121 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			121 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
 | 
						|
//
 | 
						|
// Use of this source code is governed by an MIT-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package sqlite3
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto/sha1"
 | 
						|
	"crypto/sha256"
 | 
						|
	"crypto/sha512"
 | 
						|
)
 | 
						|
 | 
						|
// This file provides several different implementations for the
 | 
						|
// default embedded sqlite_crypt function.
 | 
						|
// This function is uses a caesar-cypher by default
 | 
						|
// and is used within the UserAuthentication module to encode
 | 
						|
// the password.
 | 
						|
//
 | 
						|
// The provided functions can be used as an overload to the sqlite_crypt
 | 
						|
// function through the use of the RegisterFunc on the connection.
 | 
						|
//
 | 
						|
// Because the functions can serv a purpose to an end-user
 | 
						|
// without using the UserAuthentication module
 | 
						|
// the functions are default compiled in.
 | 
						|
//
 | 
						|
// From SQLITE3 - user-auth.txt
 | 
						|
// The sqlite_user.pw field is encoded by a built-in SQL function
 | 
						|
// "sqlite_crypt(X,Y)".  The two arguments are both BLOBs.  The first argument
 | 
						|
// is the plaintext password supplied to the sqlite3_user_authenticate()
 | 
						|
// interface.  The second argument is the sqlite_user.pw value and is supplied
 | 
						|
// so that the function can extract the "salt" used by the password encoder.
 | 
						|
// The result of sqlite_crypt(X,Y) is another blob which is the value that
 | 
						|
// ends up being stored in sqlite_user.pw.  To verify credentials X supplied
 | 
						|
// by the sqlite3_user_authenticate() routine, SQLite runs:
 | 
						|
//
 | 
						|
//     sqlite_user.pw == sqlite_crypt(X, sqlite_user.pw)
 | 
						|
//
 | 
						|
// To compute an appropriate sqlite_user.pw value from a new or modified
 | 
						|
// password X, sqlite_crypt(X,NULL) is run.  A new random salt is selected
 | 
						|
// when the second argument is NULL.
 | 
						|
//
 | 
						|
// The built-in version of of sqlite_crypt() uses a simple Caesar-cypher
 | 
						|
// which prevents passwords from being revealed by searching the raw database
 | 
						|
// for ASCII text, but is otherwise trivally broken.  For better password
 | 
						|
// security, the database should be encrypted using the SQLite Encryption
 | 
						|
// Extension or similar technology.  Or, the application can use the
 | 
						|
// sqlite3_create_function() interface to provide an alternative
 | 
						|
// implementation of sqlite_crypt() that computes a stronger password hash,
 | 
						|
// perhaps using a cryptographic hash function like SHA1.
 | 
						|
 | 
						|
// CryptEncoderSHA1 encodes a password with SHA1
 | 
						|
func CryptEncoderSHA1(pass []byte, hash interface{}) []byte {
 | 
						|
	h := sha1.Sum(pass)
 | 
						|
	return h[:]
 | 
						|
}
 | 
						|
 | 
						|
// CryptEncoderSSHA1 encodes a password with SHA1 with the
 | 
						|
// configured salt.
 | 
						|
func CryptEncoderSSHA1(salt string) func(pass []byte, hash interface{}) []byte {
 | 
						|
	return func(pass []byte, hash interface{}) []byte {
 | 
						|
		s := []byte(salt)
 | 
						|
		p := append(pass, s...)
 | 
						|
		h := sha1.Sum(p)
 | 
						|
		return h[:]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// CryptEncoderSHA256 encodes a password with SHA256
 | 
						|
func CryptEncoderSHA256(pass []byte, hash interface{}) []byte {
 | 
						|
	h := sha256.Sum256(pass)
 | 
						|
	return h[:]
 | 
						|
}
 | 
						|
 | 
						|
// CryptEncoderSSHA256 encodes a password with SHA256
 | 
						|
// with the configured salt
 | 
						|
func CryptEncoderSSHA256(salt string) func(pass []byte, hash interface{}) []byte {
 | 
						|
	return func(pass []byte, hash interface{}) []byte {
 | 
						|
		s := []byte(salt)
 | 
						|
		p := append(pass, s...)
 | 
						|
		h := sha256.Sum256(p)
 | 
						|
		return h[:]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// CryptEncoderSHA384 encodes a password with SHA384
 | 
						|
func CryptEncoderSHA384(pass []byte, hash interface{}) []byte {
 | 
						|
	h := sha512.Sum384(pass)
 | 
						|
	return h[:]
 | 
						|
}
 | 
						|
 | 
						|
// CryptEncoderSSHA384 encodes a password with SHA384
 | 
						|
// with the configured salt
 | 
						|
func CryptEncoderSSHA384(salt string) func(pass []byte, hash interface{}) []byte {
 | 
						|
	return func(pass []byte, hash interface{}) []byte {
 | 
						|
		s := []byte(salt)
 | 
						|
		p := append(pass, s...)
 | 
						|
		h := sha512.Sum384(p)
 | 
						|
		return h[:]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// CryptEncoderSHA512 encodes a password with SHA512
 | 
						|
func CryptEncoderSHA512(pass []byte, hash interface{}) []byte {
 | 
						|
	h := sha512.Sum512(pass)
 | 
						|
	return h[:]
 | 
						|
}
 | 
						|
 | 
						|
// CryptEncoderSSHA512 encodes a password with SHA512
 | 
						|
// with the configured salt
 | 
						|
func CryptEncoderSSHA512(salt string) func(pass []byte, hash interface{}) []byte {
 | 
						|
	return func(pass []byte, hash interface{}) []byte {
 | 
						|
		s := []byte(salt)
 | 
						|
		p := append(pass, s...)
 | 
						|
		h := sha512.Sum512(p)
 | 
						|
		return h[:]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// EOF
 |