go-ethereum/p2p/message.go

211 lines
5.4 KiB
Go
Raw Normal View History

2014-10-23 15:57:54 +00:00
package p2p
import (
2014-11-04 12:21:44 +00:00
"bytes"
2014-12-12 10:39:07 +00:00
"errors"
2015-01-05 16:10:42 +00:00
"fmt"
2014-11-04 12:21:44 +00:00
"io"
"io/ioutil"
"net"
"sync"
2014-12-12 10:39:07 +00:00
"sync/atomic"
"time"
2014-11-04 12:21:44 +00:00
"github.com/ethereum/go-ethereum/ethutil"
2014-11-24 18:02:48 +00:00
"github.com/ethereum/go-ethereum/rlp"
2014-10-23 15:57:54 +00:00
)
2014-11-04 12:21:44 +00:00
// Msg defines the structure of a p2p message.
//
// Note that a Msg can only be sent once since the Payload reader is
// consumed during sending. It is not possible to create a Msg and
// send it any number of times. If you want to reuse an encoded
// structure, encode the payload into a byte array and create a
// separate Msg with a bytes.Reader as Payload for each send.
2014-10-23 15:57:54 +00:00
type Msg struct {
Code uint64
2014-11-04 12:21:44 +00:00
Size uint32 // size of the paylod
Payload io.Reader
2014-10-23 15:57:54 +00:00
}
2014-11-04 12:21:44 +00:00
// NewMsg creates an RLP-encoded message with the given code.
func NewMsg(code uint64, params ...interface{}) Msg {
p := bytes.NewReader(ethutil.Encode(params))
return Msg{Code: code, Size: uint32(p.Len()), Payload: p}
2014-10-23 15:57:54 +00:00
}
2014-11-25 11:25:31 +00:00
// Decode parse the RLP content of a message into
// the given value, which must be a pointer.
//
// For the decoding rules, please see package rlp.
func (msg Msg) Decode(val interface{}) error {
if err := rlp.Decode(msg.Payload, val); err != nil {
2015-01-05 16:10:42 +00:00
return newPeerError(errInvalidMsg, "(code %#x) (size %d) %v", msg.Code, msg.Size, err)
}
return nil
}
func (msg Msg) String() string {
return fmt.Sprintf("msg #%v (%v bytes)", msg.Code, msg.Size)
2014-11-25 11:25:31 +00:00
}
2014-11-04 12:21:44 +00:00
// Discard reads any remaining payload data into a black hole.
func (msg Msg) Discard() error {
_, err := io.Copy(ioutil.Discard, msg.Payload)
return err
}
type MsgReader interface {
ReadMsg() (Msg, error)
}
type MsgWriter interface {
// WriteMsg sends a message. It will block until the message's
// Payload has been consumed by the other end.
//
// Note that messages can be sent only once because their
// payload reader is drained.
WriteMsg(Msg) error
}
// MsgReadWriter provides reading and writing of encoded messages.
// Implementations should ensure that ReadMsg and WriteMsg can be
// called simultaneously from multiple goroutines.
type MsgReadWriter interface {
MsgReader
MsgWriter
}
// EncodeMsg writes an RLP-encoded message with the given code and
// data elements.
func EncodeMsg(w MsgWriter, code uint64, data ...interface{}) error {
return w.WriteMsg(NewMsg(code, data...))
}
// netWrapper wrapsa MsgReadWriter with locks around
// ReadMsg/WriteMsg and applies read/write deadlines.
type netWrapper struct {
2015-02-27 03:06:55 +00:00
rmu, wmu sync.Mutex
rtimeout, wtimeout time.Duration
conn net.Conn
wrapped MsgReadWriter
2015-02-27 03:06:55 +00:00
}
func (rw *netWrapper) ReadMsg() (Msg, error) {
2015-02-27 03:06:55 +00:00
rw.rmu.Lock()
defer rw.rmu.Unlock()
rw.conn.SetReadDeadline(time.Now().Add(rw.rtimeout))
2015-02-27 03:06:55 +00:00
return rw.wrapped.ReadMsg()
}
func (rw *netWrapper) WriteMsg(msg Msg) error {
2015-02-27 03:06:55 +00:00
rw.wmu.Lock()
defer rw.wmu.Unlock()
rw.conn.SetWriteDeadline(time.Now().Add(rw.wtimeout))
2015-02-27 03:06:55 +00:00
return rw.wrapped.WriteMsg(msg)
}
// eofSignal wraps a reader with eof signaling. the eof channel is
// closed when the wrapped reader returns an error or when count bytes
// have been read.
type eofSignal struct {
wrapped io.Reader
count uint32 // number of bytes left
eof chan<- struct{}
}
// note: when using eofSignal to detect whether a message payload
// has been read, Read might not be called for zero sized messages.
func (r *eofSignal) Read(buf []byte) (int, error) {
if r.count == 0 {
if r.eof != nil {
r.eof <- struct{}{}
r.eof = nil
}
return 0, io.EOF
}
max := len(buf)
if int(r.count) < len(buf) {
max = int(r.count)
}
n, err := r.wrapped.Read(buf[:max])
r.count -= uint32(n)
if (err != nil || r.count == 0) && r.eof != nil {
r.eof <- struct{}{} // tell Peer that msg has been consumed
r.eof = nil
}
return n, err
}
2014-12-12 10:39:07 +00:00
// MsgPipe creates a message pipe. Reads on one end are matched
// with writes on the other. The pipe is full-duplex, both ends
// implement MsgReadWriter.
func MsgPipe() (*MsgPipeRW, *MsgPipeRW) {
var (
c1, c2 = make(chan Msg), make(chan Msg)
closing = make(chan struct{})
closed = new(int32)
rw1 = &MsgPipeRW{c1, c2, closing, closed}
rw2 = &MsgPipeRW{c2, c1, closing, closed}
)
return rw1, rw2
}
// ErrPipeClosed is returned from pipe operations after the
// pipe has been closed.
var ErrPipeClosed = errors.New("p2p: read or write on closed message pipe")
// MsgPipeRW is an endpoint of a MsgReadWriter pipe.
type MsgPipeRW struct {
w chan<- Msg
r <-chan Msg
closing chan struct{}
closed *int32
}
// WriteMsg sends a messsage on the pipe.
// It blocks until the receiver has consumed the message payload.
func (p *MsgPipeRW) WriteMsg(msg Msg) error {
if atomic.LoadInt32(p.closed) == 0 {
consumed := make(chan struct{}, 1)
msg.Payload = &eofSignal{msg.Payload, msg.Size, consumed}
2014-12-12 10:39:07 +00:00
select {
case p.w <- msg:
if msg.Size > 0 {
// wait for payload read or discard
<-consumed
}
return nil
case <-p.closing:
}
}
return ErrPipeClosed
}
// ReadMsg returns a message sent on the other end of the pipe.
func (p *MsgPipeRW) ReadMsg() (Msg, error) {
if atomic.LoadInt32(p.closed) == 0 {
select {
case msg := <-p.r:
return msg, nil
case <-p.closing:
}
}
return Msg{}, ErrPipeClosed
}
// Close unblocks any pending ReadMsg and WriteMsg calls on both ends
// of the pipe. They will return ErrPipeClosed. Note that Close does
// not interrupt any reads from a message payload.
func (p *MsgPipeRW) Close() error {
if atomic.AddInt32(p.closed, 1) != 1 {
// someone else is already closing
atomic.StoreInt32(p.closed, 1) // avoid overflow
return nil
}
close(p.closing)
return nil
}