// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Contains a batch of utility type declarations used by the tests. As the node // operates on unique types, a lot of them are needed to check various features. package statediff import ( "bytes" "fmt" "sync" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" iter "github.com/vulcanize/go-eth-state-node-iterator" sd "github.com/ethereum/go-ethereum/statediff" ) var ( nullHashBytes = common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000000000") emptyNode, _ = rlp.EncodeToBytes([]byte{}) emptyContractRoot = crypto.Keccak256Hash(emptyNode) ) // Builder interface exposes the method for building a state diff between two blocks type Builder interface { BuildStateDiffObject(args sd.Args, params sd.Params) (sd.StateObject, error) BuildStateTrieObject(current *types.Block) (sd.StateObject, error) } type builder struct { stateCache state.Database numWorkers uint } type iterPair struct { older, newer trie.NodeIterator } // NewBuilder is used to create a statediff builder func NewBuilder(stateCache state.Database, workers uint) Builder { if workers == 0 { workers = 1 } return &builder{ stateCache: stateCache, // state cache is safe for concurrent reads numWorkers: workers, } } // BuildStateTrieObject builds a state trie object from the provided block func (sdb *builder) BuildStateTrieObject(current *types.Block) (sd.StateObject, error) { currentTrie, err := sdb.stateCache.OpenTrie(current.Root()) if err != nil { return sd.StateObject{}, fmt.Errorf("error creating trie for block %d: %v", current.Number(), err) } it := currentTrie.NodeIterator([]byte{}) stateNodes, err := sdb.buildStateTrie(it) if err != nil { return sd.StateObject{}, fmt.Errorf("error collecting state nodes for block %d: %v", current.Number(), err) } return sd.StateObject{ BlockNumber: current.Number(), BlockHash: current.Hash(), Nodes: stateNodes, }, nil } func resolveNode(it trie.NodeIterator, trieDB *trie.Database) (sd.StateNode, []interface{}, error) { nodePath := make([]byte, len(it.Path())) copy(nodePath, it.Path()) node, err := trieDB.Node(it.Hash()) if err != nil { return sd.StateNode{}, nil, err } var nodeElements []interface{} if err := rlp.DecodeBytes(node, &nodeElements); err != nil { return sd.StateNode{}, nil, err } ty, err := sd.CheckKeyType(nodeElements) if err != nil { return sd.StateNode{}, nil, err } return sd.StateNode{ NodeType: ty, Path: nodePath, NodeValue: node, }, nodeElements, nil } func (sdb *builder) buildStateTrie(it trie.NodeIterator) ([]sd.StateNode, error) { stateNodes := make([]sd.StateNode, 0) for it.Next(true) { // skip value nodes if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, err } switch node.NodeType { case sd.Leaf: var account state.Account if err := rlp.DecodeBytes(nodeElements[1].([]byte), &account); err != nil { return nil, fmt.Errorf("error decoding account for leaf node at path %x nerror: %v", node.Path, err) } partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] storageNodes, err := sdb.buildStorageNodesEventual(account.Root, nil, true) if err != nil { return nil, fmt.Errorf("failed building eventual storage diffs for account %+v\r\nerror: %v", account, err) } stateNodes = append(stateNodes, sd.StateNode{ NodeType: node.NodeType, Path: node.Path, LeafKey: leafKey, NodeValue: node.NodeValue, StorageNodes: storageNodes, }) case sd.Extension, sd.Branch: stateNodes = append(stateNodes, sd.StateNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, }) default: return nil, fmt.Errorf("unexpected node type %s", node.NodeType) } } return stateNodes, it.Error() } // BuildStateDiff builds a statediff object from two blocks and the provided parameters func (sdb *builder) BuildStateDiffObject(args sd.Args, params sd.Params) (sd.StateObject, error) { if len(params.WatchedAddresses) > 0 { // if we are watching only specific accounts then we are only diffing leaf nodes log.Info("Ignoring intermediate state nodes because WatchedAddresses was passed") params.IntermediateStateNodes = false } // Load tries for old and new states oldTrie, err := sdb.stateCache.OpenTrie(args.OldStateRoot) if err != nil { return sd.StateObject{}, fmt.Errorf("error creating trie for old state root: %v", err) } newTrie, err := sdb.stateCache.OpenTrie(args.NewStateRoot) if err != nil { return sd.StateObject{}, fmt.Errorf("error creating trie for new state root: %v", err) } // Split old and new tries into corresponding subtrie iterators oldIterFac := iter.NewSubtrieIteratorFactory(oldTrie, sdb.numWorkers) newIterFac := iter.NewSubtrieIteratorFactory(newTrie, sdb.numWorkers) iterChan := make(chan []iterPair, sdb.numWorkers) // Create iterators ahead of time to avoid race condition in state.Trie access for i := uint(0); i < sdb.numWorkers; i++ { // two state iterations per diff build iterChan <- []iterPair{ iterPair{ older: oldIterFac.IteratorAt(i), newer: newIterFac.IteratorAt(i), }, iterPair{ older: oldIterFac.IteratorAt(i), newer: newIterFac.IteratorAt(i), }, } } nodeChan := make(chan []sd.StateNode) var wg sync.WaitGroup for w := uint(0); w < sdb.numWorkers; w++ { wg.Add(1) go func(iterChan <-chan []iterPair) error { defer wg.Done() if iters, more := <-iterChan; more { subtrieNodes, err := sdb.buildStateDiff(iters, params) if err != nil { return err } nodeChan <- subtrieNodes } return nil }(iterChan) } go func() { defer close(nodeChan) defer close(iterChan) wg.Wait() }() stateNodes := make([]sd.StateNode, 0) for subtrieNodes := range nodeChan { stateNodes = append(stateNodes, subtrieNodes...) } return sd.StateObject{ BlockHash: args.BlockHash, BlockNumber: args.BlockNumber, Nodes: stateNodes, }, nil } func (sdb *builder) buildStateDiff(args []iterPair, params sd.Params) ([]sd.StateNode, error) { // collect a slice of all the intermediate nodes that were touched and exist at B // a map of their leafkey to all the accounts that were touched and exist at B // and a slice of all the paths for the nodes in both of the above sets createdOrUpdatedIntermediateNodes, diffAccountsAtB, diffPathsAtB, err := sdb.createdAndUpdatedState( args[0], params.WatchedAddresses, params.IntermediateStateNodes) if err != nil { return nil, fmt.Errorf("error collecting createdAndUpdatedNodes: %v", err) } // collect a slice of all the nodes that existed at a path in A that doesn't exist in B // a map of their leafkey to all the accounts that were touched and exist at A emptiedPaths, diffAccountsAtA, err := sdb.deletedOrUpdatedState(args[1], diffPathsAtB) if err != nil { return nil, fmt.Errorf("error collecting deletedOrUpdatedNodes: %v", err) } // collect and sort the leafkey keys for both account mappings into a slice createKeys := sortKeys(diffAccountsAtB) deleteKeys := sortKeys(diffAccountsAtA) // and then find the intersection of these keys // these are the leafkeys for the accounts which exist at both A and B but are different // this also mutates the passed in createKeys and deleteKeys, removing the intersection keys // and leaving the truly created or deleted keys in place updatedKeys := findIntersection(createKeys, deleteKeys) // build the diff nodes for the updated accounts using the mappings at both A and B // as directed by the keys found as the intersection of the two updatedAccounts, err := sdb.buildAccountUpdates( diffAccountsAtB, diffAccountsAtA, updatedKeys, params.WatchedStorageSlots, params.IntermediateStorageNodes) if err != nil { return nil, fmt.Errorf("error building diff for updated accounts: %v", err) } // build the diff nodes for created accounts createdAccounts, err := sdb.buildAccountCreations( diffAccountsAtB, params.WatchedStorageSlots, params.IntermediateStorageNodes) if err != nil { return nil, fmt.Errorf("error building diff for created accounts: %v", err) } // assemble all of the nodes into the statediff object, including the intermediate nodes res := append( append( append(updatedAccounts, createdAccounts...), createdOrUpdatedIntermediateNodes..., ), emptiedPaths...) var paths [][]byte for _, n := range res { paths = append(paths, n.Path) } return res, nil } // createdAndUpdatedState returns // a slice of all the intermediate nodes that exist in a different state at B than A // a mapping of their leafkeys to all the accounts that exist in a different state at B than A // and a slice of the paths for all of the nodes included in both func (sdb *builder) createdAndUpdatedState(iters iterPair, watchedAddresses []common.Address, intermediates bool) ([]sd.StateNode, AccountMap, map[string]bool, error) { createdOrUpdatedIntermediateNodes := make([]sd.StateNode, 0) diffPathsAtB := make(map[string]bool) diffAcountsAtB := make(AccountMap) it, _ := trie.NewDifferenceIterator(iters.older, iters.newer) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, nil, nil, err } switch node.NodeType { case sd.Leaf: // created vs updated is important for leaf nodes since we need to diff their storage // so we need to map all changed accounts at B to their leafkey, since account can change pathes but not leafkey var account state.Account if err := rlp.DecodeBytes(nodeElements[1].([]byte), &account); err != nil { return nil, nil, nil, fmt.Errorf("error decoding account for leaf node at path %x nerror: %v", node.Path, err) } partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if isWatchedAddress(watchedAddresses, leafKey) { diffAcountsAtB[common.Bytes2Hex(leafKey)] = accountWrapper{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, Account: &account, } } case sd.Extension, sd.Branch: // create a diff for any intermediate node that has changed at b // created vs updated makes no difference for intermediate nodes since we do not need to diff storage if intermediates { createdOrUpdatedIntermediateNodes = append(createdOrUpdatedIntermediateNodes, sd.StateNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, }) } default: return nil, nil, nil, fmt.Errorf("unexpected node type %s", node.NodeType) } // add both intermediate and leaf node paths to the list of diffPathsAtB diffPathsAtB[common.Bytes2Hex(node.Path)] = true } return createdOrUpdatedIntermediateNodes, diffAcountsAtB, diffPathsAtB, it.Error() } // deletedOrUpdatedState returns a slice of all the paths that are emptied at B // and a mapping of their leafkeys to all the accounts that exist in a different state at A than B func (sdb *builder) deletedOrUpdatedState(iters iterPair, diffPathsAtB map[string]bool) ([]sd.StateNode, AccountMap, error) { emptiedPaths := make([]sd.StateNode, 0) diffAccountAtA := make(AccountMap) it, _ := trie.NewDifferenceIterator(iters.newer, iters.older) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, nil, err } // if this nodePath did not show up in diffPathsAtB // that means the node at this path was deleted (or moved) in B // emit an empty "removed" diff to signify as such if _, ok := diffPathsAtB[common.Bytes2Hex(node.Path)]; !ok { emptiedPaths = append(emptiedPaths, sd.StateNode{ Path: node.Path, NodeValue: []byte{}, NodeType: sd.Removed, }) } switch node.NodeType { case sd.Leaf: // map all different accounts at A to their leafkey var account state.Account if err := rlp.DecodeBytes(nodeElements[1].([]byte), &account); err != nil { return nil, nil, fmt.Errorf("error decoding account for leaf node at path %x nerror: %v", node.Path, err) } partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] diffAccountAtA[common.Bytes2Hex(leafKey)] = accountWrapper{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, Account: &account, } case sd.Extension, sd.Branch: // fall through, we did everything we need to do with these node types default: return nil, nil, fmt.Errorf("unexpected node type %s", node.NodeType) } } return emptiedPaths, diffAccountAtA, it.Error() } // buildAccountUpdates uses the account diffs maps for A => B and B => A and the known intersection of their leafkeys // to generate the statediff node objects for all of the accounts that existed at both A and B but in different states // needs to be called before building account creations and deletions as this mutates // those account maps to remove the accounts which were updated func (sdb *builder) buildAccountUpdates(creations, deletions AccountMap, updatedKeys []string, watchedStorageKeys []common.Hash, intermediateStorageNodes bool) ([]sd.StateNode, error) { updatedAccounts := make([]sd.StateNode, 0, len(updatedKeys)) var err error for _, key := range updatedKeys { createdAcc := creations[key] deletedAcc := deletions[key] var storageDiffs []sd.StorageNode if deletedAcc.Account != nil && createdAcc.Account != nil { oldSR := deletedAcc.Account.Root newSR := createdAcc.Account.Root storageDiffs, err = sdb.buildStorageNodesIncremental(oldSR, newSR, watchedStorageKeys, intermediateStorageNodes) if err != nil { return nil, fmt.Errorf("failed building incremental storage diffs for account with leafkey %s\r\nerror: %v", key, err) } } updatedAccounts = append(updatedAccounts, sd.StateNode{ NodeType: createdAcc.NodeType, Path: createdAcc.Path, NodeValue: createdAcc.NodeValue, LeafKey: createdAcc.LeafKey, StorageNodes: storageDiffs, }) delete(creations, key) delete(deletions, key) } return updatedAccounts, nil } // buildAccountCreations returns the statediff node objects for all the accounts that exist at B but not at A func (sdb *builder) buildAccountCreations(accounts AccountMap, watchedStorageKeys []common.Hash, intermediateStorageNodes bool) ([]sd.StateNode, error) { accountDiffs := make([]sd.StateNode, 0, len(accounts)) for _, val := range accounts { // For account creations, any storage node contained is a diff storageDiffs, err := sdb.buildStorageNodesEventual(val.Account.Root, watchedStorageKeys, intermediateStorageNodes) if err != nil { return nil, fmt.Errorf("failed building eventual storage diffs for node %x\r\nerror: %v", val.Path, err) } accountDiffs = append(accountDiffs, sd.StateNode{ NodeType: val.NodeType, Path: val.Path, LeafKey: val.LeafKey, NodeValue: val.NodeValue, StorageNodes: storageDiffs, }) } return accountDiffs, nil } // buildStorageNodesEventual builds the storage diff node objects for a created account // i.e. it returns all the storage nodes at this state, since there is no previous state func (sdb *builder) buildStorageNodesEventual(sr common.Hash, watchedStorageKeys []common.Hash, intermediateNodes bool) ([]sd.StorageNode, error) { if bytes.Equal(sr.Bytes(), emptyContractRoot.Bytes()) { return nil, nil } log.Debug("Storage Root For Eventual Diff", "root", sr, sr.Hex()) sTrie, err := sdb.stateCache.OpenTrie(sr) if err != nil { log.Info("error in build storage diff eventual", "error", err) return nil, err } it := sTrie.NodeIterator(make([]byte, 0)) return sdb.buildStorageNodesFromTrie(it, watchedStorageKeys, intermediateNodes) } // buildStorageNodesFromTrie returns all the storage diff node objects in the provided node iterator // if any storage keys are provided it will only return those leaf nodes // including intermediate nodes can be turned on or off func (sdb *builder) buildStorageNodesFromTrie(it trie.NodeIterator, watchedStorageKeys []common.Hash, intermediateNodes bool) ([]sd.StorageNode, error) { storageDiffs := make([]sd.StorageNode, 0) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, err } switch node.NodeType { case sd.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if isWatchedStorageKey(watchedStorageKeys, leafKey) { storageDiffs = append(storageDiffs, sd.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, }) } case sd.Extension, sd.Branch: if intermediateNodes { storageDiffs = append(storageDiffs, sd.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, }) } default: return nil, fmt.Errorf("unexpected node type %s", node.NodeType) } } return storageDiffs, it.Error() } // buildStorageNodesIncremental builds the storage diff node objects for all nodes that exist in a different state at B than A func (sdb *builder) buildStorageNodesIncremental(oldSR common.Hash, newSR common.Hash, watchedStorageKeys []common.Hash, intermediateNodes bool) ([]sd.StorageNode, error) { if bytes.Equal(newSR.Bytes(), oldSR.Bytes()) { return nil, nil } log.Debug("Storage Roots for Incremental Diff", "old", oldSR.Hex(), "new", newSR.Hex()) oldTrie, err := sdb.stateCache.OpenTrie(oldSR) if err != nil { return nil, err } newTrie, err := sdb.stateCache.OpenTrie(newSR) if err != nil { return nil, err } createdOrUpdatedStorage, diffPathsAtB, err := sdb.createdAndUpdatedStorage(oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}), watchedStorageKeys, intermediateNodes) if err != nil { return nil, err } deletedStorage, err := sdb.deletedOrUpdatedStorage(oldTrie.NodeIterator([]byte{}), newTrie.NodeIterator([]byte{}), diffPathsAtB, watchedStorageKeys, intermediateNodes) if err != nil { return nil, err } return append(createdOrUpdatedStorage, deletedStorage...), nil } func (sdb *builder) createdAndUpdatedStorage(a, b trie.NodeIterator, watchedKeys []common.Hash, intermediateNodes bool) ([]sd.StorageNode, map[string]bool, error) { createdOrUpdatedStorage := make([]sd.StorageNode, 0) diffPathsAtB := make(map[string]bool) it, _ := trie.NewDifferenceIterator(a, b) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, nil, err } switch node.NodeType { case sd.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if isWatchedStorageKey(watchedKeys, leafKey) { createdOrUpdatedStorage = append(createdOrUpdatedStorage, sd.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, LeafKey: leafKey, }) } case sd.Extension, sd.Branch: if intermediateNodes { createdOrUpdatedStorage = append(createdOrUpdatedStorage, sd.StorageNode{ NodeType: node.NodeType, Path: node.Path, NodeValue: node.NodeValue, }) } default: return nil, nil, fmt.Errorf("unexpected node type %s", node.NodeType) } diffPathsAtB[common.Bytes2Hex(node.Path)] = true } return createdOrUpdatedStorage, diffPathsAtB, it.Error() } func (sdb *builder) deletedOrUpdatedStorage(a, b trie.NodeIterator, diffPathsAtB map[string]bool, watchedKeys []common.Hash, intermediateNodes bool) ([]sd.StorageNode, error) { deletedStorage := make([]sd.StorageNode, 0) it, _ := trie.NewDifferenceIterator(b, a) for it.Next(true) { if it.Leaf() || bytes.Equal(nullHashBytes, it.Hash().Bytes()) { continue } node, nodeElements, err := resolveNode(it, sdb.stateCache.TrieDB()) if err != nil { return nil, err } // if this node path showed up in diffPathsAtB // that means this node was updated at B and we already have the updated diff for it // otherwise that means this node was deleted in B and we need to add a "removed" diff to represent that event if _, ok := diffPathsAtB[common.Bytes2Hex(node.Path)]; ok { continue } switch node.NodeType { case sd.Leaf: partialPath := trie.CompactToHex(nodeElements[0].([]byte)) valueNodePath := append(node.Path, partialPath...) encodedPath := trie.HexToCompact(valueNodePath) leafKey := encodedPath[1:] if isWatchedStorageKey(watchedKeys, leafKey) { deletedStorage = append(deletedStorage, sd.StorageNode{ NodeType: sd.Removed, Path: node.Path, NodeValue: []byte{}, }) } case sd.Extension, sd.Branch: if intermediateNodes { deletedStorage = append(deletedStorage, sd.StorageNode{ NodeType: sd.Removed, Path: node.Path, NodeValue: []byte{}, }) } default: return nil, fmt.Errorf("unexpected node type %s", node.NodeType) } } return deletedStorage, it.Error() } // isWatchedAddress is used to check if a state account corresponds to one of the addresses the builder is configured to watch func isWatchedAddress(watchedAddresses []common.Address, stateLeafKey []byte) bool { // If we aren't watching any specific addresses, we are watching everything if len(watchedAddresses) == 0 { return true } for _, addr := range watchedAddresses { addrHashKey := crypto.Keccak256(addr.Bytes()) if bytes.Equal(addrHashKey, stateLeafKey) { return true } } return false } // isWatchedStorageKey is used to check if a storage leaf corresponds to one of the storage slots the builder is configured to watch func isWatchedStorageKey(watchedKeys []common.Hash, storageLeafKey []byte) bool { // If we aren't watching any specific addresses, we are watching everything if len(watchedKeys) == 0 { return true } for _, hashKey := range watchedKeys { if bytes.Equal(hashKey.Bytes(), storageLeafKey) { return true } } return false }