c0c56e4c48
Co-authored-by: bwallacee <ben@vega.xyz> |
||
---|---|---|
.github | ||
.husky | ||
.vscode | ||
apps | ||
docker | ||
libs | ||
scripts | ||
specs | ||
tools | ||
vegacapsule | ||
.dockerignore | ||
.editorconfig | ||
.eslintignore | ||
.eslintrc.json | ||
.gitattributes | ||
.gitignore | ||
.nvmrc | ||
.prettierignore | ||
.prettierrc | ||
.sentryclirc | ||
babel.config.json | ||
CODEOWNERS | ||
commitlint.config-ci.js | ||
commitlint.config.js | ||
env-config.js | ||
Jenkinsfile | ||
jest.config.ts | ||
jest.preset.js | ||
LICENSE | ||
Makefile | ||
migrations.json | ||
nx.json | ||
package.json | ||
README.md | ||
tsconfig.base.json | ||
yarn.lock |
Vega front-end monorepo
The front-end monorepo provides a toolkit for building apps that interact with Vega, as well as the apps themselves.
This repository is managed using Nx.
🔎 Applications in this repo
Block explorer
The Vega block explorer provides an interface that allows users to search for and see transactions, blocks, parties, assets, markets and more on the Vega chain.
Trading UI
The trading interface built based on a component toolkit. It will provide a way for participants to interact with markets and provide resources for others to build additional open-source user interfaces.
Token
The utility dApp for interacting with the Vega token and using its' utility. This includes; delegation, nomination, governance and redemption of tokens.
Explorer
The block explorer for the Vega network, showing details of raw chain states and the state of markets on the Vega network.
Static
Hosting for static content being shared across apps, for example fonts.
Multisig-signer
The utility dApp for validators wishing to add or remove themselves as a signer of the multisig contract.
🧱 Libraries in this repo
UI toolkit
The UI toolkit contains a set of components used to build interfaces that can interact with the Vega protocol, and follow the design style of the project.
It contains a storybook that can be served with yarn nx run ui-toolkit:storybook
.
Tailwind CSS config
The Tailwind CSS config contains theme that align default config with Vega design system.
Cypress
For shared Cypress logic, commands and steps.
Web3
A utility library for connecting to the Ethereum network and interacting with Vega Web3 contracts.
React Helpers
Generic react helpers that can be used across multiple applications, along with other utilities.
💻 Develop
Set up
Check you have the correct version of Node. You can install NVM to switch between node versions. Then NVM install
.
Before you build you will need to yarn install
in the root directory.
The repository includes a number of template .env files for different networks. Copy from these to the .env file before serve
to launch app with different network. You can serve any application with yarn nx run <name-of-app>:serve
.
Build
Run nx build my-app
to build the project. The build artifacts will be stored in the dist/
directory. Use the --prod
flag for a production build.
Run nx serve my-app
for a dev server. Navigate to the port specified in app/<project-name>/project.json
. The app will automatically reload if you change any of the source files.
Using Apollo GraphQL and Generate Types
In order to generate the schemas for your GraphQL queries, you can run GRAPHQL_SCHEMA_PATH=[YOUR SCHEMA FILE / API URL HERE] nx run types:generate
.
export GRAPHQL_SCHEMA_PATH=https://api.n07.testnet.vega.xyz/graphql
yarn nx run types:generate
Running tests
Run yarn nx run <my-app>-e2e:e2e
to execute the e2e tests with cypress, or nx affected:e2e
will execute just the end-to-end tests affected by a change. You can use the --watch
flag to open the cypress tests UI in watch mode, see cypress executor for all CLI flags.
Run nx test my-app
to execute the unit tests with Jest, or nx affected:test
to execute just unit tests affected by a change. You can also use --watch
with these test to run jest in watch mode, see Jest executor for all CLI flags.
Using wallet
To run tests locally using your own wallets make sure you have generated at least two public keys and update the following environment variables in cypress.config.js
to match your wallet.
- Set
VEGA_PUBLIC_KEY
andTRUNCATED_VEGA_PUBLIC_KEY
to your first public key. - Set
VEGA_PUBLIC_KEY2
andTRUNCATED_VEGA_PUBLIC_KEY2
to your second public key. - Set
TRADING_TEST_VEGA_WALLET_PASSPHRASE
as your wallet passphrase - Add
ETH_WALLET_MNEMONIC
as your Ethereum wallet mnemonic
Formatting
In CI linting, formatting and also run. These checks can be seen in the CI workflow file.
- To fix linting errors locally run
yarn nx lint --fix
- To fix formatting errors local run
yarn nx format:write
- For either command you may use
--all
to run across the entire repository
Further help with Nx
Visit the Nx Documentation to learn more.
🐋 Hosting a console
To host a console there are two possible build scenarios for running the frontends: nx performed outside or inside docker build. For specific build instructions follow build instructions.
In order to run a container on port 3000:
docker run -p 3000:80 [TAG]
On top of that there are two possible scenarios for running docker image - using nginx server (default) of ipfs daemon.
to run ipfs on port 3000:
docker run -p 3000:80 [TAG] /run-ipfs.sh
to run nginx on port 3000:
docker run -p 3000:80 [TAG]
Build instructions
The docker
subfolder has some docker configurations for easily setting up your own hosted version of Console either for the web, or ready for pinning on IPFS.
nx build inside the docker
Using multistage dockerfile dist is compiled using node image and later packed to nginx as in dist build. The multistage builds ensures consistent CPU architecture and build toolchains are used so that the result will be identical.
docker build --build-arg APP=[YOUR APP] --build-arg NODE_VERSION=20.9.1 --build-arg ENV_NAME=mainnet -t [TAG] -f docker/node-inside-docker.Dockerfile .
Computing ipfs-hash of the build
At the moment this feature is important only for Console releases.
Each docker build finishes with hash calculation for dist`` directory. Resulting hash is added to file named as
/ipfs-hash`. Once docker image is produced you can run following commad to display ipfs-hash:
make recalculate-ipfs TAG=vegaprotocol/trading:{YOUR_VERSION}
updating hash: recompiling dist directory (even if there are no changed to source code) results in different hash computed by ipfs command.
nx build outside the docker
This Docker image packages a pre-built dist
folder into an nginx
(server configuration) docker image. In this case, the application on docker host machine from source.
As a prerequisite you need to perform build of dist
directory and move its content for specific application to dist-result
directory. Use following script to do it with a single command:
./docker/prepare-dist.sh
You can build any of the containers locally with the following command:
docker build -f docker/node-outside-docker.Dockerfile . --tag=[TAG]
Verifying ipfs-hash of existing current application version
An IPFS CID will be attached to every release. If you are intending to pin an application on IPFS, you can check that your build matches by running the following steps:
- Show latest release by running:
make latest-release
. You need to configuregh
for this step to work, otherwise please provide release manually from github or dockerhub - Set RELEASE environment variable to value that you want to validate:
export RELEASE=$(make latest-release)
orexport RELEASE=vXX.XX.XX
- Set TAG environment variable to image that you want to validate:
export TAG=vegaprotocol/trading:$RELEASE
- Download docker image with the desired release
docker pull $TAG
. - Recalculate hash:
make recalculate-ipfs
- You should see exactly same hash produced by ipfs command as one placed with the release notes:
make show-latest-release
- If you want to extract dist from docker image to your local filesystem you can run following command:
make unpack
- Now
dist
directory contains valid application build
Config
As environment variables are build time and not run time in frontend applications. We have built a system which allows for passing run time environment variables, this generates a JSON file that will override the default environment variables that the container was built with (which is always testnet, using the default .env files).
In order to override specific environment variables you can pass these to the container like this:
docker run -e NX_VEGA_URL=https://api.n04.d.vega.xyz/graphql -p 3000:80 [TAG]
Which will now point the app to use a devnet data node. To see a list of all possible config properties see the readme.md for each app in the app directory.
Vega capsule
Coming soon! You will be able to run the containers within Vega Capsule.
You can run against a local instance of Vega Capsule today by using the .env.capsule present in the apps.
If you wish to run E2E tests for Token and Block Explorer (other areas to be added soon)
- Vegacapsule must be used in order for these tests to succeed, the vegacapsule repo README.md file contains the steps required to set this up, it must be installed globally.
- However we start the capsule network a little differently to how it is laid out in those instructions:
In order to run the bootstrap command to generate and start a new network, we must do so using the following:
vegacapsule network bootstrap --config-path=../frontend-monorepo/vegacapsule/config.hcl
In order to setup and run vegawallet for e2e capsule tests, in a separate terminal window:
- cd into
./vegacapsule
- run:
bash setup-vegawallet.sh
- copy generated
api-token
and paste the token intoCYPRESS_VEGA_WALLET_API_TOKEN
environment variable in eitherapps/governance-e2e/.env
orapps/explorer-e2e/.env
depending on which project needs testing.
Note: The script is only needed if capsule was built for first time or fresh. To run existing wallet service for capsule:
vega wallet service run -n DV --load-tokens --tokens-passphrase-file passphrase --no-version-check --automatic-consent --home ~/.vegacapsule/testnet/wallet