go-ethereum/eth/downloader/downloader_test.go

1496 lines
57 KiB
Go
Raw Normal View History

2015-07-07 00:54:22 +00:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 00:54:22 +00:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 00:54:22 +00:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 00:54:22 +00:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 00:54:22 +00:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 00:54:22 +00:00
2015-04-12 10:38:25 +00:00
package downloader
import (
"errors"
"fmt"
2015-04-12 10:38:25 +00:00
"math/big"
"os"
2018-11-12 13:18:56 +00:00
"strings"
"sync"
"sync/atomic"
2015-04-12 10:38:25 +00:00
"testing"
"time"
"github.com/ethereum/go-ethereum"
2015-04-12 10:38:25 +00:00
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
2015-04-12 10:38:25 +00:00
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/eth/protocols/snap"
2015-05-15 10:26:34 +00:00
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
2015-04-12 10:38:25 +00:00
)
// downloadTester is a test simulator for mocking out local block chain.
type downloadTester struct {
freezer string
chain *core.BlockChain
downloader *Downloader
peers map[string]*downloadTesterPeer
lock sync.RWMutex
}
// newTester creates a new downloader test mocker.
func newTester(t *testing.T) *downloadTester {
return newTesterWithNotification(t, nil)
}
// newTester creates a new downloader test mocker.
func newTesterWithNotification(t *testing.T, success func()) *downloadTester {
freezer := t.TempDir()
db, err := rawdb.NewDatabaseWithFreezer(rawdb.NewMemoryDatabase(), freezer, "", false)
if err != nil {
panic(err)
}
t.Cleanup(func() {
db.Close()
})
gspec := core.Genesis{
Alloc: core.GenesisAlloc{testAddress: {Balance: big.NewInt(1000000000000000)}},
BaseFee: big.NewInt(params.InitialBaseFee),
}
gspec.MustCommit(db)
chain, err := core.NewBlockChain(db, nil, params.TestChainConfig, ethash.NewFaker(), vm.Config{}, nil, nil)
if err != nil {
panic(err)
}
tester := &downloadTester{
freezer: freezer,
chain: chain,
peers: make(map[string]*downloadTesterPeer),
}
tester.downloader = New(0, db, new(event.TypeMux), tester.chain, nil, tester.dropPeer, success)
return tester
}
// terminate aborts any operations on the embedded downloader and releases all
// held resources.
func (dl *downloadTester) terminate() {
dl.downloader.Terminate()
dl.chain.Stop()
os.RemoveAll(dl.freezer)
}
// sync starts synchronizing with a remote peer, blocking until it completes.
func (dl *downloadTester) sync(id string, td *big.Int, mode SyncMode) error {
head := dl.peers[id].chain.CurrentBlock()
if td == nil {
// If no particular TD was requested, load from the peer's blockchain
td = dl.peers[id].chain.GetTd(head.Hash(), head.NumberU64())
}
// Synchronise with the chosen peer and ensure proper cleanup afterwards
err := dl.downloader.synchronise(id, head.Hash(), td, nil, mode, false, nil)
select {
case <-dl.downloader.cancelCh:
// Ok, downloader fully cancelled after sync cycle
default:
// Downloader is still accepting packets, can block a peer up
panic("downloader active post sync cycle") // panic will be caught by tester
}
return err
}
// newPeer registers a new block download source into the downloader.
func (dl *downloadTester) newPeer(id string, version uint, blocks []*types.Block) *downloadTesterPeer {
dl.lock.Lock()
defer dl.lock.Unlock()
peer := &downloadTesterPeer{
dl: dl,
id: id,
chain: newTestBlockchain(blocks),
withholdHeaders: make(map[common.Hash]struct{}),
}
dl.peers[id] = peer
if err := dl.downloader.RegisterPeer(id, version, peer); err != nil {
panic(err)
}
if err := dl.downloader.SnapSyncer.Register(peer); err != nil {
panic(err)
}
return peer
2015-04-12 10:38:25 +00:00
}
// dropPeer simulates a hard peer removal from the connection pool.
func (dl *downloadTester) dropPeer(id string) {
dl.lock.Lock()
defer dl.lock.Unlock()
delete(dl.peers, id)
dl.downloader.SnapSyncer.Unregister(id)
dl.downloader.UnregisterPeer(id)
}
type downloadTesterPeer struct {
dl *downloadTester
id string
chain *core.BlockChain
withholdHeaders map[common.Hash]struct{}
}
// Head constructs a function to retrieve a peer's current head hash
// and total difficulty.
func (dlp *downloadTesterPeer) Head() (common.Hash, *big.Int) {
head := dlp.chain.CurrentBlock()
return head.Hash(), dlp.chain.GetTd(head.Hash(), head.NumberU64())
}
core, eth: improve delivery speed on header requests (#23105) This PR reduces the amount of work we do when answering header queries, e.g. when a peer is syncing from us. For some items, e.g block bodies, when we read the rlp-data from database, we plug it directly into the response package. We didn't do that for headers, but instead read headers-rlp, decode to types.Header, and re-encode to rlp. This PR changes that to keep it in RLP-form as much as possible. When a node is syncing from us, it typically requests 192 contiguous headers. On master it has the following effect: - For headers not in ancient: 2 db lookups. One for translating hash->number (even though the request is by number), and another for reading by hash (this latter one is sometimes cached). - For headers in ancient: 1 file lookup/syscall for translating hash->number (even though the request is by number), and another for reading the header itself. After this, it also performes a hashing of the header, to ensure that the hash is what it expected. In this PR, I instead move the logic for "give me a sequence of blocks" into the lower layers, where the database can determine how and what to read from leveldb and/or ancients. There are basically four types of requests; three of them are improved this way. The fourth, by hash going backwards, is more tricky to optimize. However, since we know that the gap is 0, we can look up by the parentHash, and stlil shave off all the number->hash lookups. The gapped collection can be optimized similarly, as a follow-up, at least in three out of four cases. Co-authored-by: Felix Lange <fjl@twurst.com>
2021-12-07 16:50:58 +00:00
func unmarshalRlpHeaders(rlpdata []rlp.RawValue) []*types.Header {
var headers = make([]*types.Header, len(rlpdata))
for i, data := range rlpdata {
var h types.Header
if err := rlp.DecodeBytes(data, &h); err != nil {
panic(err)
}
headers[i] = &h
}
return headers
}
// RequestHeadersByHash constructs a GetBlockHeaders function based on a hashed
// origin; associated with a particular peer in the download tester. The returned
// function can be used to retrieve batches of headers from the particular peer.
func (dlp *downloadTesterPeer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool, sink chan *eth.Response) (*eth.Request, error) {
// Service the header query via the live handler code
core, eth: improve delivery speed on header requests (#23105) This PR reduces the amount of work we do when answering header queries, e.g. when a peer is syncing from us. For some items, e.g block bodies, when we read the rlp-data from database, we plug it directly into the response package. We didn't do that for headers, but instead read headers-rlp, decode to types.Header, and re-encode to rlp. This PR changes that to keep it in RLP-form as much as possible. When a node is syncing from us, it typically requests 192 contiguous headers. On master it has the following effect: - For headers not in ancient: 2 db lookups. One for translating hash->number (even though the request is by number), and another for reading by hash (this latter one is sometimes cached). - For headers in ancient: 1 file lookup/syscall for translating hash->number (even though the request is by number), and another for reading the header itself. After this, it also performes a hashing of the header, to ensure that the hash is what it expected. In this PR, I instead move the logic for "give me a sequence of blocks" into the lower layers, where the database can determine how and what to read from leveldb and/or ancients. There are basically four types of requests; three of them are improved this way. The fourth, by hash going backwards, is more tricky to optimize. However, since we know that the gap is 0, we can look up by the parentHash, and stlil shave off all the number->hash lookups. The gapped collection can be optimized similarly, as a follow-up, at least in three out of four cases. Co-authored-by: Felix Lange <fjl@twurst.com>
2021-12-07 16:50:58 +00:00
rlpHeaders := eth.ServiceGetBlockHeadersQuery(dlp.chain, &eth.GetBlockHeadersPacket{
Origin: eth.HashOrNumber{
Hash: origin,
},
Amount: uint64(amount),
Skip: uint64(skip),
Reverse: reverse,
}, nil)
core, eth: improve delivery speed on header requests (#23105) This PR reduces the amount of work we do when answering header queries, e.g. when a peer is syncing from us. For some items, e.g block bodies, when we read the rlp-data from database, we plug it directly into the response package. We didn't do that for headers, but instead read headers-rlp, decode to types.Header, and re-encode to rlp. This PR changes that to keep it in RLP-form as much as possible. When a node is syncing from us, it typically requests 192 contiguous headers. On master it has the following effect: - For headers not in ancient: 2 db lookups. One for translating hash->number (even though the request is by number), and another for reading by hash (this latter one is sometimes cached). - For headers in ancient: 1 file lookup/syscall for translating hash->number (even though the request is by number), and another for reading the header itself. After this, it also performes a hashing of the header, to ensure that the hash is what it expected. In this PR, I instead move the logic for "give me a sequence of blocks" into the lower layers, where the database can determine how and what to read from leveldb and/or ancients. There are basically four types of requests; three of them are improved this way. The fourth, by hash going backwards, is more tricky to optimize. However, since we know that the gap is 0, we can look up by the parentHash, and stlil shave off all the number->hash lookups. The gapped collection can be optimized similarly, as a follow-up, at least in three out of four cases. Co-authored-by: Felix Lange <fjl@twurst.com>
2021-12-07 16:50:58 +00:00
headers := unmarshalRlpHeaders(rlpHeaders)
// If a malicious peer is simulated withholding headers, delete them
for hash := range dlp.withholdHeaders {
for i, header := range headers {
if header.Hash() == hash {
headers = append(headers[:i], headers[i+1:]...)
break
}
}
}
hashes := make([]common.Hash, len(headers))
for i, header := range headers {
hashes[i] = header.Hash()
}
// Deliver the headers to the downloader
req := &eth.Request{
Peer: dlp.id,
}
res := &eth.Response{
Req: req,
Res: (*eth.BlockHeadersPacket)(&headers),
Meta: hashes,
Time: 1,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
// RequestHeadersByNumber constructs a GetBlockHeaders function based on a numbered
// origin; associated with a particular peer in the download tester. The returned
// function can be used to retrieve batches of headers from the particular peer.
func (dlp *downloadTesterPeer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool, sink chan *eth.Response) (*eth.Request, error) {
// Service the header query via the live handler code
core, eth: improve delivery speed on header requests (#23105) This PR reduces the amount of work we do when answering header queries, e.g. when a peer is syncing from us. For some items, e.g block bodies, when we read the rlp-data from database, we plug it directly into the response package. We didn't do that for headers, but instead read headers-rlp, decode to types.Header, and re-encode to rlp. This PR changes that to keep it in RLP-form as much as possible. When a node is syncing from us, it typically requests 192 contiguous headers. On master it has the following effect: - For headers not in ancient: 2 db lookups. One for translating hash->number (even though the request is by number), and another for reading by hash (this latter one is sometimes cached). - For headers in ancient: 1 file lookup/syscall for translating hash->number (even though the request is by number), and another for reading the header itself. After this, it also performes a hashing of the header, to ensure that the hash is what it expected. In this PR, I instead move the logic for "give me a sequence of blocks" into the lower layers, where the database can determine how and what to read from leveldb and/or ancients. There are basically four types of requests; three of them are improved this way. The fourth, by hash going backwards, is more tricky to optimize. However, since we know that the gap is 0, we can look up by the parentHash, and stlil shave off all the number->hash lookups. The gapped collection can be optimized similarly, as a follow-up, at least in three out of four cases. Co-authored-by: Felix Lange <fjl@twurst.com>
2021-12-07 16:50:58 +00:00
rlpHeaders := eth.ServiceGetBlockHeadersQuery(dlp.chain, &eth.GetBlockHeadersPacket{
Origin: eth.HashOrNumber{
Number: origin,
},
Amount: uint64(amount),
Skip: uint64(skip),
Reverse: reverse,
}, nil)
core, eth: improve delivery speed on header requests (#23105) This PR reduces the amount of work we do when answering header queries, e.g. when a peer is syncing from us. For some items, e.g block bodies, when we read the rlp-data from database, we plug it directly into the response package. We didn't do that for headers, but instead read headers-rlp, decode to types.Header, and re-encode to rlp. This PR changes that to keep it in RLP-form as much as possible. When a node is syncing from us, it typically requests 192 contiguous headers. On master it has the following effect: - For headers not in ancient: 2 db lookups. One for translating hash->number (even though the request is by number), and another for reading by hash (this latter one is sometimes cached). - For headers in ancient: 1 file lookup/syscall for translating hash->number (even though the request is by number), and another for reading the header itself. After this, it also performes a hashing of the header, to ensure that the hash is what it expected. In this PR, I instead move the logic for "give me a sequence of blocks" into the lower layers, where the database can determine how and what to read from leveldb and/or ancients. There are basically four types of requests; three of them are improved this way. The fourth, by hash going backwards, is more tricky to optimize. However, since we know that the gap is 0, we can look up by the parentHash, and stlil shave off all the number->hash lookups. The gapped collection can be optimized similarly, as a follow-up, at least in three out of four cases. Co-authored-by: Felix Lange <fjl@twurst.com>
2021-12-07 16:50:58 +00:00
headers := unmarshalRlpHeaders(rlpHeaders)
// If a malicious peer is simulated withholding headers, delete them
for hash := range dlp.withholdHeaders {
for i, header := range headers {
if header.Hash() == hash {
headers = append(headers[:i], headers[i+1:]...)
break
}
}
}
hashes := make([]common.Hash, len(headers))
for i, header := range headers {
hashes[i] = header.Hash()
}
// Deliver the headers to the downloader
req := &eth.Request{
Peer: dlp.id,
}
res := &eth.Response{
Req: req,
Res: (*eth.BlockHeadersPacket)(&headers),
Meta: hashes,
Time: 1,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
// RequestBodies constructs a getBlockBodies method associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of block bodies from the particularly requested peer.
func (dlp *downloadTesterPeer) RequestBodies(hashes []common.Hash, sink chan *eth.Response) (*eth.Request, error) {
blobs := eth.ServiceGetBlockBodiesQuery(dlp.chain, hashes)
bodies := make([]*eth.BlockBody, len(blobs))
for i, blob := range blobs {
bodies[i] = new(eth.BlockBody)
rlp.DecodeBytes(blob, bodies[i])
}
var (
txsHashes = make([]common.Hash, len(bodies))
uncleHashes = make([]common.Hash, len(bodies))
)
hasher := trie.NewStackTrie(nil)
for i, body := range bodies {
txsHashes[i] = types.DeriveSha(types.Transactions(body.Transactions), hasher)
uncleHashes[i] = types.CalcUncleHash(body.Uncles)
}
req := &eth.Request{
Peer: dlp.id,
}
res := &eth.Response{
Req: req,
Res: (*eth.BlockBodiesPacket)(&bodies),
Meta: [][]common.Hash{txsHashes, uncleHashes},
Time: 1,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
// RequestReceipts constructs a getReceipts method associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of block receipts from the particularly requested peer.
func (dlp *downloadTesterPeer) RequestReceipts(hashes []common.Hash, sink chan *eth.Response) (*eth.Request, error) {
blobs := eth.ServiceGetReceiptsQuery(dlp.chain, hashes)
receipts := make([][]*types.Receipt, len(blobs))
for i, blob := range blobs {
rlp.DecodeBytes(blob, &receipts[i])
}
hasher := trie.NewStackTrie(nil)
hashes = make([]common.Hash, len(receipts))
for i, receipt := range receipts {
hashes[i] = types.DeriveSha(types.Receipts(receipt), hasher)
}
req := &eth.Request{
Peer: dlp.id,
}
res := &eth.Response{
Req: req,
Res: (*eth.ReceiptsPacket)(&receipts),
Meta: hashes,
Time: 1,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
// ID retrieves the peer's unique identifier.
func (dlp *downloadTesterPeer) ID() string {
return dlp.id
2015-04-12 10:38:25 +00:00
}
// RequestAccountRange fetches a batch of accounts rooted in a specific account
// trie, starting with the origin.
func (dlp *downloadTesterPeer) RequestAccountRange(id uint64, root, origin, limit common.Hash, bytes uint64) error {
// Create the request and service it
req := &snap.GetAccountRangePacket{
ID: id,
Root: root,
Origin: origin,
Limit: limit,
Bytes: bytes,
}
slimaccs, proofs := snap.ServiceGetAccountRangeQuery(dlp.chain, req)
// We need to convert to non-slim format, delegate to the packet code
res := &snap.AccountRangePacket{
ID: id,
Accounts: slimaccs,
Proof: proofs,
}
hashes, accounts, _ := res.Unpack()
go dlp.dl.downloader.SnapSyncer.OnAccounts(dlp, id, hashes, accounts, proofs)
return nil
}
// RequestStorageRanges fetches a batch of storage slots belonging to one or
// more accounts. If slots from only one account is requested, an origin marker
// may also be used to retrieve from there.
func (dlp *downloadTesterPeer) RequestStorageRanges(id uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, bytes uint64) error {
// Create the request and service it
req := &snap.GetStorageRangesPacket{
ID: id,
Accounts: accounts,
Root: root,
Origin: origin,
Limit: limit,
Bytes: bytes,
}
storage, proofs := snap.ServiceGetStorageRangesQuery(dlp.chain, req)
// We need to convert to demultiplex, delegate to the packet code
res := &snap.StorageRangesPacket{
ID: id,
Slots: storage,
Proof: proofs,
}
hashes, slots := res.Unpack()
go dlp.dl.downloader.SnapSyncer.OnStorage(dlp, id, hashes, slots, proofs)
return nil
}
// RequestByteCodes fetches a batch of bytecodes by hash.
func (dlp *downloadTesterPeer) RequestByteCodes(id uint64, hashes []common.Hash, bytes uint64) error {
req := &snap.GetByteCodesPacket{
ID: id,
Hashes: hashes,
Bytes: bytes,
}
codes := snap.ServiceGetByteCodesQuery(dlp.chain, req)
go dlp.dl.downloader.SnapSyncer.OnByteCodes(dlp, id, codes)
return nil
2015-04-12 10:38:25 +00:00
}
// RequestTrieNodes fetches a batch of account or storage trie nodes rooted in
// a specific state trie.
func (dlp *downloadTesterPeer) RequestTrieNodes(id uint64, root common.Hash, paths []snap.TrieNodePathSet, bytes uint64) error {
req := &snap.GetTrieNodesPacket{
ID: id,
Root: root,
Paths: paths,
Bytes: bytes,
}
nodes, _ := snap.ServiceGetTrieNodesQuery(dlp.chain, req, time.Now())
go dlp.dl.downloader.SnapSyncer.OnTrieNodes(dlp, id, nodes)
return nil
}
// Log retrieves the peer's own contextual logger.
func (dlp *downloadTesterPeer) Log() log.Logger {
return log.New("peer", dlp.id)
}
// assertOwnChain checks if the local chain contains the correct number of items
// of the various chain components.
func assertOwnChain(t *testing.T, tester *downloadTester, length int) {
// Mark this method as a helper to report errors at callsite, not in here
t.Helper()
headers, blocks, receipts := length, length, length
if tester.downloader.getMode() == LightSync {
blocks, receipts = 1, 1
}
if hs := int(tester.chain.CurrentHeader().Number.Uint64()) + 1; hs != headers {
t.Fatalf("synchronised headers mismatch: have %v, want %v", hs, headers)
}
if bs := int(tester.chain.CurrentBlock().NumberU64()) + 1; bs != blocks {
t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, blocks)
}
if rs := int(tester.chain.CurrentFastBlock().NumberU64()) + 1; rs != receipts {
t.Fatalf("synchronised receipts mismatch: have %v, want %v", rs, receipts)
}
}
func TestCanonicalSynchronisation66Full(t *testing.T) { testCanonSync(t, eth.ETH66, FullSync) }
func TestCanonicalSynchronisation66Snap(t *testing.T) { testCanonSync(t, eth.ETH66, SnapSync) }
func TestCanonicalSynchronisation66Light(t *testing.T) { testCanonSync(t, eth.ETH66, LightSync) }
func TestCanonicalSynchronisation67Full(t *testing.T) { testCanonSync(t, eth.ETH67, FullSync) }
func TestCanonicalSynchronisation67Snap(t *testing.T) { testCanonSync(t, eth.ETH67, SnapSync) }
func TestCanonicalSynchronisation67Light(t *testing.T) { testCanonSync(t, eth.ETH67, LightSync) }
func testCanonSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a small enough block chain to download
chain := testChainBase.shorten(blockCacheMaxItems - 15)
tester.newPeer("peer", protocol, chain.blocks[1:])
// Synchronise with the peer and make sure all relevant data was retrieved
if err := tester.sync("peer", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that if a large batch of blocks are being downloaded, it is throttled
// until the cached blocks are retrieved.
func TestThrottling66Full(t *testing.T) { testThrottling(t, eth.ETH66, FullSync) }
func TestThrottling66Snap(t *testing.T) { testThrottling(t, eth.ETH66, SnapSync) }
func TestThrottling67Full(t *testing.T) { testThrottling(t, eth.ETH67, FullSync) }
func TestThrottling67Snap(t *testing.T) { testThrottling(t, eth.ETH67, SnapSync) }
func testThrottling(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a long block chain to download and the tester
targetBlocks := len(testChainBase.blocks) - 1
tester.newPeer("peer", protocol, testChainBase.blocks[1:])
// Wrap the importer to allow stepping
blocked, proceed := uint32(0), make(chan struct{})
tester.downloader.chainInsertHook = func(results []*fetchResult) {
atomic.StoreUint32(&blocked, uint32(len(results)))
<-proceed
}
// Start a synchronisation concurrently
errc := make(chan error, 1)
go func() {
errc <- tester.sync("peer", nil, mode)
}()
// Iteratively take some blocks, always checking the retrieval count
for {
// Check the retrieval count synchronously (! reason for this ugly block)
tester.lock.RLock()
retrieved := int(tester.chain.CurrentFastBlock().Number().Uint64()) + 1
tester.lock.RUnlock()
if retrieved >= targetBlocks+1 {
break
}
// Wait a bit for sync to throttle itself
var cached, frozen int
for start := time.Now(); time.Since(start) < 3*time.Second; {
time.Sleep(25 * time.Millisecond)
tester.lock.Lock()
tester.downloader.queue.lock.Lock()
tester.downloader.queue.resultCache.lock.Lock()
{
cached = tester.downloader.queue.resultCache.countCompleted()
frozen = int(atomic.LoadUint32(&blocked))
retrieved = int(tester.chain.CurrentFastBlock().Number().Uint64()) + 1
}
tester.downloader.queue.resultCache.lock.Unlock()
tester.downloader.queue.lock.Unlock()
tester.lock.Unlock()
if cached == blockCacheMaxItems ||
cached == blockCacheMaxItems-reorgProtHeaderDelay ||
retrieved+cached+frozen == targetBlocks+1 ||
retrieved+cached+frozen == targetBlocks+1-reorgProtHeaderDelay {
break
}
}
// Make sure we filled up the cache, then exhaust it
time.Sleep(25 * time.Millisecond) // give it a chance to screw up
tester.lock.RLock()
retrieved = int(tester.chain.CurrentFastBlock().Number().Uint64()) + 1
tester.lock.RUnlock()
if cached != blockCacheMaxItems && cached != blockCacheMaxItems-reorgProtHeaderDelay && retrieved+cached+frozen != targetBlocks+1 && retrieved+cached+frozen != targetBlocks+1-reorgProtHeaderDelay {
t.Fatalf("block count mismatch: have %v, want %v (owned %v, blocked %v, target %v)", cached, blockCacheMaxItems, retrieved, frozen, targetBlocks+1)
}
// Permit the blocked blocks to import
if atomic.LoadUint32(&blocked) > 0 {
atomic.StoreUint32(&blocked, uint32(0))
proceed <- struct{}{}
}
}
// Check that we haven't pulled more blocks than available
assertOwnChain(t, tester, targetBlocks+1)
if err := <-errc; err != nil {
t.Fatalf("block synchronization failed: %v", err)
}
}
// Tests that simple synchronization against a forked chain works correctly. In
// this test common ancestor lookup should *not* be short circuited, and a full
// binary search should be executed.
func TestForkedSync66Full(t *testing.T) { testForkedSync(t, eth.ETH66, FullSync) }
func TestForkedSync66Snap(t *testing.T) { testForkedSync(t, eth.ETH66, SnapSync) }
func TestForkedSync66Light(t *testing.T) { testForkedSync(t, eth.ETH66, LightSync) }
func TestForkedSync67Full(t *testing.T) { testForkedSync(t, eth.ETH67, FullSync) }
func TestForkedSync67Snap(t *testing.T) { testForkedSync(t, eth.ETH67, SnapSync) }
func TestForkedSync67Light(t *testing.T) { testForkedSync(t, eth.ETH67, LightSync) }
func testForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + 80)
chainB := testChainForkLightB.shorten(len(testChainBase.blocks) + 81)
tester.newPeer("fork A", protocol, chainA.blocks[1:])
tester.newPeer("fork B", protocol, chainB.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("fork A", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
// Synchronise with the second peer and make sure that fork is pulled too
if err := tester.sync("fork B", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainB.blocks))
}
// Tests that synchronising against a much shorter but much heavier fork works
// currently and is not dropped.
func TestHeavyForkedSync66Full(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, FullSync) }
func TestHeavyForkedSync66Snap(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, SnapSync) }
func TestHeavyForkedSync66Light(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, LightSync) }
func TestHeavyForkedSync67Full(t *testing.T) { testHeavyForkedSync(t, eth.ETH67, FullSync) }
func TestHeavyForkedSync67Snap(t *testing.T) { testHeavyForkedSync(t, eth.ETH67, SnapSync) }
func TestHeavyForkedSync67Light(t *testing.T) { testHeavyForkedSync(t, eth.ETH67, LightSync) }
func testHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + 80)
chainB := testChainForkHeavy.shorten(len(testChainBase.blocks) + 79)
tester.newPeer("light", protocol, chainA.blocks[1:])
tester.newPeer("heavy", protocol, chainB.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("light", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
// Synchronise with the second peer and make sure that fork is pulled too
if err := tester.sync("heavy", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainB.blocks))
}
// Tests that chain forks are contained within a certain interval of the current
// chain head, ensuring that malicious peers cannot waste resources by feeding
// long dead chains.
func TestBoundedForkedSync66Full(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, FullSync) }
func TestBoundedForkedSync66Snap(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, SnapSync) }
func TestBoundedForkedSync66Light(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, LightSync) }
func TestBoundedForkedSync67Full(t *testing.T) { testBoundedForkedSync(t, eth.ETH67, FullSync) }
func TestBoundedForkedSync67Snap(t *testing.T) { testBoundedForkedSync(t, eth.ETH67, SnapSync) }
func TestBoundedForkedSync67Light(t *testing.T) { testBoundedForkedSync(t, eth.ETH67, LightSync) }
func testBoundedForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA
chainB := testChainForkLightB
tester.newPeer("original", protocol, chainA.blocks[1:])
tester.newPeer("rewriter", protocol, chainB.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("original", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
// Synchronise with the second peer and ensure that the fork is rejected to being too old
if err := tester.sync("rewriter", nil, mode); err != errInvalidAncestor {
t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor)
}
}
// Tests that chain forks are contained within a certain interval of the current
// chain head for short but heavy forks too. These are a bit special because they
// take different ancestor lookup paths.
func TestBoundedHeavyForkedSync66Full(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH66, FullSync)
}
func TestBoundedHeavyForkedSync66Snap(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH66, SnapSync)
}
func TestBoundedHeavyForkedSync66Light(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH66, LightSync)
}
func TestBoundedHeavyForkedSync67Full(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH67, FullSync)
}
func TestBoundedHeavyForkedSync67Snap(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH67, SnapSync)
}
func TestBoundedHeavyForkedSync67Light(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH67, LightSync)
}
func testBoundedHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a long enough forked chain
chainA := testChainForkLightA
chainB := testChainForkHeavy
tester.newPeer("original", protocol, chainA.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("original", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
tester.newPeer("heavy-rewriter", protocol, chainB.blocks[1:])
// Synchronise with the second peer and ensure that the fork is rejected to being too old
if err := tester.sync("heavy-rewriter", nil, mode); err != errInvalidAncestor {
t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor)
}
}
// Tests that a canceled download wipes all previously accumulated state.
func TestCancel66Full(t *testing.T) { testCancel(t, eth.ETH66, FullSync) }
func TestCancel66Snap(t *testing.T) { testCancel(t, eth.ETH66, SnapSync) }
func TestCancel66Light(t *testing.T) { testCancel(t, eth.ETH66, LightSync) }
func TestCancel67Full(t *testing.T) { testCancel(t, eth.ETH67, FullSync) }
func TestCancel67Snap(t *testing.T) { testCancel(t, eth.ETH67, SnapSync) }
func TestCancel67Light(t *testing.T) { testCancel(t, eth.ETH67, LightSync) }
func testCancel(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(MaxHeaderFetch)
tester.newPeer("peer", protocol, chain.blocks[1:])
// Make sure canceling works with a pristine downloader
tester.downloader.Cancel()
if !tester.downloader.queue.Idle() {
t.Errorf("download queue not idle")
}
// Synchronise with the peer, but cancel afterwards
if err := tester.sync("peer", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
tester.downloader.Cancel()
if !tester.downloader.queue.Idle() {
t.Errorf("download queue not idle")
}
}
// Tests that synchronisation from multiple peers works as intended (multi thread sanity test).
func TestMultiSynchronisation66Full(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, FullSync) }
func TestMultiSynchronisation66Snap(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, SnapSync) }
func TestMultiSynchronisation66Light(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, LightSync) }
func TestMultiSynchronisation67Full(t *testing.T) { testMultiSynchronisation(t, eth.ETH67, FullSync) }
func TestMultiSynchronisation67Snap(t *testing.T) { testMultiSynchronisation(t, eth.ETH67, SnapSync) }
func TestMultiSynchronisation67Light(t *testing.T) { testMultiSynchronisation(t, eth.ETH67, LightSync) }
func testMultiSynchronisation(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create various peers with various parts of the chain
targetPeers := 8
chain := testChainBase.shorten(targetPeers * 100)
for i := 0; i < targetPeers; i++ {
id := fmt.Sprintf("peer #%d", i)
tester.newPeer(id, protocol, chain.shorten(len(chain.blocks) / (i + 1)).blocks[1:])
}
if err := tester.sync("peer #0", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that synchronisations behave well in multi-version protocol environments
2016-03-15 18:27:49 +00:00
// and not wreak havoc on other nodes in the network.
func TestMultiProtoSynchronisation66Full(t *testing.T) { testMultiProtoSync(t, eth.ETH66, FullSync) }
func TestMultiProtoSynchronisation66Snap(t *testing.T) { testMultiProtoSync(t, eth.ETH66, SnapSync) }
func TestMultiProtoSynchronisation66Light(t *testing.T) { testMultiProtoSync(t, eth.ETH66, LightSync) }
func TestMultiProtoSynchronisation67Full(t *testing.T) { testMultiProtoSync(t, eth.ETH67, FullSync) }
func TestMultiProtoSynchronisation67Snap(t *testing.T) { testMultiProtoSync(t, eth.ETH67, SnapSync) }
func TestMultiProtoSynchronisation67Light(t *testing.T) { testMultiProtoSync(t, eth.ETH67, LightSync) }
func testMultiProtoSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a small enough block chain to download
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Create peers of every type
tester.newPeer("peer 66", eth.ETH66, chain.blocks[1:])
tester.newPeer("peer 67", eth.ETH67, chain.blocks[1:])
// Synchronise with the requested peer and make sure all blocks were retrieved
if err := tester.sync(fmt.Sprintf("peer %d", protocol), nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
// Check that no peers have been dropped off
for _, version := range []int{66, 67} {
peer := fmt.Sprintf("peer %d", version)
if _, ok := tester.peers[peer]; !ok {
t.Errorf("%s dropped", peer)
}
}
}
// Tests that if a block is empty (e.g. header only), no body request should be
// made, and instead the header should be assembled into a whole block in itself.
func TestEmptyShortCircuit66Full(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, FullSync) }
func TestEmptyShortCircuit66Snap(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, SnapSync) }
func TestEmptyShortCircuit66Light(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, LightSync) }
func TestEmptyShortCircuit67Full(t *testing.T) { testEmptyShortCircuit(t, eth.ETH67, FullSync) }
func TestEmptyShortCircuit67Snap(t *testing.T) { testEmptyShortCircuit(t, eth.ETH67, SnapSync) }
func TestEmptyShortCircuit67Light(t *testing.T) { testEmptyShortCircuit(t, eth.ETH67, LightSync) }
func testEmptyShortCircuit(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a block chain to download
chain := testChainBase
tester.newPeer("peer", protocol, chain.blocks[1:])
// Instrument the downloader to signal body requests
bodiesHave, receiptsHave := int32(0), int32(0)
tester.downloader.bodyFetchHook = func(headers []*types.Header) {
atomic.AddInt32(&bodiesHave, int32(len(headers)))
}
tester.downloader.receiptFetchHook = func(headers []*types.Header) {
atomic.AddInt32(&receiptsHave, int32(len(headers)))
}
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("peer", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
// Validate the number of block bodies that should have been requested
bodiesNeeded, receiptsNeeded := 0, 0
for _, block := range chain.blocks[1:] {
if mode != LightSync && (len(block.Transactions()) > 0 || len(block.Uncles()) > 0) {
bodiesNeeded++
}
}
for _, block := range chain.blocks[1:] {
if mode == SnapSync && len(block.Transactions()) > 0 {
receiptsNeeded++
}
}
if int(bodiesHave) != bodiesNeeded {
t.Errorf("body retrieval count mismatch: have %v, want %v", bodiesHave, bodiesNeeded)
}
if int(receiptsHave) != receiptsNeeded {
t.Errorf("receipt retrieval count mismatch: have %v, want %v", receiptsHave, receiptsNeeded)
}
}
// Tests that headers are enqueued continuously, preventing malicious nodes from
// stalling the downloader by feeding gapped header chains.
func TestMissingHeaderAttack66Full(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, FullSync) }
func TestMissingHeaderAttack66Snap(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, SnapSync) }
func TestMissingHeaderAttack66Light(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, LightSync) }
func TestMissingHeaderAttack67Full(t *testing.T) { testMissingHeaderAttack(t, eth.ETH67, FullSync) }
func TestMissingHeaderAttack67Snap(t *testing.T) { testMissingHeaderAttack(t, eth.ETH67, SnapSync) }
func TestMissingHeaderAttack67Light(t *testing.T) { testMissingHeaderAttack(t, eth.ETH67, LightSync) }
func testMissingHeaderAttack(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
attacker := tester.newPeer("attack", protocol, chain.blocks[1:])
attacker.withholdHeaders[chain.blocks[len(chain.blocks)/2-1].Hash()] = struct{}{}
if err := tester.sync("attack", nil, mode); err == nil {
t.Fatalf("succeeded attacker synchronisation")
}
// Synchronise with the valid peer and make sure sync succeeds
tester.newPeer("valid", protocol, chain.blocks[1:])
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that if requested headers are shifted (i.e. first is missing), the queue
// detects the invalid numbering.
func TestShiftedHeaderAttack66Full(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, FullSync) }
func TestShiftedHeaderAttack66Snap(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, SnapSync) }
func TestShiftedHeaderAttack66Light(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, LightSync) }
func TestShiftedHeaderAttack67Full(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH67, FullSync) }
func TestShiftedHeaderAttack67Snap(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH67, SnapSync) }
func TestShiftedHeaderAttack67Light(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH67, LightSync) }
func testShiftedHeaderAttack(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Attempt a full sync with an attacker feeding shifted headers
attacker := tester.newPeer("attack", protocol, chain.blocks[1:])
attacker.withholdHeaders[chain.blocks[1].Hash()] = struct{}{}
if err := tester.sync("attack", nil, mode); err == nil {
t.Fatalf("succeeded attacker synchronisation")
}
// Synchronise with the valid peer and make sure sync succeeds
tester.newPeer("valid", protocol, chain.blocks[1:])
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that upon detecting an invalid header, the recent ones are rolled back
// for various failure scenarios. Afterwards a full sync is attempted to make
// sure no state was corrupted.
func TestInvalidHeaderRollback66Snap(t *testing.T) { testInvalidHeaderRollback(t, eth.ETH66, SnapSync) }
func TestInvalidHeaderRollback67Snap(t *testing.T) { testInvalidHeaderRollback(t, eth.ETH67, SnapSync) }
func testInvalidHeaderRollback(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a small enough block chain to download
targetBlocks := 3*fsHeaderSafetyNet + 256 + fsMinFullBlocks
chain := testChainBase.shorten(targetBlocks)
// Attempt to sync with an attacker that feeds junk during the fast sync phase.
// This should result in the last fsHeaderSafetyNet headers being rolled back.
missing := fsHeaderSafetyNet + MaxHeaderFetch + 1
fastAttacker := tester.newPeer("fast-attack", protocol, chain.blocks[1:])
fastAttacker.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{}
if err := tester.sync("fast-attack", nil, mode); err == nil {
t.Fatalf("succeeded fast attacker synchronisation")
}
if head := tester.chain.CurrentHeader().Number.Int64(); int(head) > MaxHeaderFetch {
t.Errorf("rollback head mismatch: have %v, want at most %v", head, MaxHeaderFetch)
}
// Attempt to sync with an attacker that feeds junk during the block import phase.
// This should result in both the last fsHeaderSafetyNet number of headers being
// rolled back, and also the pivot point being reverted to a non-block status.
missing = 3*fsHeaderSafetyNet + MaxHeaderFetch + 1
blockAttacker := tester.newPeer("block-attack", protocol, chain.blocks[1:])
fastAttacker.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{} // Make sure the fast-attacker doesn't fill in
blockAttacker.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{}
if err := tester.sync("block-attack", nil, mode); err == nil {
t.Fatalf("succeeded block attacker synchronisation")
}
if head := tester.chain.CurrentHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch {
t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch)
}
if mode == SnapSync {
if head := tester.chain.CurrentBlock().NumberU64(); head != 0 {
t.Errorf("fast sync pivot block #%d not rolled back", head)
}
}
// Attempt to sync with an attacker that withholds promised blocks after the
// fast sync pivot point. This could be a trial to leave the node with a bad
// but already imported pivot block.
withholdAttacker := tester.newPeer("withhold-attack", protocol, chain.blocks[1:])
tester.downloader.syncInitHook = func(uint64, uint64) {
for i := missing; i < len(chain.blocks); i++ {
withholdAttacker.withholdHeaders[chain.blocks[i].Hash()] = struct{}{}
}
tester.downloader.syncInitHook = nil
}
if err := tester.sync("withhold-attack", nil, mode); err == nil {
t.Fatalf("succeeded withholding attacker synchronisation")
}
if head := tester.chain.CurrentHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch {
t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch)
}
if mode == SnapSync {
if head := tester.chain.CurrentBlock().NumberU64(); head != 0 {
t.Errorf("fast sync pivot block #%d not rolled back", head)
}
}
// Synchronise with the valid peer and make sure sync succeeds. Since the last rollback
// should also disable fast syncing for this process, verify that we did a fresh full
// sync. Note, we can't assert anything about the receipts since we won't purge the
// database of them, hence we can't use assertOwnChain.
tester.newPeer("valid", protocol, chain.blocks[1:])
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
2020-05-25 08:21:28 +00:00
// Tests that a peer advertising a high TD doesn't get to stall the downloader
// afterwards by not sending any useful hashes.
func TestHighTDStarvationAttack66Full(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH66, FullSync)
}
func TestHighTDStarvationAttack66Snap(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH66, SnapSync)
}
func TestHighTDStarvationAttack66Light(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH66, LightSync)
}
func TestHighTDStarvationAttack67Full(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH67, FullSync)
}
func TestHighTDStarvationAttack67Snap(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH67, SnapSync)
}
func TestHighTDStarvationAttack67Light(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH67, LightSync)
}
func testHighTDStarvationAttack(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(1)
tester.newPeer("attack", protocol, chain.blocks[1:])
if err := tester.sync("attack", big.NewInt(1000000), mode); err != errStallingPeer {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer)
}
}
// Tests that misbehaving peers are disconnected, whilst behaving ones are not.
func TestBlockHeaderAttackerDropping66(t *testing.T) { testBlockHeaderAttackerDropping(t, eth.ETH66) }
func TestBlockHeaderAttackerDropping67(t *testing.T) { testBlockHeaderAttackerDropping(t, eth.ETH67) }
func testBlockHeaderAttackerDropping(t *testing.T, protocol uint) {
// Define the disconnection requirement for individual hash fetch errors
tests := []struct {
result error
drop bool
}{
{nil, false}, // Sync succeeded, all is well
{errBusy, false}, // Sync is already in progress, no problem
{errUnknownPeer, false}, // Peer is unknown, was already dropped, don't double drop
{errBadPeer, true}, // Peer was deemed bad for some reason, drop it
{errStallingPeer, true}, // Peer was detected to be stalling, drop it
{errUnsyncedPeer, true}, // Peer was detected to be unsynced, drop it
{errNoPeers, false}, // No peers to download from, soft race, no issue
{errTimeout, true}, // No hashes received in due time, drop the peer
{errEmptyHeaderSet, true}, // No headers were returned as a response, drop as it's a dead end
{errPeersUnavailable, true}, // Nobody had the advertised blocks, drop the advertiser
{errInvalidAncestor, true}, // Agreed upon ancestor is not acceptable, drop the chain rewriter
{errInvalidChain, true}, // Hash chain was detected as invalid, definitely drop
{errInvalidBody, false}, // A bad peer was detected, but not the sync origin
{errInvalidReceipt, false}, // A bad peer was detected, but not the sync origin
{errCancelContentProcessing, false}, // Synchronisation was canceled, origin may be innocent, don't drop
}
// Run the tests and check disconnection status
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(1)
for i, tt := range tests {
// Register a new peer and ensure its presence
id := fmt.Sprintf("test %d", i)
tester.newPeer(id, protocol, chain.blocks[1:])
if _, ok := tester.peers[id]; !ok {
t.Fatalf("test %d: registered peer not found", i)
}
// Simulate a synchronisation and check the required result
tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result }
tester.downloader.LegacySync(id, tester.chain.Genesis().Hash(), big.NewInt(1000), nil, FullSync)
if _, ok := tester.peers[id]; !ok != tt.drop {
t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop)
}
}
}
// Tests that synchronisation progress (origin block number, current block number
// and highest block number) is tracked and updated correctly.
func TestSyncProgress66Full(t *testing.T) { testSyncProgress(t, eth.ETH66, FullSync) }
func TestSyncProgress66Snap(t *testing.T) { testSyncProgress(t, eth.ETH66, SnapSync) }
func TestSyncProgress66Light(t *testing.T) { testSyncProgress(t, eth.ETH66, LightSync) }
func TestSyncProgress67Full(t *testing.T) { testSyncProgress(t, eth.ETH67, FullSync) }
func TestSyncProgress67Snap(t *testing.T) { testSyncProgress(t, eth.ETH67, SnapSync) }
func TestSyncProgress67Light(t *testing.T) { testSyncProgress(t, eth.ETH67, LightSync) }
func testSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Synchronise half the blocks and check initial progress
tester.newPeer("peer-half", protocol, chain.shorten(len(chain.blocks) / 2).blocks[1:])
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("peer-half", nil, mode); err != nil {
2017-08-06 05:54:25 +00:00
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks)/2 - 1),
})
progress <- struct{}{}
pending.Wait()
// Synchronise all the blocks and check continuation progress
tester.newPeer("peer-full", protocol, chain.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("peer-full", nil, mode); err != nil {
2017-08-06 05:54:25 +00:00
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{
StartingBlock: uint64(len(chain.blocks)/2 - 1),
CurrentBlock: uint64(len(chain.blocks)/2 - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
})
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
StartingBlock: uint64(len(chain.blocks)/2 - 1),
CurrentBlock: uint64(len(chain.blocks) - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
})
}
func checkProgress(t *testing.T, d *Downloader, stage string, want ethereum.SyncProgress) {
// Mark this method as a helper to report errors at callsite, not in here
t.Helper()
p := d.Progress()
if p.StartingBlock != want.StartingBlock || p.CurrentBlock != want.CurrentBlock || p.HighestBlock != want.HighestBlock {
t.Fatalf("%s progress mismatch:\nhave %+v\nwant %+v", stage, p, want)
}
}
// Tests that synchronisation progress (origin block number and highest block
// number) is tracked and updated correctly in case of a fork (or manual head
// revertal).
func TestForkedSyncProgress66Full(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, FullSync) }
func TestForkedSyncProgress66Snap(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, SnapSync) }
func TestForkedSyncProgress66Light(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, LightSync) }
func TestForkedSyncProgress67Full(t *testing.T) { testForkedSyncProgress(t, eth.ETH67, FullSync) }
func TestForkedSyncProgress67Snap(t *testing.T) { testForkedSyncProgress(t, eth.ETH67, SnapSync) }
func TestForkedSyncProgress67Light(t *testing.T) { testForkedSyncProgress(t, eth.ETH67, LightSync) }
func testForkedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + MaxHeaderFetch)
chainB := testChainForkLightB.shorten(len(testChainBase.blocks) + MaxHeaderFetch)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Synchronise with one of the forks and check progress
tester.newPeer("fork A", protocol, chainA.blocks[1:])
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("fork A", nil, mode); err != nil {
2017-08-06 05:54:25 +00:00
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chainA.blocks) - 1),
})
progress <- struct{}{}
pending.Wait()
// Simulate a successful sync above the fork
tester.downloader.syncStatsChainOrigin = tester.downloader.syncStatsChainHeight
// Synchronise with the second fork and check progress resets
tester.newPeer("fork B", protocol, chainB.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("fork B", nil, mode); err != nil {
2017-08-06 05:54:25 +00:00
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "forking", ethereum.SyncProgress{
StartingBlock: uint64(len(testChainBase.blocks)) - 1,
CurrentBlock: uint64(len(chainA.blocks) - 1),
HighestBlock: uint64(len(chainB.blocks) - 1),
})
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
StartingBlock: uint64(len(testChainBase.blocks)) - 1,
CurrentBlock: uint64(len(chainB.blocks) - 1),
HighestBlock: uint64(len(chainB.blocks) - 1),
})
}
// Tests that if synchronisation is aborted due to some failure, then the progress
// origin is not updated in the next sync cycle, as it should be considered the
// continuation of the previous sync and not a new instance.
func TestFailedSyncProgress66Full(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, FullSync) }
func TestFailedSyncProgress66Snap(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, SnapSync) }
func TestFailedSyncProgress66Light(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, LightSync) }
func TestFailedSyncProgress67Full(t *testing.T) { testFailedSyncProgress(t, eth.ETH67, FullSync) }
func TestFailedSyncProgress67Snap(t *testing.T) { testFailedSyncProgress(t, eth.ETH67, SnapSync) }
func TestFailedSyncProgress67Light(t *testing.T) { testFailedSyncProgress(t, eth.ETH67, LightSync) }
func testFailedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Attempt a full sync with a faulty peer
missing := len(chain.blocks)/2 - 1
faulter := tester.newPeer("faulty", protocol, chain.blocks[1:])
faulter.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{}
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("faulty", nil, mode); err == nil {
2017-08-06 05:54:25 +00:00
panic("succeeded faulty synchronisation")
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks) - 1),
})
progress <- struct{}{}
pending.Wait()
afterFailedSync := tester.downloader.Progress()
// Synchronise with a good peer and check that the progress origin remind the same
// after a failure
tester.newPeer("valid", protocol, chain.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("valid", nil, mode); err != nil {
2017-08-06 05:54:25 +00:00
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", afterFailedSync)
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
CurrentBlock: uint64(len(chain.blocks) - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
})
}
// Tests that if an attacker fakes a chain height, after the attack is detected,
// the progress height is successfully reduced at the next sync invocation.
func TestFakedSyncProgress66Full(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, FullSync) }
func TestFakedSyncProgress66Snap(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, SnapSync) }
func TestFakedSyncProgress66Light(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, LightSync) }
func TestFakedSyncProgress67Full(t *testing.T) { testFakedSyncProgress(t, eth.ETH67, FullSync) }
func TestFakedSyncProgress67Snap(t *testing.T) { testFakedSyncProgress(t, eth.ETH67, SnapSync) }
func TestFakedSyncProgress67Light(t *testing.T) { testFakedSyncProgress(t, eth.ETH67, LightSync) }
func testFakedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Create and sync with an attacker that promises a higher chain than available.
attacker := tester.newPeer("attack", protocol, chain.blocks[1:])
numMissing := 5
for i := len(chain.blocks) - 2; i > len(chain.blocks)-numMissing; i-- {
attacker.withholdHeaders[chain.blocks[i].Hash()] = struct{}{}
}
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("attack", nil, mode); err == nil {
2017-08-06 05:54:25 +00:00
panic("succeeded attacker synchronisation")
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks) - 1),
})
progress <- struct{}{}
pending.Wait()
afterFailedSync := tester.downloader.Progress()
// Synchronise with a good peer and check that the progress height has been reduced to
// the true value.
validChain := chain.shorten(len(chain.blocks) - numMissing)
tester.newPeer("valid", protocol, validChain.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("valid", nil, mode); err != nil {
2017-08-06 05:54:25 +00:00
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{
CurrentBlock: afterFailedSync.CurrentBlock,
HighestBlock: uint64(len(validChain.blocks) - 1),
})
// Check final progress after successful sync.
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
CurrentBlock: uint64(len(validChain.blocks) - 1),
HighestBlock: uint64(len(validChain.blocks) - 1),
})
}
2018-11-12 13:18:56 +00:00
func TestRemoteHeaderRequestSpan(t *testing.T) {
testCases := []struct {
remoteHeight uint64
localHeight uint64
expected []int
}{
// Remote is way higher. We should ask for the remote head and go backwards
{1500, 1000,
[]int{1323, 1339, 1355, 1371, 1387, 1403, 1419, 1435, 1451, 1467, 1483, 1499},
},
{15000, 13006,
[]int{14823, 14839, 14855, 14871, 14887, 14903, 14919, 14935, 14951, 14967, 14983, 14999},
},
// Remote is pretty close to us. We don't have to fetch as many
2018-11-12 13:18:56 +00:00
{1200, 1150,
[]int{1149, 1154, 1159, 1164, 1169, 1174, 1179, 1184, 1189, 1194, 1199},
},
// Remote is equal to us (so on a fork with higher td)
// We should get the closest couple of ancestors
{1500, 1500,
[]int{1497, 1499},
},
// We're higher than the remote! Odd
{1000, 1500,
[]int{997, 999},
},
// Check some weird edgecases that it behaves somewhat rationally
{0, 1500,
[]int{0, 2},
},
{6000000, 0,
[]int{5999823, 5999839, 5999855, 5999871, 5999887, 5999903, 5999919, 5999935, 5999951, 5999967, 5999983, 5999999},
},
{0, 0,
[]int{0, 2},
},
}
reqs := func(from, count, span int) []int {
var r []int
num := from
for len(r) < count {
r = append(r, num)
num += span + 1
}
return r
}
for i, tt := range testCases {
from, count, span, max := calculateRequestSpan(tt.remoteHeight, tt.localHeight)
data := reqs(int(from), count, span)
if max != uint64(data[len(data)-1]) {
t.Errorf("test %d: wrong last value %d != %d", i, data[len(data)-1], max)
}
failed := false
if len(data) != len(tt.expected) {
failed = true
t.Errorf("test %d: length wrong, expected %d got %d", i, len(tt.expected), len(data))
} else {
for j, n := range data {
if n != tt.expected[j] {
failed = true
break
}
}
}
if failed {
res := strings.ReplaceAll(fmt.Sprint(data), " ", ",")
exp := strings.ReplaceAll(fmt.Sprint(tt.expected), " ", ",")
t.Logf("got: %v\n", res)
t.Logf("exp: %v\n", exp)
2018-11-12 13:18:56 +00:00
t.Errorf("test %d: wrong values", i)
}
}
}
// Tests that peers below a pre-configured checkpoint block are prevented from
// being fast-synced from, avoiding potential cheap eclipse attacks.
func TestCheckpointEnforcement66Full(t *testing.T) { testCheckpointEnforcement(t, eth.ETH66, FullSync) }
func TestCheckpointEnforcement66Snap(t *testing.T) { testCheckpointEnforcement(t, eth.ETH66, SnapSync) }
func TestCheckpointEnforcement66Light(t *testing.T) {
testCheckpointEnforcement(t, eth.ETH66, LightSync)
}
func TestCheckpointEnforcement67Full(t *testing.T) { testCheckpointEnforcement(t, eth.ETH67, FullSync) }
func TestCheckpointEnforcement67Snap(t *testing.T) { testCheckpointEnforcement(t, eth.ETH67, SnapSync) }
func TestCheckpointEnforcement67Light(t *testing.T) {
testCheckpointEnforcement(t, eth.ETH67, LightSync)
}
func testCheckpointEnforcement(t *testing.T, protocol uint, mode SyncMode) {
// Create a new tester with a particular hard coded checkpoint block
tester := newTester(t)
defer tester.terminate()
tester.downloader.checkpoint = uint64(fsMinFullBlocks) + 256
chain := testChainBase.shorten(int(tester.downloader.checkpoint) - 1)
// Attempt to sync with the peer and validate the result
tester.newPeer("peer", protocol, chain.blocks[1:])
var expect error
if mode == SnapSync || mode == LightSync {
expect = errUnsyncedPeer
}
if err := tester.sync("peer", nil, mode); !errors.Is(err, expect) {
t.Fatalf("block sync error mismatch: have %v, want %v", err, expect)
}
if mode == SnapSync || mode == LightSync {
assertOwnChain(t, tester, 1)
} else {
assertOwnChain(t, tester, len(chain.blocks))
}
}
// Tests that peers below a pre-configured checkpoint block are prevented from
// being fast-synced from, avoiding potential cheap eclipse attacks.
func TestBeaconSync66Full(t *testing.T) { testBeaconSync(t, eth.ETH66, FullSync) }
func TestBeaconSync66Snap(t *testing.T) { testBeaconSync(t, eth.ETH66, SnapSync) }
func testBeaconSync(t *testing.T, protocol uint, mode SyncMode) {
//log.Root().SetHandler(log.LvlFilterHandler(log.LvlInfo, log.StreamHandler(os.Stderr, log.TerminalFormat(true))))
var cases = []struct {
name string // The name of testing scenario
local int // The length of local chain(canonical chain assumed), 0 means genesis is the head
}{
{name: "Beacon sync since genesis", local: 0},
{name: "Beacon sync with short local chain", local: 1},
{name: "Beacon sync with long local chain", local: blockCacheMaxItems - 15 - fsMinFullBlocks/2},
{name: "Beacon sync with full local chain", local: blockCacheMaxItems - 15 - 1},
}
for _, c := range cases {
t.Run(c.name, func(t *testing.T) {
success := make(chan struct{})
tester := newTesterWithNotification(t, func() {
close(success)
})
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
tester.newPeer("peer", protocol, chain.blocks[1:])
// Build the local chain segment if it's required
if c.local > 0 {
tester.chain.InsertChain(chain.blocks[1 : c.local+1])
}
if err := tester.downloader.BeaconSync(mode, chain.blocks[len(chain.blocks)-1].Header()); err != nil {
t.Fatalf("Failed to beacon sync chain %v %v", c.name, err)
}
select {
case <-success:
// Ok, downloader fully cancelled after sync cycle
if bs := int(tester.chain.CurrentBlock().NumberU64()) + 1; bs != len(chain.blocks) {
t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, len(chain.blocks))
}
case <-time.NewTimer(time.Second * 3).C:
t.Fatalf("Failed to sync chain in three seconds")
}
})
}
}