath, bpath := it.a.Path(), it.b.Path()
switch bytes.Compare(apath, bpath) {
case -1:
// b jumped past a; advance a
if !it.a.Next(true) {
it.eof = true
return true
}
it.count += 1
case 1:
// b is before a
return true
case 0:
if it.a.Hash() != it.b.Hash() || it.a.Leaf() != it.b.Leaf() {
// Keys are identical, but hashes or leaf status differs
return true
}
if it.a.Leaf() && it.b.Leaf() && !bytes.Equal(it.a.LeafBlob(), it.b.LeafBlob()) {
// Both are leaf nodes, but with different values
return true
}
// a and b are identical; skip this whole subtree if the nodes have hashes
hasHash := it.a.Hash() == common.Hash{}
if !it.b.Next(hasHash) {
return false
}
it.count += 1
if !it.a.Next(hasHash) {
it.eof = true
return true
}
it.count += 1
}
}
}
func (it *differenceIterator) Error() error {
if err := it.a.Error(); err != nil {
return err
}
return it.b.Error()
}