// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Contains a batch of utility type declarations used by the tests. As the node // operates on unique types, a lot of them are needed to check various features. package statediff import ( "bytes" "fmt" "math/bits" "sync" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" sd "github.com/ethereum/go-ethereum/statediff" sdtrie "github.com/ethereum/go-ethereum/statediff/trie" sdtypes "github.com/ethereum/go-ethereum/statediff/types" "github.com/ethereum/go-ethereum/trie" iter "github.com/vulcanize/go-eth-state-node-iterator" ) var ( nullHashBytes = common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000000000") emptyNode, _ = rlp.EncodeToBytes([]byte{}) emptyContractRoot = crypto.Keccak256Hash(emptyNode) nullCodeHash = crypto.Keccak256Hash([]byte{}).Bytes() ) // Builder interface exposes the method for building a state diff between two blocks type Builder interface { BuildStateDiffObject(args sd.Args, params sd.Params) (sd.StateObject, error) BuildStateTrieObject(current *types.Block) (sd.StateObject, error) WriteStateDiffObject(args sd.StateRoots, params sd.Params, output sdtypes.StateNodeSink, codeOutput sdtypes.CodeSink) error } type builder struct { stateCache state.Database numWorkers uint } type iterPair struct { older, newer trie.NodeIterator } func resolveNode(it trie.NodeIterator, trieDB *trie.Database) (sdtypes.StateNode, []interface{}, error) { nodePath := make([]byte, len(it.Path())) copy(nodePath, it.Path()) node, err := trieDB.Node(it.Hash()) if err != nil { return sdtypes.StateNode{}, nil, err } var nodeElements []interface{} if err := rlp.DecodeBytes(node, &nodeElements); err != nil { return sdtypes.StateNode{}, nil, err } ty, err := sdtrie.CheckKeyType(nodeElements) if err != nil { return sdtypes.StateNode{}, nil, err } return sdtypes.StateNode{ NodeType: ty, Path: nodePath, NodeValue: node, }, nodeElements, nil } // convenience func stateNodeAppender(nodes *[]sdtypes.StateNode) sdtypes.StateNodeSink { return func(node sdtypes.StateNode) error { *nodes = append(*nodes, node) return nil } } func storageNodeAppender(nodes *[]sdtypes.StorageNode) sdtypes.StorageNodeSink { return func(node sdtypes.StorageNode) error { *nodes = append(*nodes, node) return nil } } func codeMappingAppender(data *[]sdtypes.CodeAndCodeHash) sdtypes.CodeSink { return func(c sdtypes.CodeAndCodeHash) error { *data = append(*data, c) return nil } } // NewBuilder is used to create a statediff builder func NewBuilder(stateCache state.Database, workers uint) (Builder, error) { if workers == 0 { workers = 1 } if bits.OnesCount(workers) != 1 { return nil, fmt.Errorf("workers must be a power of 2") } return &builder{ stateCache: stateCache, // state cache is safe for concurrent reads numWorkers: workers, }, nil } // BuildStateTrieObject builds a state trie object from the provided block func (sdb *builder) BuildStateTrieObject(current *types.Block) (sd.StateObject, error) { currentTrie, err := sdb.stateCache.OpenTrie(current.Root()) if err != nil { return sd.StateObject{}, fmt.Errorf("error creating trie for block %d: %v", current.Number(), err) } it := currentTrie.NodeIterator([]byte{}) stateNodes, codeAndCodeHashes, err := sdb.buildStateTrie(it) if err != nil { return sd.StateObject{}, fmt.Errorf("error collecting state nodes for block %d: %v", current.Number(), err) } return sd.StateObject{ BlockNumber: current.Number(), BlockHash: current.Hash(), Nodes: stateNodes, CodeAndCodeHashes: codeAndCodeHashes, }, nil } func (sdb *builder) buildStateTrie(it trie.NodeIterator) ([]sdtypes.StateNode, []sdtypes.CodeAndCodeHash, error) { stateNodes := make([]sdtypes.StateNode, 0) codeAndCodeHashes := make([]sdtypes.CodeAndCodeHash, 0) for it.Next(true) { // skip value nodes if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, nil, err } switch node.NodeType { case sdtypes.Leaf: var account types.StateAccount if err := rlp.DecodeBytes(nodeElements[1].([]byte), &account); err != nil { return nil, nil, fmt.Errorf("error decoding account for leaf node at path %x nerror: %v", node.Path, err) } partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] node.LeafKey = leafKey if !bytes.Equal(account.CodeHash, nullCodeHash) { var storageNodes []sdtypes.StorageNode err := sdb.buildStorageNodesEventual(account.Root, nil, true, storageNodeAppender(&storageNodes)) if err != nil { return nil, nil, fmt.Errorf("failed building eventual storage diffs for account %+v\r\nerror: %v", account, err) } node.StorageNodes = storageNodes // emit codehash => code mappings for cod codeHash := common.BytesToHash(account.CodeHash) code, err := sdb.stateCache.ContractCode(common.Hash{}, codeHash) if err != nil { return nil, nil, fmt.Errorf("failed to retrieve code for codehash %s\r\n error: %v", codeHash.String(), err) } codeAndCodeHashes = append(codeAndCodeHashes, sdtypes.CodeAndCodeHash{ Hash: codeHash, Code: code, }) } stateNodes = append(stateNodes, node) case sdtypes.Extension, sdtypes.Branch: stateNodes = append(stateNodes, node) default: return nil, nil, fmt.Errorf("unexpected node type %s", node.NodeType) } } return stateNodes, codeAndCodeHashes, it.Error() } // BuildStateDiffObject builds a statediff object from two blocks and the provided parameters func (sdb *builder) BuildStateDiffObject(args sd.Args, params sd.Params) (sd.StateObject, error) { var stateNodes []sdtypes.StateNode var codeAndCodeHashes []sdtypes.CodeAndCodeHash err := sdb.WriteStateDiffObject( sd.StateRoots{OldStateRoot: args.OldStateRoot, NewStateRoot: args.NewStateRoot}, params, stateNodeAppender(&stateNodes), codeMappingAppender(&codeAndCodeHashes)) if err != nil { return sd.StateObject{}, err } return sd.StateObject{ BlockHash: args.BlockHash, BlockNumber: args.BlockNumber, Nodes: stateNodes, CodeAndCodeHashes: codeAndCodeHashes, }, nil } // Writes a statediff object to output callback func (sdb *builder) WriteStateDiffObject(args sd.StateRoots, params sd.Params, output sdtypes.StateNodeSink, codeOutput sdtypes.CodeSink) error { if len(params.WatchedAddresses) > 0 { // if we are watching only specific accounts then we are only diffing leaf nodes log.Info("Ignoring intermediate state nodes because WatchedAddresses was passed") params.IntermediateStateNodes = false } // Load tries for old and new states oldTrie, err := sdb.stateCache.OpenTrie(args.OldStateRoot) if err != nil { return fmt.Errorf("error creating trie for old state root: %v", err) } newTrie, err := sdb.stateCache.OpenTrie(args.NewStateRoot) if err != nil { return fmt.Errorf("error creating trie for new state root: %v", err) } // Split old and new tries into corresponding subtrie iterators oldIterFac := iter.NewSubtrieIteratorFactory(oldTrie, sdb.numWorkers) newIterFac := iter.NewSubtrieIteratorFactory(newTrie, sdb.numWorkers) // Create iterators ahead of time to avoid race condition in state.Trie access // We do two state iterations per subtrie: one for new/updated nodes, // one for deleted/updated nodes; prepare 2 iterator instances for each task var iterPairs [][]iterPair for i := uint(0); i < sdb.numWorkers; i++ { iterPairs = append(iterPairs, []iterPair{ iterPair{older: oldIterFac.IteratorAt(i), newer: newIterFac.IteratorAt(i)}, iterPair{older: oldIterFac.IteratorAt(i), newer: newIterFac.IteratorAt(i)}, }) } // Dispatch workers to process trie data; sync and collect results here via channels nodeChan := make(chan sdtypes.StateNode) codeChan := make(chan sdtypes.CodeAndCodeHash) go func() { nodeSender := func(node sdtypes.StateNode) error { nodeChan <- node; return nil } codeSender := func(code sdtypes.CodeAndCodeHash) error { codeChan <- code; return nil } var wg sync.WaitGroup for w := uint(0); w < sdb.numWorkers; w++ { wg.Add(1) go func(worker uint) { defer wg.Done() sdb.buildStateDiff(iterPairs[worker], params, nodeSender, codeSender) }(w) } wg.Wait() close(nodeChan) close(codeChan) }() for nodeChan != nil || codeChan != nil { select { case node, more := <-nodeChan: if more { if err := output(node); err != nil { return err } } else { nodeChan = nil } case codeAndCodeHash, more := <-codeChan: if more { if err := codeOutput(codeAndCodeHash); err != nil { return err } } else { codeChan = nil } } } return nil } func (sdb *builder) buildStateDiff(args []iterPair, params sd.Params, output sdtypes.StateNodeSink, codeOutput sdtypes.CodeSink) error { // collect a slice of all the intermediate nodes that were touched and exist at B // a map of their leafkey to all the accounts that were touched and exist at B // and a slice of all the paths for the nodes in both of the above sets var diffAccountsAtB AccountMap var diffPathsAtB map[string]bool var err error if params.IntermediateStateNodes { diffAccountsAtB, diffPathsAtB, err = sdb.createdAndUpdatedStateWithIntermediateNodes(args[0], output) } else { diffAccountsAtB, diffPathsAtB, err = sdb.createdAndUpdatedState(args[0], params.WatchedAddresses) } if err != nil { return fmt.Errorf("error collecting createdAndUpdatedNodes: %v", err) } // collect a slice of all the nodes that existed at a path in A that doesn't exist in B // a map of their leafkey to all the accounts that were touched and exist at A diffAccountsAtA, err := sdb.deletedOrUpdatedState(args[1], diffPathsAtB, output) if err != nil { return fmt.Errorf("error collecting deletedOrUpdatedNodes: %v", err) } // collect and sort the leafkey keys for both account mappings into a slice createKeys := sortKeys(diffAccountsAtB) deleteKeys := sortKeys(diffAccountsAtA) // and then find the intersection of these keys // these are the leafkeys for the accounts which exist at both A and B but are different // this also mutates the passed in createKeys and deleteKeys, removing the intersection keys // and leaving the truly created or deleted keys in place updatedKeys := findIntersection(createKeys, deleteKeys) // build the diff nodes for the updated accounts using the mappings at both A and B as directed by the keys found as the intersection of the two err = sdb.buildAccountUpdates( diffAccountsAtB, diffAccountsAtA, updatedKeys, params.WatchedStorageSlots, params.IntermediateStorageNodes, output) if err != nil { return fmt.Errorf("error building diff for updated accounts: %v", err) } // build the diff nodes for created accounts err = sdb.buildAccountCreations(diffAccountsAtB, params.WatchedStorageSlots, params.IntermediateStorageNodes, output, codeOutput) if err != nil { return fmt.Errorf("error building diff for created accounts: %v", err) } return nil } // createdAndUpdatedState returns // a mapping of their leafkeys to all the accounts that exist in a different state at B than A // and a slice of the paths for all of the nodes included in both func (sdb *builder) createdAndUpdatedState(iters iterPair, watchedAddresses []common.Address) (AccountMap, map[string]bool, error) { diffPathsAtB := make(map[string]bool) diffAcountsAtB := make(AccountMap) it, _ := trie.NewDifferenceIterator(iters.older, iters.newer) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, nil, err } switch node.NodeType { case sdtypes.Leaf: // created vs updated is important for leaf nodes since we need to diff their storage // so we need to map all changed accounts at B to their leafkey, since account can change pathes but not leafkey var account types.StateAccount if err := rlp.DecodeBytes(nodeElements[1].([]byte), &account); err != nil { return nil, nil, fmt.Errorf("error decoding account for leaf node at path %x nerror: %v", node.Path, err) } partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if isWatchedAddress(watchedAddresses, leafKey) { diffAcountsAtB[common.Bytes2Hex(leafKey)] = accountWrapper{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, Account: &account, } } } // add both intermediate and leaf node paths to the list of diffPathsAtB diffPathsAtB[common.Bytes2Hex(node.Path)] = true } return diffAcountsAtB, diffPathsAtB, it.Error() } // createdAndUpdatedStateWithIntermediateNodes returns // a slice of all the intermediate nodes that exist in a different state at B than A // a mapping of their leafkeys to all the accounts that exist in a different state at B than A // and a slice of the paths for all of the nodes included in both func (sdb *builder) createdAndUpdatedStateWithIntermediateNodes(iters iterPair, output sdtypes.StateNodeSink) (AccountMap, map[string]bool, error) { diffPathsAtB := make(map[string]bool) diffAcountsAtB := make(AccountMap) it, _ := trie.NewDifferenceIterator(iters.older, iters.newer) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, nil, err } switch node.NodeType { case sdtypes.Leaf: // created vs updated is important for leaf nodes since we need to diff their storage // so we need to map all changed accounts at B to their leafkey, since account can change paths but not leafkey var account types.StateAccount if err := rlp.DecodeBytes(nodeElements[1].([]byte), &account); err != nil { return nil, nil, fmt.Errorf("error decoding account for leaf node at path %x nerror: %v", node.Path, err) } partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] diffAcountsAtB[common.Bytes2Hex(leafKey)] = accountWrapper{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, Account: &account, } case sdtypes.Extension, sdtypes.Branch: // create a diff for any intermediate node that has changed at b // created vs updated makes no difference for intermediate nodes since we do not need to diff storage if err := output(sdtypes.StateNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, }); err != nil { return nil, nil, err } default: return nil, nil, fmt.Errorf("unexpected node type %s", node.NodeType) } // add both intermediate and leaf node paths to the list of diffPathsAtB diffPathsAtB[common.Bytes2Hex(node.Path)] = true } return diffAcountsAtB, diffPathsAtB, it.Error() } // deletedOrUpdatedState returns a slice of all the paths that are emptied at B // and a mapping of their leafkeys to all the accounts that exist in a different state at A than B func (sdb *builder) deletedOrUpdatedState(iters iterPair, diffPathsAtB map[string]bool, output sdtypes.StateNodeSink) (AccountMap, error) { diffAccountAtA := make(AccountMap) it, _ := trie.NewDifferenceIterator(iters.newer, iters.older) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, err } switch node.NodeType { case sdtypes.Leaf: // map all different accounts at A to their leafkey var account types.StateAccount if err := rlp.DecodeBytes(nodeElements[1].([]byte), &account); err != nil { return nil, fmt.Errorf("error decoding account for leaf node at path %x nerror: %v", node.Path, err) } partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] diffAccountAtA[common.Bytes2Hex(leafKey)] = accountWrapper{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, Account: &account, } // if this node's path did not show up in diffPathsAtB // that means the node at this path was deleted (or moved) in B // emit an empty "removed" diff to signify as such if _, ok := diffPathsAtB[common.Bytes2Hex(node.Path)]; !ok { if err := output(sdtypes.StateNode{ Path: node.Path, NodeValue: []byte{}, NodeType: sdtypes.Removed, LeafKey: leafKey, }); err != nil { return nil, err } } case sdtypes.Extension, sdtypes.Branch: // if this node's path did not show up in diffPathsAtB // that means the node at this path was deleted (or moved) in B // emit an empty "removed" diff to signify as such if _, ok := diffPathsAtB[common.Bytes2Hex(node.Path)]; !ok { if err := output(sdtypes.StateNode{ Path: node.Path, NodeValue: []byte{}, NodeType: sdtypes.Removed, }); err != nil { return nil, err } } // fall through, we did everything we need to do with these node types default: return nil, fmt.Errorf("unexpected node type %s", node.NodeType) } } return diffAccountAtA, it.Error() } // buildAccountUpdates uses the account diffs maps for A => B and B => A and the known intersection of their leafkeys // to generate the statediff node objects for all of the accounts that existed at both A and B but in different states // needs to be called before building account creations and deletions as this mutates // those account maps to remove the accounts which were updated func (sdb *builder) buildAccountUpdates(creations, deletions AccountMap, updatedKeys []string, watchedStorageKeys []common.Hash, intermediateStorageNodes bool, output sdtypes.StateNodeSink) error { var err error for _, key := range updatedKeys { createdAcc := creations[key] deletedAcc := deletions[key] var storageDiffs []sdtypes.StorageNode if deletedAcc.Account != nil && createdAcc.Account != nil { oldSR := deletedAcc.Account.Root newSR := createdAcc.Account.Root err = sdb.buildStorageNodesIncremental(oldSR, newSR, watchedStorageKeys, intermediateStorageNodes, storageNodeAppender(&storageDiffs)) if err != nil { return fmt.Errorf("failed building incremental storage diffs for account with leafkey %s\r\nerror: %v", key, err) } } if err = output(sdtypes.StateNode{ NodeType: createdAcc.NodeType, Path: createdAcc.Path, NodeValue: createdAcc.NodeValue, LeafKey: createdAcc.LeafKey, StorageNodes: storageDiffs, }); err != nil { return err } delete(creations, key) delete(deletions, key) } return nil } // buildAccountCreations returns the statediff node objects for all the accounts that exist at B but not at A // it also returns the code and codehash for created contract accounts func (sdb *builder) buildAccountCreations(accounts AccountMap, watchedStorageKeys []common.Hash, intermediateStorageNodes bool, output sdtypes.StateNodeSink, codeOutput sdtypes.CodeSink) error { for _, val := range accounts { diff := sdtypes.StateNode{ NodeType: val.NodeType, Path: val.Path, LeafKey: val.LeafKey, NodeValue: val.NodeValue, } if !bytes.Equal(val.Account.CodeHash, nullCodeHash) { // For contract creations, any storage node contained is a diff var storageDiffs []sdtypes.StorageNode err := sdb.buildStorageNodesEventual(val.Account.Root, watchedStorageKeys, intermediateStorageNodes, storageNodeAppender(&storageDiffs)) if err != nil { return fmt.Errorf("failed building eventual storage diffs for node %x\r\nerror: %v", val.Path, err) } diff.StorageNodes = storageDiffs // emit codehash => code mappings for code codeHash := common.BytesToHash(val.Account.CodeHash) code, err := sdb.stateCache.ContractCode(common.Hash{}, codeHash) if err != nil { return fmt.Errorf("failed to retrieve code for codehash %s\r\n error: %v", codeHash.String(), err) } if err := codeOutput(sdtypes.CodeAndCodeHash{ Hash: codeHash, Code: code, }); err != nil { return err } } if err := output(diff); err != nil { return err } } return nil } // buildStorageNodesEventual builds the storage diff node objects for a created account // i.e. it returns all the storage nodes at this state, since there is no previous state func (sdb *builder) buildStorageNodesEventual(sr common.Hash, watchedStorageKeys []common.Hash, intermediateNodes bool, output sdtypes.StorageNodeSink) error { if bytes.Equal(sr.Bytes(), emptyContractRoot.Bytes()) { return nil } log.Debug("Storage Root For Eventual Diff", "root", sr.Hex()) sTrie, err := sdb.stateCache.OpenTrie(sr) if err != nil { log.Info("error in build storage diff eventual", "error", err) return err } it := sTrie.NodeIterator(make([]byte, 0)) err = sdb.buildStorageNodesFromTrie(it, watchedStorageKeys, intermediateNodes, output) if err != nil { return err } return nil } // buildStorageNodesFromTrie returns all the storage diff node objects in the provided node iterator // if any storage keys are provided it will only return those leaf nodes // including intermediate nodes can be turned on or off func (sdb *builder) buildStorageNodesFromTrie(it trie.NodeIterator, watchedStorageKeys []common.Hash, intermediateNodes bool, output sdtypes.StorageNodeSink) error { for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return err } switch node.NodeType { case sdtypes.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if isWatchedStorageKey(watchedStorageKeys, leafKey) { if err := output(sdtypes.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, }); err != nil { return err } } case sdtypes.Extension, sdtypes.Branch: if intermediateNodes { if err := output(sdtypes.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, }); err != nil { return err } } default: return fmt.Errorf("unexpected node type %s", node.NodeType) } } return it.Error() } // buildStorageNodesIncremental builds the storage diff node objects for all nodes that exist in a different state at B than A func (sdb *builder) buildStorageNodesIncremental(oldSR common.Hash, newSR common.Hash, watchedStorageKeys []common.Hash, intermediateNodes bool, output sdtypes.StorageNodeSink) error { if bytes.Equal(newSR.Bytes(), oldSR.Bytes()) { return nil } log.Debug("Storage Roots for Incremental Diff", "old", oldSR.Hex(), "new", newSR.Hex()) oldTrie, err := sdb.stateCache.OpenTrie(oldSR) if err != nil { return err } newTrie, err := sdb.stateCache.OpenTrie(newSR) if err != nil { return err } diffPathsAtB, err := sdb.createdAndUpdatedStorage(oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}), watchedStorageKeys, intermediateNodes, output) if err != nil { return err } err = sdb.deletedOrUpdatedStorage(oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}), diffPathsAtB, watchedStorageKeys, intermediateNodes, output) if err != nil { return err } return nil } func (sdb *builder) createdAndUpdatedStorage(a, b trie.NodeIterator, watchedKeys []common.Hash, intermediateNodes bool, output sdtypes.StorageNodeSink) (map[string]bool, error) { diffPathsAtB := make(map[string]bool) it, _ := trie.NewDifferenceIterator(a, b) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, err } switch node.NodeType { case sdtypes.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if isWatchedStorageKey(watchedKeys, leafKey) { if err := output(sdtypes.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, }); err != nil { return nil, err } } case sdtypes.Extension, sdtypes.Branch: if intermediateNodes { if err := output(sdtypes.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, }); err != nil { return nil, err } } default: return nil, fmt.Errorf("unexpected node type %s", node.NodeType) } diffPathsAtB[common.Bytes2Hex(node.Path)] = true } return diffPathsAtB, it.Error() } func (sdb *builder) deletedOrUpdatedStorage(a, b trie.NodeIterator, diffPathsAtB map[string]bool, watchedKeys []common.Hash, intermediateNodes bool, output sdtypes.StorageNodeSink) error { it, _ := trie.NewDifferenceIterator(b, a) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return err } // if this node path showed up in diffPathsAtB // that means this node was updated at B and we already have the updated diff for it // otherwise that means this node was deleted in B and we need to add a "removed" diff to represent that event if _, ok := diffPathsAtB[common.Bytes2Hex(node.Path)]; ok { continue } switch node.NodeType { case sdtypes.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if isWatchedStorageKey(watchedKeys, leafKey) { if err := output(sdtypes.StorageNode{ NodeType: sdtypes.Removed, Path: node.Path, NodeValue: []byte{}, LeafKey: leafKey, }); err != nil { return err } } case sdtypes.Extension, sdtypes.Branch: if intermediateNodes { if err := output(sdtypes.StorageNode{ NodeType: sdtypes.Removed, Path: node.Path, NodeValue: []byte{}, }); err != nil { return err } } default: return fmt.Errorf("unexpected node type %s", node.NodeType) } } return it.Error() } // isWatchedAddress is used to check if a state account corresponds to one of the addresses the builder is configured to watch func isWatchedAddress(watchedAddresses []common.Address, stateLeafKey []byte) bool { // If we aren't watching any specific addresses, we are watching everything if len(watchedAddresses) == 0 { return true } for _, addr := range watchedAddresses { addrHashKey := crypto.Keccak256(addr.Bytes()) if bytes.Equal(addrHashKey, stateLeafKey) { return true } } return false } // isWatchedStorageKey is used to check if a storage leaf corresponds to one of the storage slots the builder is configured to watch func isWatchedStorageKey(watchedKeys []common.Hash, storageLeafKey []byte) bool { // If we aren't watching any specific addresses, we are watching everything if len(watchedKeys) == 0 { return true } for _, hashKey := range watchedKeys { if bytes.Equal(hashKey.Bytes(), storageLeafKey) { return true } } return false }