lockdrop-simulation/lockdrop-calculations-simulated.ipynb
2025-08-04 14:10:17 +05:30

1176 lines
233 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "09975f67",
"metadata": {},
"source": [
"## Z Token Lockdrop Distribution"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a98eb34e",
"metadata": {},
"outputs": [],
"source": [
"from decimal import Decimal, ROUND_DOWN, getcontext\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import urbitob\n",
"import json\n",
"from collections import defaultdict\n",
"\n",
"# Set matplotlib style\n",
"plt.style.use('seaborn-v0_8')\n",
"sns.set_palette(\"husl\")\n",
"\n",
"# Configure matplotlib for high-quality plots\n",
"plt.rcParams['figure.figsize'] = (12, 8)\n",
"plt.rcParams['font.size'] = 11\n",
"plt.rcParams['axes.titlesize'] = 14\n",
"plt.rcParams['axes.labelsize'] = 12\n",
"plt.rcParams['xtick.labelsize'] = 10\n",
"plt.rcParams['ytick.labelsize'] = 10\n",
"plt.rcParams['legend.fontsize'] = 10\n",
"\n",
"# Fix font warnings by using DejaVu Sans which supports Unicode subscripts\n",
"# or fall back to a safe font\n",
"try:\n",
" plt.rcParams['font.family'] = 'DejaVu Sans'\n",
"except:\n",
" plt.rcParams['font.family'] = 'sans-serif'\n",
" plt.rcParams['font.sans-serif'] = ['DejaVu Sans', 'Liberation Sans', 'Arial', 'Helvetica']\n",
"\n",
"# Disable Unicode minus to avoid font issues\n",
"plt.rcParams['axes.unicode_minus'] = False\n",
"\n",
"getcontext().prec = 28\n",
"getcontext().rounding = ROUND_DOWN"
]
},
{
"cell_type": "markdown",
"id": "5aedd1ba",
"metadata": {},
"source": [
"### Constants"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a7e0a069-488c-4138-8e8c-30f7ecdb3eb1",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================================================================\n",
"📊 $Z LOCKDROP DISTRIBUTION - CORE CONSTANTS\n",
"================================================================================\n",
"\n",
"🔒 LOCKDROP ALLOCATION\n",
" Parameter Value\n",
"Total Supply (1 $Z per Urbit ID) 4,294,967,296\n",
" Lockdrop Allocation % 30.0%\n",
" Lockdrop Allocation ($Z) 1,288,490,188.8\n",
"\n",
"⭐ URBIT POINTS DISTRIBUTION\n",
"Point Type Count Allocation %\n",
" Galaxies 256 0.39%\n",
" Stars 65,280 99.61%\n",
" Planets 4,294,901,760 0%\n",
"\n",
"⏱️ LOCKDROP PARAMETERS\n",
" Parameter Value\n",
" Block Duration 2 seconds\n",
"Max Point Lock Duration (5 yrs) 157,788,000 seconds\n",
" Total Blocks 78,894,000\n",
" Star Allocation % 0.996093\n",
" Galaxy Allocation % 0.003906\n",
"\n",
"================================================================================\n"
]
}
],
"source": [
"# Constants\n",
"\n",
"TOKEN_PRECISION = Decimal('0.00000001') # 8 decimal precision\n",
"\n",
"# 1 $Z per Urbit ID\n",
"total_supply = 4294967296\n",
"\n",
"# 30%\n",
"lockdrop_allocation_percent = Decimal('0.3')\n",
"lockdrop_allocation = total_supply * lockdrop_allocation_percent\n",
"\n",
"# points\n",
"num_galaxies = pow(2, 8)\n",
"num_stars = pow(2, 16) - pow(2, 8)\n",
"num_planets = pow(2, 32) - pow(2, 16)\n",
"\n",
"# allocation distribution between galaxies and stars (equal distribution amongst these 2^16 points)\n",
"star_allocation_percent = Decimal(num_stars / pow(2, 16))\n",
"galaxy_allocation_percent = 1 - star_allocation_percent\n",
"\n",
"# lockdrop duration\n",
"# 5 years, including 1 leap year\n",
"lockdrop_duration_seconds = 5 * 365.25 * 24 * 60 *60\n",
"\n",
"# approximation\n",
"block_duration_seconds = 2\n",
"lockdrop_duration_blocks = int(lockdrop_duration_seconds / block_duration_seconds)\n",
"\n",
"####################################################\n",
"\n",
"# Display constants as tables\n",
"print(\"=\" * 80)\n",
"print(\"📊 $Z LOCKDROP DISTRIBUTION - CORE CONSTANTS\")\n",
"print(\"=\" * 80)\n",
"\n",
"# Lockdrop Allocation Table\n",
"lockdrop_df = pd.DataFrame({\n",
" 'Parameter': ['Total Supply (1 $Z per Urbit ID)', 'Lockdrop Allocation %', 'Lockdrop Allocation ($Z)'],\n",
" 'Value': [f\"{total_supply:,}\", f\"{lockdrop_allocation_percent:.1%}\", f\"{lockdrop_allocation:,.1f}\"]\n",
"})\n",
"print(\"\\n🔒 LOCKDROP ALLOCATION\")\n",
"print(lockdrop_df.to_string(index=False))\n",
"\n",
"# Points Distribution Table\n",
"points_df = pd.DataFrame({\n",
" 'Point Type': ['Galaxies', 'Stars', 'Planets'],\n",
" 'Count': [f\"{num_galaxies:,}\", f\"{num_stars:,}\", f\"{num_planets:,}\"],\n",
" 'Allocation %': ['0.39%', '99.61%', '0%']\n",
"})\n",
"print(\"\\n⭐ URBIT POINTS DISTRIBUTION\")\n",
"print(points_df.to_string(index=False))\n",
"\n",
"# Lockdrop Parameters Table\n",
"params_df = pd.DataFrame({\n",
" 'Parameter': ['Block Duration', 'Max Point Lock Duration (5 yrs)', 'Total Blocks', 'Star Allocation %', 'Galaxy Allocation %'],\n",
" 'Value': [f\"{block_duration_seconds} seconds\", f\"{lockdrop_duration_seconds:,.0f} seconds\",\n",
" f\"{lockdrop_duration_blocks:,}\", f\"{star_allocation_percent:.6f}\", f\"{galaxy_allocation_percent:.6f}\"]\n",
"})\n",
"print(\"\\n⏱ LOCKDROP PARAMETERS\")\n",
"print(params_df.to_string(index=False))\n",
"print(\"\\n\" + \"=\"*80)"
]
},
{
"cell_type": "markdown",
"id": "b5056dec",
"metadata": {},
"source": [
"### Calculations"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "933a4722-a007-4ca2-ae9f-142a73dc94fd",
"metadata": {},
"outputs": [],
"source": [
"# Calculations\n",
"\n",
"lockdrop_allocation_stars = lockdrop_allocation * star_allocation_percent\n",
"lockdrop_allocation_galaxies = lockdrop_allocation * galaxy_allocation_percent\n",
"\n",
"assert (lockdrop_allocation_stars + lockdrop_allocation_galaxies) == lockdrop_allocation, \"point allocation doesn't add up\"\n",
"\n",
"# Max allocation a star can get\n",
"max_allocation_per_star = lockdrop_allocation_stars / num_stars\n",
"max_allocation_per_galaxy = lockdrop_allocation_galaxies / num_galaxies\n",
"\n",
"# Quanta calculation\n",
"z_available_per_star_per_block = max_allocation_per_star / lockdrop_duration_blocks\n",
"z_available_per_galaxy_per_block = max_allocation_per_galaxy / lockdrop_duration_blocks\n",
"\n",
"# Round down z_available_per_star_per_block to 6 decimals\n",
"adjusted_z_per_star_per_block = z_available_per_star_per_block.quantize(Decimal('0.000001'), rounding=ROUND_DOWN)\n",
"adjusted_z_per_galaxy_per_block = z_available_per_galaxy_per_block.quantize(Decimal('0.000001'), rounding=ROUND_DOWN)\n",
"\n",
"# Adjusted max allocation a star can get\n",
"adjusted_max_allocation_per_star = adjusted_z_per_star_per_block * lockdrop_duration_blocks\n",
"adjusted_max_allocation_per_galaxy = adjusted_z_per_galaxy_per_block * lockdrop_duration_blocks\n",
"\n",
"rounding_error_per_star = max_allocation_per_star - adjusted_max_allocation_per_star\n",
"\n",
"# Total rounding error from all stars, this goes to bonus pool\n",
"# Rounding error from bonus pool calculation goes to Zenith foundation\n",
"# total_rounding_error = rounding_error_per_star * num_stars\n",
"total_rounding_error_stars = lockdrop_allocation_stars - (adjusted_max_allocation_per_star * num_stars)\n",
"percentage_rounding_error_stars = total_rounding_error_stars / total_supply * 100"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "pn6wmtugfl9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================================================================\n",
"🔢 ALLOCATION CALCULATIONS\n",
"================================================================================\n",
"\n",
"💰 RAW PARTICIPANT ALLOCATIONS\n",
"Point Type Total Allocation ($Z) Max Per Point ($Z)\n",
" Stars 1,283,457,024.0 19,660.800000\n",
" Galaxies 5,033,164.8 19,660.800000\n",
"\n",
"⚙️ QUANTA CALCULATION\n",
"Point Type Raw Z per Block Adjusted Z per Block (q)\n",
" Stars 0.000249205262757 0.000249\n",
" Galaxies 0.000249205262757 0.000249\n",
"\n",
"🎯 ADJUSTED PARTICIPANT ALLOCATIONS\n",
" Metric Value Note\n",
" Adjusted Max per Star 19,644.606000 $Z Final allocation\n",
"Rounding Error per Star 16.194000000 $Z Per star loss\n",
" Total Rounding Error 1,057,144.320000 $Z Goes to bonus pool\n",
" Rounding Error % 0.02461355% Of total supply\n",
"\n",
"================================================================================\n"
]
}
],
"source": [
"print(\"=\" * 80)\n",
"print(\"🔢 ALLOCATION CALCULATIONS\")\n",
"print(\"=\" * 80)\n",
"\n",
"# Raw Allocations Table\n",
"raw_allocations_df = pd.DataFrame({\n",
" 'Point Type': ['Stars', 'Galaxies'],\n",
" 'Total Allocation ($Z)': [f\"{lockdrop_allocation_stars:,.1f}\", f\"{lockdrop_allocation_galaxies:,.1f}\"],\n",
" 'Max Per Point ($Z)': [f\"{max_allocation_per_star:,.6f}\", f\"{max_allocation_per_galaxy:,.6f}\"]\n",
"})\n",
"print(\"\\n💰 RAW PARTICIPANT ALLOCATIONS\")\n",
"print(raw_allocations_df.to_string(index=False))\n",
"\n",
"# Quanta Calculations Table\n",
"quanta_df = pd.DataFrame({\n",
" 'Point Type': ['Stars', 'Galaxies'],\n",
" 'Raw Z per Block': [f\"{z_available_per_star_per_block:.15f}\", f\"{z_available_per_galaxy_per_block:.15f}\"],\n",
" 'Adjusted Z per Block (q)': [f\"{adjusted_z_per_star_per_block:.6f}\", f\"{adjusted_z_per_galaxy_per_block:.6f}\"]\n",
"})\n",
"print(\"\\n⚙ QUANTA CALCULATION\")\n",
"print(quanta_df.to_string(index=False))\n",
"\n",
"# Adjusted Allocations Table\n",
"adjusted_allocations_df = pd.DataFrame({\n",
" 'Metric': ['Adjusted Max per Star', 'Rounding Error per Star', 'Total Rounding Error', 'Rounding Error %'],\n",
" 'Value': [f\"{adjusted_max_allocation_per_star:,.6f} $Z\", f\"{rounding_error_per_star:.9f} $Z\",\n",
" f\"{total_rounding_error_stars:,.6f} $Z\", f\"{percentage_rounding_error_stars:.8f}%\"],\n",
" 'Note': ['Final allocation', 'Per star loss', 'Goes to bonus pool', 'Of total supply']\n",
"})\n",
"print(\"\\n🎯 ADJUSTED PARTICIPANT ALLOCATIONS\")\n",
"print(adjusted_allocations_df.to_string(index=False))\n",
"print(\"\\n\" + \"=\"*80)"
]
},
{
"cell_type": "markdown",
"id": "590a3951",
"metadata": {},
"source": [
"### Allocations By Lockup Period"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "fea549ec",
"metadata": {},
"outputs": [],
"source": [
"# Penalty adjusted allocations - CALCULATIONS ONLY\n",
"penalty_5_years = Decimal('0')\n",
"penalty_4_years = Decimal('0.2')\n",
"penalty_3_years = Decimal('0.4')\n",
"penalty_2_years = Decimal('0.6')\n",
"penalty_1_years = Decimal('0.8')\n",
"\n",
"allocation_per_star_5_years = adjusted_max_allocation_per_star * (1 - penalty_5_years)\n",
"z_per_star_per_block_5_years = allocation_per_star_5_years / lockdrop_duration_blocks\n",
"\n",
"allocation_per_star_4_years = adjusted_max_allocation_per_star * (1 - penalty_4_years)\n",
"z_per_star_per_block_4_years = allocation_per_star_4_years / (lockdrop_duration_blocks * Decimal('0.8'))\n",
"\n",
"allocation_per_star_3_years = adjusted_max_allocation_per_star * (1 - penalty_3_years)\n",
"z_per_star_per_block_3_years = allocation_per_star_3_years / (lockdrop_duration_blocks * Decimal('0.6'))\n",
"\n",
"allocation_per_star_2_years = adjusted_max_allocation_per_star * (1 - penalty_2_years)\n",
"z_per_star_per_block_2_years = allocation_per_star_2_years / (lockdrop_duration_blocks * Decimal('0.4'))\n",
"\n",
"allocation_per_star_1_years = adjusted_max_allocation_per_star * (1 - penalty_1_years)\n",
"z_per_star_per_block_1_years = allocation_per_star_1_years / (lockdrop_duration_blocks * Decimal('0.2'))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "yoxhqva82n",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================================================================\n",
"⚖️ PENALTY SYSTEM ANALYSIS\n",
"================================================================================\n",
"\n",
"📊 PENALTY ADJUSTED ALLOCATIONS (Before Bonus Distribution)\n",
"Lock Period Penalty Rate Total Allocation ($Z) Z per Block vs Max Allocation\n",
" 5 Years 0.0% 19,644.606000 0.000249000000 100%\n",
" 4 Years 20.0% 15,715.684800 0.000249000000 80%\n",
" 3 Years 40.0% 11,786.763600 0.000249000000 60%\n",
" 2 Years 60.0% 7,857.842400 0.000249000000 40%\n",
" 1 Year 80.0% 3,928.921200 0.000249000000 20%\n",
"\n",
"================================================================================\n"
]
}
],
"source": [
"print(\"=\" * 80)\n",
"print(\"⚖️ PENALTY SYSTEM ANALYSIS\")\n",
"print(\"=\" * 80)\n",
"\n",
"# Create comprehensive penalty analysis table\n",
"penalty_analysis_df = pd.DataFrame({\n",
" 'Lock Period': ['5 Years', '4 Years', '3 Years', '2 Years', '1 Year'],\n",
" 'Penalty Rate': [f\"{penalty_5_years:.1%}\", f\"{penalty_4_years:.1%}\", f\"{penalty_3_years:.1%}\",\n",
" f\"{penalty_2_years:.1%}\", f\"{penalty_1_years:.1%}\"],\n",
" 'Total Allocation ($Z)': [f\"{allocation_per_star_5_years:,.6f}\", f\"{allocation_per_star_4_years:,.6f}\",\n",
" f\"{allocation_per_star_3_years:,.6f}\", f\"{allocation_per_star_2_years:,.6f}\",\n",
" f\"{allocation_per_star_1_years:,.6f}\"],\n",
" 'Z per Block': [f\"{z_per_star_per_block_5_years:.12f}\", f\"{z_per_star_per_block_4_years:.12f}\",\n",
" f\"{z_per_star_per_block_3_years:.12f}\", f\"{z_per_star_per_block_2_years:.12f}\",\n",
" f\"{z_per_star_per_block_1_years:.12f}\"],\n",
" 'vs Max Allocation': ['100%', '80%', '60%', '40%', '20%']\n",
"})\n",
"\n",
"print(\"\\n📊 PENALTY ADJUSTED ALLOCATIONS (Before Bonus Distribution)\")\n",
"print(penalty_analysis_df.to_string(index=False))\n",
"print(\"\\n\" + \"=\"*80)"
]
},
{
"cell_type": "markdown",
"id": "cba99011",
"metadata": {},
"source": [
"## Simulation"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "66f88dd9",
"metadata": {},
"outputs": [],
"source": [
"# Load data from mock watcher events\n",
"\n",
"# Helper methods\n",
"def load_watcher_events(file_path):\n",
" \"\"\"Load and parse watcher events from JSON file\"\"\"\n",
" with open(file_path, 'r') as f:\n",
" data = json.load(f)\n",
" return data['data']['eventsInRange']\n",
"\n",
"def analyze_lockdrop_events(events):\n",
" \"\"\"Analyze lockdrop events and return participation statistics\"\"\"\n",
" # Initialize counters\n",
" lock_duration_counts = {\n",
" 'star': defaultdict(int),\n",
" 'galaxy': defaultdict(int)\n",
" }\n",
"\n",
" # Process events\n",
" for event_data in events:\n",
" if event_data['event']['__typename'] == 'PointLockedEvent':\n",
" point = event_data['event']['point']\n",
" lock_period = event_data['event']['lock_period']\n",
"\n",
" # Determine if it's a galaxy or star\n",
" point_num = urbitob.patp_to_num(point)\n",
" point_type = \"galaxy\" if point_num < num_galaxies else \"star\"\n",
"\n",
" # Count by lock period\n",
" lock_duration_counts[point_type][lock_period] += 1\n",
"\n",
" # Extract counts for each year and point type\n",
" result = {}\n",
" for years in [1, 2, 3, 4, 5]:\n",
" result[f'stars_{years}_years'] = lock_duration_counts['star'][years]\n",
" result[f'galaxies_{years}_years'] = lock_duration_counts['galaxy'][years]\n",
"\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "26573d6b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================================================================\n",
"📁 WATCHER EVENTS DATA SUMMARY\n",
"================================================================================\n",
"✅ Successfully loaded 40200 PointLockedEvent records from watcher file\n",
"\n",
"🔢 LOCK DURATION DISTRIBUTION\n",
"Lock Period Stars Galaxies Total\n",
" 1 Year 8075 39 8114\n",
" 2 Years 8056 43 8099\n",
" 3 Years 7870 36 7906\n",
" 4 Years 8112 33 8145\n",
" 5 Years 7887 49 7936\n",
" Total 40000 200 40200\n",
"\n",
"📊 PARTICIPATION RATES\n",
" Stars: 61.2% (40,000/65,280)\n",
" Galaxies: 78.1% (200/256)\n",
"\n",
"================================================================================\n",
"================================================================================\n",
"📈 DYNAMIC LOCKDROP ANALYSIS\n",
"================================================================================\n",
"\n",
"🎯 PARTICIPATION SUMMARY\n",
" Point Type Count Participation Rate\n",
" Stars (Total) 40,000 61.2%\n",
" Stars (1Y) 8,075 12.3%\n",
" Stars (2Y) 8,056 12.3%\n",
" Stars (3Y) 7,870 12.0%\n",
" Stars (4Y) 8,112 12.4%\n",
" Stars (5Y) 7,887 12.0%\n",
"Galaxies (Total) 200 78.1%\n",
" Galaxies (5Y) 49 19.1%\n",
"\n",
"💰 RAW PARTICIPANT ALLOCATIONS\n",
"Point Type Total Allocation ($Z) Max Per Point (Raw) Adjusted Max Per Point\n",
" Stars 1,283,457,024.0 32,086.425600 32,030.964000\n",
" Galaxies 5,033,164.8 25,165.824000 25,088.292000\n",
"\n",
"⚙️ QUANTA CALCULATION\n",
"Point Type Raw Z per Block Adjusted Z per Block (q)\n",
" Stars 0.000406702988820 0.000406\n",
" Galaxies 0.000318982736329 0.000318\n",
"\n",
"🔄 ROUNDING ERROR ANALYSIS\n",
"Point Type Rounding Error per Point Total Rounding Error % of Supply Destination\n",
" Stars 55.461600000 $Z 2,218,464.000000 $Z 0.05165264% Bonus Pool\n",
" Galaxies 77.532000000 $Z 15,506.400000 $Z 0.00036103% Bonus Pool\n",
"\n",
"================================================================================\n"
]
}
],
"source": [
"# Load events from watcher file\n",
"watcher_events_path = './generated/watcher-events.json'\n",
"events = load_watcher_events(watcher_events_path)\n",
"lock_stats = analyze_lockdrop_events(events)\n",
"\n",
"# Extract individual counts\n",
"stars_1_years = Decimal(lock_stats['stars_1_years'])\n",
"stars_2_years = Decimal(lock_stats['stars_2_years'])\n",
"stars_3_years = Decimal(lock_stats['stars_3_years'])\n",
"stars_4_years = Decimal(lock_stats['stars_4_years'])\n",
"stars_5_years = Decimal(lock_stats['stars_5_years'])\n",
"\n",
"galaxies_1_years = Decimal(lock_stats['galaxies_1_years'])\n",
"galaxies_2_years = Decimal(lock_stats['galaxies_2_years'])\n",
"galaxies_3_years = Decimal(lock_stats['galaxies_3_years'])\n",
"galaxies_4_years = Decimal(lock_stats['galaxies_4_years'])\n",
"galaxies_5_years = Decimal(lock_stats['galaxies_5_years'])\n",
"\n",
"total_stars_locked = stars_1_years + stars_2_years + stars_3_years + stars_4_years + stars_5_years\n",
"total_galaxies_locked = galaxies_1_years + galaxies_2_years + galaxies_3_years + galaxies_4_years + galaxies_5_years\n",
"\n",
"star_participation_rate = Decimal(total_stars_locked) / num_stars\n",
"galaxy_participation_rate = Decimal(total_galaxies_locked) / num_galaxies\n",
"\n",
"# Display loaded data summary\n",
"print(\"=\" * 80)\n",
"print(\"📁 WATCHER EVENTS DATA SUMMARY\")\n",
"print(\"=\" * 80)\n",
"\n",
"if events:\n",
" total_events = len([e for e in events if e['event']['__typename'] == 'PointLockedEvent'])\n",
" print(f\"✅ Successfully loaded {total_events} PointLockedEvent records from watcher file\")\n",
"else:\n",
" print(\"⚠️ Using hardcoded fallback values\")\n",
"\n",
"lock_summary_df = pd.DataFrame({\n",
" 'Lock Period': ['1 Year', '2 Years', '3 Years', '4 Years', '5 Years', 'Total'],\n",
" 'Stars': [stars_1_years, stars_2_years, stars_3_years, stars_4_years, stars_5_years, total_stars_locked],\n",
" 'Galaxies': [galaxies_1_years, galaxies_2_years, galaxies_3_years, galaxies_4_years, galaxies_5_years, total_galaxies_locked],\n",
" 'Total': [stars_1_years + galaxies_1_years, stars_2_years + galaxies_2_years,\n",
" stars_3_years + galaxies_3_years, stars_4_years + galaxies_4_years,\n",
" stars_5_years + galaxies_5_years, total_stars_locked + total_galaxies_locked]\n",
"})\n",
"\n",
"print(\"\\n🔢 LOCK DURATION DISTRIBUTION\")\n",
"print(lock_summary_df.to_string(index=False))\n",
"print(f\"\\n📊 PARTICIPATION RATES\")\n",
"print(f\" Stars: {star_participation_rate:.1%} ({total_stars_locked:,}/{num_stars:,})\")\n",
"print(f\" Galaxies: {galaxy_participation_rate:.1%} ({total_galaxies_locked:,}/{num_galaxies:,})\")\n",
"print(\"\\n\" + \"=\"*80)\n",
"\n",
"# Continue with existing calculations...\n",
"# Max allocation a star can get\n",
"max_allocation_per_star = lockdrop_allocation_stars / total_stars_locked\n",
"max_allocation_per_galaxy = lockdrop_allocation_galaxies / total_galaxies_locked\n",
"\n",
"# Quanta calculation\n",
"z_available_per_star_per_block = max_allocation_per_star / lockdrop_duration_blocks\n",
"z_available_per_galaxy_per_block = max_allocation_per_galaxy / lockdrop_duration_blocks\n",
"\n",
"# Round down z_available_per_star_per_block to 6 decimals\n",
"adjusted_z_per_star_per_block = z_available_per_star_per_block.quantize(Decimal('0.000001'), rounding=ROUND_DOWN)\n",
"adjusted_z_per_galaxy_per_block = z_available_per_galaxy_per_block.quantize(Decimal('0.000001'), rounding=ROUND_DOWN)\n",
"\n",
"# Adjusted max allocation a star can get\n",
"adjusted_max_allocation_per_star = adjusted_z_per_star_per_block * lockdrop_duration_blocks\n",
"adjusted_max_allocation_per_galaxy = adjusted_z_per_galaxy_per_block * lockdrop_duration_blocks\n",
"\n",
"# Total rounding error from all stars, this goes to bonus pool\n",
"# Rounding error from bonus pool calculation goes to Zenith foundation\n",
"rounding_error_per_star = max_allocation_per_star - adjusted_max_allocation_per_star\n",
"total_rounding_error_stars = lockdrop_allocation_stars - (adjusted_max_allocation_per_star * total_stars_locked)\n",
"percentage_rounding_error_stars = total_rounding_error_stars / total_supply * 100\n",
"\n",
"# Total rounding error from all galaxies, this goes to bonus pool\n",
"# Rounding error from bonus pool calculation goes to Zenith foundation\n",
"rounding_error_per_galaxy = max_allocation_per_galaxy - adjusted_max_allocation_per_galaxy\n",
"total_rounding_error_galaxies = lockdrop_allocation_galaxies - (adjusted_max_allocation_per_galaxy * total_galaxies_locked)\n",
"percentage_rounding_error_galaxies = total_rounding_error_galaxies / total_supply * 100\n",
"\n",
"####################################################\n",
"\n",
"print(\"=\" * 80)\n",
"print(\"📈 DYNAMIC LOCKDROP ANALYSIS\")\n",
"print(\"=\" * 80)\n",
"\n",
"# Participation Summary Table\n",
"participation_summary_df = pd.DataFrame({\n",
" 'Point Type': ['Stars (Total)', 'Stars (1Y)', 'Stars (2Y)', 'Stars (3Y)', 'Stars (4Y)', 'Stars (5Y)', 'Galaxies (Total)', 'Galaxies (5Y)'],\n",
" 'Count': [f\"{total_stars_locked:,}\", f\"{stars_1_years:,}\", f\"{stars_2_years:,}\", f\"{stars_3_years:,}\", f\"{stars_4_years:,}\", f\"{stars_5_years:,}\", f\"{total_galaxies_locked:,}\", f\"{galaxies_5_years:,}\"],\n",
" 'Participation Rate': [f\"{star_participation_rate:.1%}\", f\"{stars_1_years/num_stars:.1%}\", f\"{stars_2_years/num_stars:.1%}\", f\"{stars_3_years/num_stars:.1%}\", f\"{stars_4_years/num_stars:.1%}\",\n",
" f\"{stars_5_years/num_stars:.1%}\", f\"{galaxy_participation_rate:.1%}\", f\"{galaxies_5_years/num_galaxies:.1%}\"]\n",
"})\n",
"print(\"\\n🎯 PARTICIPATION SUMMARY\")\n",
"print(participation_summary_df.to_string(index=False))\n",
"\n",
"# Raw Allocations Table\n",
"raw_allocations_df = pd.DataFrame({\n",
" 'Point Type': ['Stars', 'Galaxies'],\n",
" 'Total Allocation ($Z)': [f\"{lockdrop_allocation_stars:,.1f}\", f\"{lockdrop_allocation_galaxies:,.1f}\"],\n",
" 'Max Per Point (Raw)': [f\"{max_allocation_per_star:,.6f}\", f\"{max_allocation_per_galaxy:,.6f}\"],\n",
" 'Adjusted Max Per Point': [f\"{adjusted_max_allocation_per_star:,.6f}\", f\"{adjusted_max_allocation_per_galaxy:,.6f}\"]\n",
"})\n",
"print(\"\\n💰 RAW PARTICIPANT ALLOCATIONS\")\n",
"print(raw_allocations_df.to_string(index=False))\n",
"\n",
"# Quanta Analysis Table\n",
"quanta_analysis_df = pd.DataFrame({\n",
" 'Point Type': ['Stars', 'Galaxies'],\n",
" 'Raw Z per Block': [f\"{z_available_per_star_per_block:.15f}\", f\"{z_available_per_galaxy_per_block:.15f}\"],\n",
" 'Adjusted Z per Block (q)': [f\"{adjusted_z_per_star_per_block:.6f}\", f\"{adjusted_z_per_galaxy_per_block:.6f}\"]\n",
"})\n",
"print(\"\\n⚙ QUANTA CALCULATION\")\n",
"print(quanta_analysis_df.to_string(index=False))\n",
"\n",
"# Rounding Error Analysis Table\n",
"rounding_analysis_df = pd.DataFrame({\n",
" 'Point Type': ['Stars', 'Galaxies'],\n",
" 'Rounding Error per Point': [f\"{rounding_error_per_star:.9f} $Z\", f\"{rounding_error_per_galaxy:.9f} $Z\"],\n",
" 'Total Rounding Error': [f\"{total_rounding_error_stars:,.6f} $Z\", f\"{total_rounding_error_galaxies:,.6f} $Z\"],\n",
" '% of Supply': [f\"{percentage_rounding_error_stars:.8f}%\", f\"{percentage_rounding_error_galaxies:.8f}%\"],\n",
" 'Destination': [\"Bonus Pool\", \"Bonus Pool\"]\n",
"})\n",
"print(\"\\n🔄 ROUNDING ERROR ANALYSIS\")\n",
"print(rounding_analysis_df.to_string(index=False))\n",
"print(\"\\n\" + \"=\"*80)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8d5c0132",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================================================================\n",
"🎁 BONUS POOL CALCULATIONS\n",
"================================================================================\n",
"\n",
"⏱️ LOCK PERIOD DISTRIBUTION\n",
"Lock Period Stars Galaxies Total Participants\n",
" 1 Year 8,075 39 8,114\n",
" 2 Years 8,056 43 8,099\n",
" 3 Years 7,870 36 7,906\n",
" 4 Years 8,112 33 8,145\n",
" 5 Years 7,887 49 7,936\n",
"\n",
"⭐ STAR BONUS POOL ANALYSIS\n",
" Component Value\n",
" Penalty Pool 514,545,405.696000 $Z\n",
" Rounding Error Bonus 2,218,464.000000 $Z\n",
" Total Star Bonus Pool 516,763,869.696000 $Z\n",
" Recipients (5Y Stars) 7,887\n",
" Bonus per 5Y Star 65,520.967376 $Z\n",
"Final 5Y Star Allocation 97,551.931376 $Z\n",
"\n",
"🌌 GALAXY BONUS POOL ANALYSIS\n",
" Component Value\n",
" Penalty Pool 1,956,886.776000 $Z\n",
" Rounding Error Bonus 15,506.400000 $Z\n",
" Total Galaxy Bonus Pool 1,972,393.176000 $Z\n",
" Recipients (5Y Galaxies) 49\n",
" Bonus per 5Y Galaxy 40,252.921959 $Z\n",
"Final 5Y Galaxy Allocation 65,341.213959 $Z\n",
"\n",
"💡 Star Bonus Pool Sources:\n",
" • 1Y Stars: 206,920,027.44 $Z\n",
" • 2Y Stars: 154,824,867.59 $Z\n",
" • 3Y Stars: 100,833,474.67 $Z\n",
" • 4Y Stars: 51,967,035.99 $Z\n",
"\n",
"💡 Galaxy Bonus Pool Sources:\n",
" • 1Y Galaxies: 782,754.71 $Z\n",
" • 2Y Galaxies: 647,277.93 $Z\n",
" • 3Y Galaxies: 361,271.40 $Z\n",
" • 4Y Galaxies: 165,582.72 $Z\n",
"\n",
"================================================================================\n"
]
}
],
"source": [
"# Bonus pool calculations\n",
"\n",
"# Stars\n",
"star_bonus_pool = (adjusted_max_allocation_per_star * (\n",
" stars_4_years * penalty_4_years +\n",
" stars_3_years * penalty_3_years +\n",
" stars_2_years * penalty_2_years +\n",
" stars_1_years * penalty_1_years\n",
")).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"star_bonus_pool_with_rounding_bonus = star_bonus_pool + total_rounding_error_stars\n",
"\n",
"# Handle division by zero if no 5-year stars\n",
"if stars_5_years > 0:\n",
" bonus_per_star_5_years = star_bonus_pool_with_rounding_bonus / stars_5_years\n",
" allocation_per_star_5_years_with_bonus = adjusted_max_allocation_per_star + bonus_per_star_5_years\n",
"else:\n",
" bonus_per_star_5_years = Decimal('0')\n",
" allocation_per_star_5_years_with_bonus = adjusted_max_allocation_per_star\n",
"\n",
"# Galaxies\n",
"galaxy_bonus_pool = (adjusted_max_allocation_per_galaxy * (\n",
" galaxies_4_years * penalty_4_years +\n",
" galaxies_3_years * penalty_3_years +\n",
" galaxies_2_years * penalty_2_years +\n",
" galaxies_1_years * penalty_1_years\n",
")).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"galaxy_bonus_pool_with_rounding_bonus = galaxy_bonus_pool + total_rounding_error_galaxies\n",
"\n",
"# Handle division by zero if no 5-year galaxies\n",
"if galaxies_5_years > 0:\n",
" bonus_per_galaxy_5_years = galaxy_bonus_pool_with_rounding_bonus / galaxies_5_years\n",
" allocation_per_galaxy_5_years_with_bonus = adjusted_max_allocation_per_galaxy + bonus_per_galaxy_5_years\n",
"else:\n",
" bonus_per_galaxy_5_years = Decimal('0')\n",
" allocation_per_galaxy_5_years_with_bonus = adjusted_max_allocation_per_galaxy\n",
"\n",
"####################################################\n",
"\n",
"print(\"=\" * 80)\n",
"print(\"🎁 BONUS POOL CALCULATIONS\")\n",
"print(\"=\" * 80)\n",
"\n",
"# Lock Period Distribution Table\n",
"lock_period_df = pd.DataFrame({\n",
" 'Lock Period': ['1 Year', '2 Years', '3 Years', '4 Years', '5 Years'],\n",
" 'Stars': [f\"{stars_1_years:,}\", f\"{stars_2_years:,}\", f\"{stars_3_years:,}\", f\"{stars_4_years:,}\", f\"{stars_5_years:,}\"],\n",
" 'Galaxies': [f\"{galaxies_1_years:,}\", f\"{galaxies_2_years:,}\", f\"{galaxies_3_years:,}\", f\"{galaxies_4_years:,}\", f\"{galaxies_5_years:,}\"],\n",
" 'Total Participants': [f\"{stars_1_years + galaxies_1_years:,}\", f\"{stars_2_years + galaxies_2_years:,}\",\n",
" f\"{stars_3_years + galaxies_3_years:,}\", f\"{stars_4_years + galaxies_4_years:,}\",\n",
" f\"{stars_5_years + galaxies_5_years:,}\"]\n",
"})\n",
"print(\"\\n⏱ LOCK PERIOD DISTRIBUTION\")\n",
"print(lock_period_df.to_string(index=False))\n",
"\n",
"# Star Bonus Pool Analysis\n",
"star_bonus_components = []\n",
"for years in [1, 2, 3, 4]:\n",
" star_count = eval(f\"stars_{years}_years\")\n",
" penalty = eval(f\"penalty_{years}_years\")\n",
" if star_count > 0:\n",
" component_amount = adjusted_max_allocation_per_star * star_count * penalty\n",
" star_bonus_components.append(f\"{years}Y Stars: {component_amount:,.2f} $Z\")\n",
"\n",
"star_bonus_df = pd.DataFrame({\n",
" 'Component': ['Penalty Pool', 'Rounding Error Bonus', 'Total Star Bonus Pool',\n",
" 'Recipients (5Y Stars)', 'Bonus per 5Y Star', 'Final 5Y Star Allocation'],\n",
" 'Value': [f\"{star_bonus_pool:,.6f} $Z\", f\"{total_rounding_error_stars:,.6f} $Z\",\n",
" f\"{star_bonus_pool_with_rounding_bonus:,.6f} $Z\", f\"{stars_5_years:,}\",\n",
" f\"{bonus_per_star_5_years:,.6f} $Z\", f\"{allocation_per_star_5_years_with_bonus:,.6f} $Z\"]\n",
"})\n",
"print(\"\\n⭐ STAR BONUS POOL ANALYSIS\")\n",
"print(star_bonus_df.to_string(index=False))\n",
"\n",
"# Galaxy Bonus Pool Analysis\n",
"galaxy_bonus_components = []\n",
"for years in [1, 2, 3, 4]:\n",
" galaxy_count = eval(f\"galaxies_{years}_years\")\n",
" penalty = eval(f\"penalty_{years}_years\")\n",
" if galaxy_count > 0:\n",
" component_amount = adjusted_max_allocation_per_galaxy * galaxy_count * penalty\n",
" galaxy_bonus_components.append(f\"{years}Y Galaxies: {component_amount:,.2f} $Z\")\n",
"\n",
"galaxy_bonus_df = pd.DataFrame({\n",
" 'Component': ['Penalty Pool', 'Rounding Error Bonus', 'Total Galaxy Bonus Pool',\n",
" 'Recipients (5Y Galaxies)', 'Bonus per 5Y Galaxy', 'Final 5Y Galaxy Allocation'],\n",
" 'Value': [f\"{galaxy_bonus_pool:,.6f} $Z\", f\"{total_rounding_error_galaxies:,.6f} $Z\",\n",
" f\"{galaxy_bonus_pool_with_rounding_bonus:,.6f} $Z\", f\"{galaxies_5_years:,}\",\n",
" f\"{bonus_per_galaxy_5_years:,.6f} $Z\", f\"{allocation_per_galaxy_5_years_with_bonus:,.6f} $Z\"]\n",
"})\n",
"print(\"\\n🌌 GALAXY BONUS POOL ANALYSIS\")\n",
"print(galaxy_bonus_df.to_string(index=False))\n",
"\n",
"# Show bonus pool sources if there are penalties\n",
"if star_bonus_components:\n",
" print(f\"\\n💡 Star Bonus Pool Sources:\")\n",
" for component in star_bonus_components:\n",
" print(f\" • {component}\")\n",
"\n",
"if galaxy_bonus_components:\n",
" print(f\"\\n💡 Galaxy Bonus Pool Sources:\")\n",
" for component in galaxy_bonus_components:\n",
" print(f\" • {component}\")\n",
"\n",
"print(\"\\n\" + \"=\"*80)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "579634a2",
"metadata": {},
"outputs": [],
"source": [
"# Final allocations - CALCULATIONS ONLY\n",
"\n",
"allocation_per_star_5_years = (allocation_per_star_5_years_with_bonus).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"allocation_per_star_4_years = (adjusted_max_allocation_per_star * (1 - penalty_4_years)).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"allocation_per_star_3_years = (adjusted_max_allocation_per_star * (1 - penalty_3_years)).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"allocation_per_star_2_years = (adjusted_max_allocation_per_star * (1 - penalty_2_years)).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"allocation_per_star_1_years = (adjusted_max_allocation_per_star * (1 - penalty_1_years)).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"\n",
"z_per_star_per_block_5_years = (allocation_per_star_5_years / lockdrop_duration_blocks).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"z_per_star_per_block_4_years = (allocation_per_star_4_years / (lockdrop_duration_blocks * Decimal('0.8'))).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"z_per_star_per_block_3_years = (allocation_per_star_3_years / (lockdrop_duration_blocks * Decimal('0.6'))).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"z_per_star_per_block_2_years = (allocation_per_star_2_years / (lockdrop_duration_blocks * Decimal('0.4'))).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"z_per_star_per_block_1_years = (allocation_per_star_1_years / (lockdrop_duration_blocks * Decimal('0.2'))).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"\n",
"# Sanity check\n",
"total_stars_allocation = allocation_per_star_5_years * stars_5_years + allocation_per_star_4_years * stars_4_years + allocation_per_star_3_years * stars_3_years + allocation_per_star_2_years * stars_2_years + allocation_per_star_1_years * stars_1_years\n",
"final_rounding_error_stars = lockdrop_allocation_stars - total_stars_allocation\n",
"\n",
"# Galaxies\n",
"allocation_per_galaxy_5_years = (allocation_per_galaxy_5_years_with_bonus).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"allocation_per_galaxy_4_years = (adjusted_max_allocation_per_galaxy * (1 - penalty_4_years)).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"allocation_per_galaxy_3_years = (adjusted_max_allocation_per_galaxy * (1 - penalty_3_years)).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"allocation_per_galaxy_2_years = (adjusted_max_allocation_per_galaxy * (1 - penalty_2_years)).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"allocation_per_galaxy_1_years = (adjusted_max_allocation_per_galaxy * (1 - penalty_1_years)).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"\n",
"z_per_galaxy_per_block_5_years = (allocation_per_galaxy_5_years / lockdrop_duration_blocks).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"z_per_galaxy_per_block_4_years = (allocation_per_galaxy_4_years / (lockdrop_duration_blocks * Decimal('0.8'))).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"z_per_galaxy_per_block_3_years = (allocation_per_galaxy_3_years / (lockdrop_duration_blocks * Decimal('0.6'))).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"z_per_galaxy_per_block_2_years = (allocation_per_galaxy_2_years / (lockdrop_duration_blocks * Decimal('0.4'))).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"z_per_galaxy_per_block_1_years = (allocation_per_galaxy_1_years / (lockdrop_duration_blocks * Decimal('0.2'))).quantize(TOKEN_PRECISION, rounding=ROUND_DOWN)\n",
"\n",
"# Sanity check\n",
"total_galaxies_allocation = allocation_per_galaxy_5_years * galaxies_5_years + allocation_per_galaxy_4_years * galaxies_4_years + allocation_per_galaxy_3_years * galaxies_3_years + allocation_per_galaxy_2_years * galaxies_2_years + allocation_per_galaxy_1_years * galaxies_1_years\n",
"final_rounding_error_galaxies = lockdrop_allocation_galaxies - total_galaxies_allocation\n",
"final_rounding_error = final_rounding_error_stars + final_rounding_error_galaxies"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "x2y2tguimzn",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================================================================\n",
"✅ FINAL ALLOCATIONS & VERIFICATION\n",
"================================================================================\n",
"\n",
"⭐ FINAL STAR ALLOCATIONS\n",
"Lock Period Penalty Final Allocation ($Z) Z per Block Participants\n",
" 5 Years 0.0% 97551.931376180000 0.001236490000 7,887\n",
" 4 Years 20.0% 25624.771200000000 0.000406000000 8,112\n",
" 3 Years 40.0% 19218.578400000000 0.000406000000 7,870\n",
" 2 Years 60.0% 12812.385600000000 0.000406000000 8,056\n",
" 1 Year 80.0% 6406.192800000000 0.000406000000 8,075\n",
"\n",
"🌌 FINAL GALAXY ALLOCATIONS\n",
"Lock Period Penalty Final Allocation ($Z) Z per Block Participants\n",
" 5 Years 0.0% 65341.213959180000 0.000828210000 49\n",
" 4 Years 20.0% 20070.633600000000 0.000318000000 33\n",
" 3 Years 40.0% 15052.975200000000 0.000318000000 36\n",
" 2 Years 60.0% 10035.316800000000 0.000318000000 43\n",
" 1 Year 80.0% 5017.658400000000 0.000318000000 39\n",
"\n",
"🔍 ALLOCATION VERIFICATION\n",
" Category Calculated Total Expected Total Rounding Error\n",
" Star Allocations 1283457023.999931660000 $Z 1283457024.000000000000 $Z 0.000068340000 $Z\n",
"Galaxy Allocations 5033164.799999820000 $Z 5033164.800000000000 $Z 0.000000180000 $Z\n",
" Combined 1288490188.799931480000 $Z 1288490188.800000000000 $Z 0.000068520000 $Z\n",
"\n",
"🎯 LOCKDROP SIMULATION INSIGHTS\n",
" Insight Value\n",
" Total Participants 40,200\n",
" Star 5Y Bonus Multiplier 3.05x\n",
"Lowest vs Base Allocation 0.20x\n",
" Total Bonus Distributed 518.7M $Z\n",
" Final Rounding Error 0.000068520000 $Z\n",
"\n",
"================================================================================\n"
]
}
],
"source": [
"print(\"=\" * 80)\n",
"print(\"✅ FINAL ALLOCATIONS & VERIFICATION\")\n",
"print(\"=\" * 80)\n",
"\n",
"# Star Final Allocations Table\n",
"star_final_df = pd.DataFrame({\n",
" 'Lock Period': ['5 Years', '4 Years', '3 Years', '2 Years', '1 Year'],\n",
" 'Penalty': [f\"{penalty_5_years:.1%}\", f\"{penalty_4_years:.1%}\", f\"{penalty_3_years:.1%}\",\n",
" f\"{penalty_2_years:.1%}\", f\"{penalty_1_years:.1%}\"],\n",
" 'Final Allocation ($Z)': [f\"{allocation_per_star_5_years:.12f}\", f\"{allocation_per_star_4_years:.12f}\",\n",
" f\"{allocation_per_star_3_years:.12f}\", f\"{allocation_per_star_2_years:.12f}\",\n",
" f\"{allocation_per_star_1_years:.12f}\"],\n",
" 'Z per Block': [f\"{z_per_star_per_block_5_years:.12f}\", f\"{z_per_star_per_block_4_years:.12f}\",\n",
" f\"{z_per_star_per_block_3_years:.12f}\", f\"{z_per_star_per_block_2_years:.12f}\",\n",
" f\"{z_per_star_per_block_1_years:.12f}\"],\n",
" 'Participants': [f\"{stars_5_years:,}\", f\"{stars_4_years:,}\", f\"{stars_3_years:,}\",\n",
" f\"{stars_2_years:,}\", f\"{stars_1_years:,}\"]\n",
"})\n",
"print(\"\\n⭐ FINAL STAR ALLOCATIONS\")\n",
"print(star_final_df.to_string(index=False))\n",
"\n",
"# Galaxy Final Allocations Table\n",
"galaxy_final_df = pd.DataFrame({\n",
" 'Lock Period': ['5 Years', '4 Years', '3 Years', '2 Years', '1 Year'],\n",
" 'Penalty': [f\"{penalty_5_years:.1%}\", f\"{penalty_4_years:.1%}\", f\"{penalty_3_years:.1%}\",\n",
" f\"{penalty_2_years:.1%}\", f\"{penalty_1_years:.1%}\"],\n",
" 'Final Allocation ($Z)': [f\"{allocation_per_galaxy_5_years:.12f}\", f\"{allocation_per_galaxy_4_years:.12f}\",\n",
" f\"{allocation_per_galaxy_3_years:.12f}\", f\"{allocation_per_galaxy_2_years:.12f}\",\n",
" f\"{allocation_per_galaxy_1_years:.12f}\"],\n",
" 'Z per Block': [f\"{z_per_galaxy_per_block_5_years:.12f}\", f\"{z_per_galaxy_per_block_4_years:.12f}\",\n",
" f\"{z_per_galaxy_per_block_3_years:.12f}\", f\"{z_per_galaxy_per_block_2_years:.12f}\",\n",
" f\"{z_per_galaxy_per_block_1_years:.12f}\"],\n",
" 'Participants': [f\"{galaxies_5_years:,}\", f\"{galaxies_4_years:,}\", f\"{galaxies_3_years:,}\",\n",
" f\"{galaxies_2_years:,}\", f\"{galaxies_1_years:,}\"]\n",
"})\n",
"print(\"\\n🌌 FINAL GALAXY ALLOCATIONS\")\n",
"print(galaxy_final_df.to_string(index=False))\n",
"\n",
"# Verification and Rounding Error Analysis\n",
"verification_df = pd.DataFrame({\n",
" 'Category': ['Star Allocations', 'Galaxy Allocations', 'Combined'],\n",
" 'Calculated Total': [f\"{total_stars_allocation:.12f} $Z\", f\"{total_galaxies_allocation:.12f} $Z\",\n",
" f\"{total_stars_allocation + total_galaxies_allocation:.12f} $Z\"],\n",
" 'Expected Total': [f\"{lockdrop_allocation_stars:.12f} $Z\", f\"{lockdrop_allocation_galaxies:.12f} $Z\",\n",
" f\"{lockdrop_allocation:.12f} $Z\"],\n",
" 'Rounding Error': [f\"{final_rounding_error_stars:.12f} $Z\", f\"{final_rounding_error_galaxies:.12f} $Z\",\n",
" f\"{final_rounding_error:.12f} $Z\"]\n",
"})\n",
"print(\"\\n🔍 ALLOCATION VERIFICATION\")\n",
"print(verification_df.to_string(index=False))\n",
"\n",
"# Final Summary Table with dynamic data insights\n",
"bonus_multiplier = float(allocation_per_star_5_years)/float(adjusted_max_allocation_per_star) if stars_5_years > 0 else 1.0\n",
"lowest_year_allocation = min([float(allocation_per_star_1_years), float(allocation_per_star_2_years),\n",
" float(allocation_per_star_3_years), float(allocation_per_star_4_years)])\n",
"allocation_ratio = lowest_year_allocation/float(adjusted_max_allocation_per_star)\n",
"\n",
"final_summary_df = pd.DataFrame({\n",
" 'Insight': ['Total Participants', 'Star 5Y Bonus Multiplier', 'Lowest vs Base Allocation',\n",
" 'Total Bonus Distributed', 'Final Rounding Error'],\n",
" 'Value': [f\"{total_stars_locked + total_galaxies_locked:,}\",\n",
" f\"{bonus_multiplier:.2f}x\" if stars_5_years > 0 else \"N/A (no 5Y stars)\",\n",
" f\"{allocation_ratio:.2f}x\",\n",
" f\"{float(star_bonus_pool_with_rounding_bonus + galaxy_bonus_pool_with_rounding_bonus)/1e6:.1f}M $Z\",\n",
" f\"{float(final_rounding_error):.12f} $Z\"]\n",
"})\n",
"print(\"\\n🎯 LOCKDROP SIMULATION INSIGHTS\")\n",
"print(final_summary_df.to_string(index=False))\n",
"print(\"\\n\" + \"=\"*80)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e7jh8pl6qtt",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================================================================\n",
"💾 JSON OUTPUT GENERATED\n",
"✅ Final allocations saved to: lockdrop_allocations_notebook.json\n",
"================================================================================\n"
]
}
],
"source": [
"# Generate data for tests\n",
"\n",
"# Generate JSON output with final allocations per point\n",
"allocations_output_file = 'lockdrop_allocations_notebook.json'\n",
"\n",
"# Create final allocations data structure (multiply by 10^8 to convert $Z to $sZ)\n",
"final_allocations = {\n",
" \"stars\": {\n",
" \"1_years\": int(allocation_per_star_1_years * Decimal('1e8')),\n",
" \"2_years\": int(allocation_per_star_2_years * Decimal('1e8')),\n",
" \"3_years\": int(allocation_per_star_3_years * Decimal('1e8')),\n",
" \"4_years\": int(allocation_per_star_4_years * Decimal('1e8')),\n",
" \"5_years\": int(allocation_per_star_5_years * Decimal('1e8'))\n",
" },\n",
" \"galaxies\": {\n",
" \"1_years\": int(allocation_per_galaxy_1_years * Decimal('1e8')),\n",
" \"2_years\": int(allocation_per_galaxy_2_years * Decimal('1e8')),\n",
" \"3_years\": int(allocation_per_galaxy_3_years * Decimal('1e8')),\n",
" \"4_years\": int(allocation_per_galaxy_4_years * Decimal('1e8')),\n",
" \"5_years\": int(allocation_per_galaxy_5_years * Decimal('1e8'))\n",
" },\n",
" \"total\": int((total_stars_allocation + total_galaxies_allocation) * Decimal('1e8'))\n",
"}\n",
"\n",
"# Save to JSON file\n",
"with open(allocations_output_file, 'w') as f:\n",
" json.dump(final_allocations, f, indent=2)\n",
"\n",
"print(\"=\" * 80)\n",
"print(\"💾 JSON OUTPUT GENERATED\")\n",
"print(f\"✅ Final allocations saved to: {allocations_output_file}\")\n",
"print(\"=\" * 80)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2jvm7qnecba",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB6UAAAPHCAYAAABgxJyVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYFFfbBvB76U262EBQBDE2FLtg74qKxi6KPRo7amyx95JYo7EHOyooRuy9xYodG4oKNjpSpO73Bx/z7rB0WBf0/l1XrjizszNnzs6yZ84z5zkSqVQqBRERERERERERERERERERkQKoKLsARERERERERERERERERET0/WJQmoiIiIiIiIiIiIiIiIiIFIZBaSIiIiIiIiIiIiIiIiIiUhgGpYmIiIiIiIiIiIiIiIiISGEYlCYiIiIiIiIiIiIiIiIiIoVhUJqIiIiIiIiIiIiIiIiIiBSGQWkiIiIiIiIiIiIiIiIiIlIYBqWJiIiIiIiIiIiIiIiIiEhhGJQmIiIiIiIiIiIiIiIiIiKFYVCaiIiIiIi+ay1atEDlypWF/9auXauQ48geo3LlyvDy8lLIcb53QUFBcnV548YNZRerQLy8vOTOqShwdXUVlWnq1KnKLhJloSj/fSmq1zcRERERERUtasouABERERERFW2urq64efOmaN2zZ8+UVBoqDs6dO4djx47h0aNH+Pz5M5KSklCiRAkYGBigZMmSsLW1hZ2dHRwcHFCxYkVlF/e74e/vjzNnzojWjRkzRkmlKRpGjRqFs2fPyq3fuHEjmjdvroQSERERERER/ZgYlCYiIiIiIqJCERMTg9GjR+P69etyr4WHhyM8PByvX78WHnJo27Yt1qxZ862L+d3y9/fHunXrROt+5KB0eHg4Ll26lOlr3t7eDEoTERERERF9QwxKExERERERUaGYPHlypgHpvChdurTcyNaSJUsWaJ+UuT/++AMJCQnCso6OjhJLU/h8fHyQlJSU6Wvnzp1DZGQkDA0Nv22hvkNt27ZFvXr1lF0MIiIiIiIq4hiUJiIiIiIiogJ79uwZzp07J1rXunVr9OjRA2XLloWqqirCw8Px7Nkz3LhxA1euXMl0P2pqajA3N/8WRf7hfe/Bfm9v7yxfS0pKwr///ov+/ft/wxJ9n3R1daGrq6vsYhARERERURHHoDQREREREX0TgYGB2L9/P27evImgoCDExMRAV1cXZcuWRZ06ddCrVy/Y2Nhku4+vX7/i6NGjuHDhAp48eYLIyEikpKTA1NQUlpaWaNiwIbp16wZTU9Ncl+vTp09wdXXFmzdvhHUmJibYtm0b7OzshHUfP37EX3/9hUuXLiE0NBTGxsZo3LgxRo4cifLly+d4HC8vL0ybNk207tmzZ3j48CG2bduGW7duITw8HA4ODti5c6dou4LUXcY5wV1cXLBkyRL8+++/2L9/P549e4bExERYWlqia9eu6N+/P9TV1XNVd7Ju374tWrawsMDatWshkUiEdRUrVkSdOnXQr18/xMfH48WLF3L7CQoKQsuWLUXrPDw8UL9+fWF57dq1ojTV5cqVw7lz53Du3Dn8888/ePz4MaRSKezs7DBo0CC0atUKAJCSkoI9e/bg0KFDCAwMhLq6OqpVq4Zhw4ahUaNGcmXJ6jPLqHLlyqLlxYsXo1u3bnLbZefFixe4dOkSnjx5glevXiEiIgJRUVFISkqCnp4eypcvDwcHB/z888+wtrYWvTdjfWRXttGjRwspvbO6NjLz5MkTHDhwAHfu3MGHDx8QFxcnlKtBgwbo3bs3ypUrl+l7W7RogeDgYFEZRo0ahQMHDuDw4cN48eIFUlJSYGVlhW7duqF///5QUVHJudKy4e/vj6dPn8qVQ/bBCS8vr2yD0oVV7mvXruHOnTt4/PgxgoKCEBkZiaioKEgkEujr66NSpUpo3LgxunfvDmNj4zydZ2xsLJo2bYovX74I65YuXYquXbvKbfvo0SN0795dtO748ePCvO5RUVHYu3cvLl++jNevXyM6OhqqqqowNjaGiYkJqlSpgho1asDJyQmlS5cW9pGb74lUKsXp06fx77//wt/fHyEhIUhKSoKBgQGMjY1hZWWFGjVqwMHBAQ4ODnmqAyIiIiIiKh4YlCYiIiIiIoVKTU3FmjVr8PfffyM1NVX0WlRUFKKiouDv749du3Zh4MCBmDx5MtTU5G9Vrl+/jilTpuDz589yrwUHByM4OBjXrl1DxYoVhSBkTkJCQjBw4EBRQNrMzAw7duwQBf78/PwwbNgwUeDn06dP8PLywokTJ/I9L7K3tzdmzJiBlJSUTF8vrLqTlZycjAkTJsDX11e0/unTp1iyZAlOnTqFzZs3Q09PL0/nIls3QNpI1MTERGhqama6vba2NmrUqJGnY2Rn+fLl2LJli2jd7du3cfv2bUycOBEDBgzAsGHDcOvWLeH1+Ph4XLt2DdevX8eSJUsyDeR9K56envDw8Mj0tYiICEREROD+/fvw8PDA5MmT4ebm9k3KlZCQgAULFsDT01PutcjISERGRuLBgwfYtm0bxo8fj2HDhuW4z6ioKLi6uuLOnTui9f7+/li4cCGePHmSZXA8t7y8vETL1apVw7hx40RB6cePH+P58+ewtbXN1T7zW+6lS5fKBcjThYSEICQkBNevX8eWLVuwZs0a0QMYOdHV1UW3bt3wzz//COv279+f6bWc8Tvv4OAgBKRfv34NV1dXhISEiLZJSkrC+/fv8f79ezx8+BCenp5wd3fH8OHDc11GqVSK8ePH48SJE3KvhYWFISwsDC9evMDp06dRoUKFTLcjIiIiIqLir2CPHhMREREREeVg+fLl2LBhg1xQNSOpVIodO3Zg7ty5cq9du3YNw4YNyzQgnV/h4eFwc3PD69evhXXlypXDnj17RAHp8PBwjBo1Si7omi4uLk4YeZpXM2fOzDIgDRRO3WV04sQJueCUrLt37+L333/PcT8ZZRyd/vHjR7i4uGDTpk24ffs2YmNj87zP3Hr//r1cQFrW6tWr5QLSsqRSKebNm4eYmBhFFbHQJCcnY/Hixbh27ZrCjyWVSjF58uRMA9KZlWvFihXYuHFjjtvu2rVLLrAry9vbu0Bzk6en5pbVpUsX2NnZyQWgs0vxnZGiyx0ZGYnRo0cjIiIiT+/LOEL77t27CAgIkNsuY7BXdtT00qVL5QLSheXUqVMMNBMREREREUdKExERERGR4qSnppZVunRpTJ48Gba2tnj9+jWWL1+Od+/eCa97enqiU6dOwmjBhIQETJs2DUlJSaL9tG3bFr169UK5cuUQExODe/fu4cCBA7kqV0REBNzc3PDy5UthnaWlJXbs2IGyZcuKtt20aRPCw8NF6xwdHTF06FCUKFECJ0+exObNm3N13IySk5OFfZUqVQofPnwQ6qIw6i4zSUlJKFmyJH777TfY2trixYsXWLJkiSgg5evri0GDBuVpJHOTJk2goaGBxMREYV1AQABWrlwJAFBRUUHFihXh4OCA1q1bo3HjxgVO0ZxOKpVCR0cHM2bMQK1atXD9+nXMnz9feD0lJQW3bt1CyZIl8fvvv6NixYrw8vIS1W9sbCzOnj2LLl26FEqZ8kpbWxvNmjVDkyZNUL58eRgbG0NPTw9fvnzB48eP8ddff+Hjx4/C9lu3bhVSjg8cOBAuLi44efIkli1bJtrv2bNnRcv6+vq5LtPJkydx8uRJ0TobGxuMHz8eFhYW8Pf3x9KlS0Xfj7Vr16J9+/awtLTMcr9SqRTly5fH1KlTYWFhgVOnTmHt2rWibY4ePYqGDRvmuqyyLl68KCqTmpoaOnbsCADo3LkzVqxYITqOu7t7jhkGClJuExMTdO3aFY0aNYKZmRmMjY2hoaGB8PBwXL9+HX///bfwvYmOjsaBAwfyNBK5fPnyaNq0Kc6fPy+s279/P6ZPny4s379/X5SKXFdXF+3btxeWZdO4A8DEiRPRpEkT6OjoIDo6GoGBgfDz88Ply5dzXa50GR8GcXR0xIgRI2BmZobExER8+PABT548wfXr1+X+1hIRERER0feDQWkiIiIiIlKYvXv3ipZVVFSwY8cOVKhQAQBga2uL6tWro02bNqKg8969e4XA6qlTp0TBOABwc3OTm8O0WrVq6NevX44jcqOiojB48GDRnKeVKlXC9u3bYWZmJrf90aNHRctWVlbYtGkTVFVVhePGx8fLzQOdGzVr1hTtKz2VLlA4dZeVv//+G1WrVgWQNudwhQoV5OZAPnLkSJ6C0mZmZpgyZQoWLFiQ6eupqal4+fIlXr58if3798PGxgZLlixBtWrVcn2M7IwfPx4///wzAMDa2hpeXl54/PixaJs5c+YIqd0nTZoEb29v0ajUp0+fKi0oPXHixCxfq1atGgwNDTF27Fhh3d27d5GamgoVFRXo6+tDX18fRkZGcu81NzfPd5kyXoN6enrYvXs3DAwMAKRdO1ZWVujVq5ewTXJyMjw9PTF58uQs96uiooKNGzcKGQlsbW3x8OFDXLhwQdgms7m7cytj6m5HR0eYmJgAAJydnfHHH38I2QdCQkJw+fJlNG/ePMf95rfcGR8uSVehQgU4ODggIiICu3btEtbfvHkzT0FpABgwYIAoKH3kyBFMmjQJGhoaANLmjpbVoUMH6OjoCMuyGRv09PQwaNAg4b0AUL16dTg7OwNAnjMKJCcni5a7d++OevXqCcu2trZo2rQpRo4cWSyyFRARERERUf4wKE1ERERERAqTcYRcvXr1hKBqurJly8LJyUk01+vt27eFf9+4cUO0vbq6epbpsiUSSY5zIe/evVuUDtvOzg7bt2+HsbGx3LZBQUEIDQ0VrevatasQRE73888/5ysoPWLECLl9pSuMustMlSpVhIB0uqpVq6JKlSrw9/cX1t27dy83pyDi6uqKcuXKYeXKlaJR6Jl58eIF3Nzc4O3tDQsLizwfK6OMwWRzc3NRUNrAwEAUeFRVVYWFhYUoKB0dHV3gchSEv78/Dh8+DD8/P7x79w4xMTGikeey4uLiEBUVlWkgujCkpKTIpapu27atEJBOZ29vj8qVK4uCsTldgw0aNBClyAfSHsiQDe7m97MIDw/HpUuXROtkr43SpUujbt26or8r3t7euQpKF6TcFy5cwIkTJ/DkyRN8+PABcXFxcsHadJ8+fcqxLBk1atQIlSpVEr53kZGROHnyJJydnSGVSrNN3Q2k/Q1I/7xjYmLg7OyMhg0bwsrKChUqVICdnR1KlSoFAHmebz7j35sZM2bg1KlTqFSpEipUqABra2vY2NhAVVU1z/smIiIiIqLig0FpIiIiIiJSmIxzQJcvXz7T7TIGJUNDQ5GSkgJVVVW5fVhaWhYocJFxfubFixdnGpAGgLCwMLl1mY08ze9o1J9++inL1wqj7jKTVVnNzc1FQemMwfjcatGiBVq0aIGHDx/i+vXr8PPzw4MHDzLd35cvX7B9+3bMmjUrX8dKV6JECRgaGorWaWlpiZbLlCkjVycZt8lufm9FW7VqFTZu3AipVJrr98TFxSksKB0ZGSmXMj+7a1A2KJ3T3O+yGQHSaWpqipbz+1n4+PiIyq2np4cWLVqItuncubMoKH3u3DlERkbKXUMZ5afc8fHxGD16NK5cuZLbU8j3/Ouurq6YPXu2sOzp6QlnZ2f4+fnhw4cPwnpra2vUqlVL9F53d3cMHjwYX79+BQAEBgYiMDBQtI2VlRW6d+8ONzc30SjqnHTp0gWenp548OABgLTrNuPIbV1dXbRq1QqjRo2ClZVVrvdNRERERETFR+FM4EVERERERFRMjR8/PssgWl4ChPmRWbrw70X16tUxfPhwbNiwAVevXoWvry/69u0rt52fn1+Bj5XZPMkZ56vOy1zK2ckYdCyMOXCvXLmCDRs25Pl6U/T1qSiZBX+zeogir7y9vUXLMTExqFmzJipXriz8N2PGDNE2SUlJ+Pfff3Pcd37KvWHDhjwFpAuiS5cuopHsN2/exOvXr+Hr6yvaLj3NvSwHBwf4+Pigb9++KFeuXKb7DwwMxMqVK0Vp5HNDQ0MDu3fvxvTp01GzZs1M5++OjY3FkSNH0KNHD7x79y5P+yciIiIiouKBQWkiIiIiIlKYjEHXt2/fZrpdxiCEiYmJEOzJuI83b94UaN5RJycn0QjZN2/eYPDgwaI0zrLlyCgoKChX63Iju4BWYdRdZrIqa8b1pqamWe4jP6ytrTF79mzUrFlTtD4uLq5Qj1OYMqvH+Ph40XLG0aT5cezYMdGypqYmJk2ahEOHDuHMmTM4e/YslixZUuDj5IWhoSHU1dVF63J7DZYsWVJh5cqOv78/nj59mq/3ZpyHurBkDHaXLVsWy5cvh4+PD86ePYuzZ8+id+/ehXIsbW1tubTc+/fvx8mTJ4VldXX1LOdNt7S0xOzZs3Hu3DncuHEDnp6eWLZsGX7++WdIJBJhu/Pnz+e5njU0NDBw4EB4enrCz88Px44dw4YNGzBu3DjR9RIdHZ2vqRCIiIiIiKjoY1CaiIiIiIgUpm7duqLl9JF7st6/f4/Lly+L1tWpU0f4d/369UWvJSUlYf369ZkeTyqV5hiwrlmzJlavXi0arffixQsMHTpU7r0WFhZygenDhw/LjZY9ePBgtsfMj8Kou8z4+/uL5loGgMePH4tSdwOQCx7n5MKFC1i6dKkoTXBGUqlULqhb2MHvwpTZ6OpXr16Jlnfv3l3g42ScQ7hx48YYNmwYqlWrBgsLC5ibm+Phw4c57idjEBmAkI45r1RVVeHg4CBad+LECURFRYnW3bt3T5S6G8j5GlSUggSWHz9+jOfPnxdiadJkzMIwcOBAdO7cGZUrV4a5uTlKlSolpLUuDP379xc9TLFr1y5RGZo1a5bpwzYZr0FDQ0PUrFkTXbp0wcKFC1G5cmXR6wEBAbkuU3h4uGj+bA0NDVSqVAktWrTAqFGjMHTo0Hzvm4iIiIiIig/OKU1ERERERHmW08hgMzMzaGhooE+fPjh06JCwPjU1FW5ubpg8eTJsbW0RGBiIZcuWyc1dK5vmuXXr1ihVqpQoaLJt2zZ8/PgRPXr0QLly5RAXF4eHDx9i//79GDlyJFq1apVt+Zo1a4aFCxdi6tSpQgrkR48eYcSIEdiyZQu0tbWFbZ2dnbFjxw5hOTAwEMOHD8ewYcOgp6eHkydPYteuXdkeLz8Ko+6yMmLECEydOhW2trZ48eIFFi9eLLdNVqMpsxIbG4tt27Zh+/btcHBwgJOTE6pVq4ZSpUpBRUUF79+/x/79++UCfxkfOihKMgbiAGD69OmYMWMGjI2N4e3tnau0zznJOC/0f//9B29vb9SoUQORkZE4cuQI9u/fn+N+MpsbffPmzejQoYMw93Hp0qUzTZ+cmT59+uC///4TlmNjY9GvXz+MHz8e5cuXx5MnT7B06VLRe9TU1NCrV69c7b8wZZaC283NDa6urlm+p3fv3ggJCRGWvb298dtvvxVquYyMjERBYU9PT1SsWBHm5uZ49+4dtm7diidPnhTa8cqVK4cWLVrg9OnTACD39yGz1N0AMGrUKABAkyZNULVqVZibm0NHRwcxMTG4ePEiXrx4IdpeR0cn12Xy9fXFX3/9hebNm6NOnTqwsrKCoaEhUlNTERAQgL1794q219XVzfW+iYiIiIio+GBQmoiIiIiI8qxly5bZvn748GFUqVIF1atXx6BBg7B9+3bhtY8fP8Ld3T3L9/bo0UMUqNTS0sKiRYswYsQI0Wg7X19fublS86Jr164ICwvDsmXLhHW3b9/G6NGjsWHDBmhoaAAAhg0bhsOHDyMyMlLY7sqVK6J5YtXU1ERlKwyFUXeZ0dbWRkhISLb7adeuXZ5HSqeTSqW4ffs2bt++neO2+vr66NevX76O8y2ULVsWtWvXxt27d4V1L168gJubm7AskUgKPLdzmzZtRAHVuLg4TJ06VbRNyZIlRQHUzFStWhXq6uqiQOS6deuwbt06Yfns2bMwNzfPVbnatm2Ltm3bitI/v3jxAr/++muW7xk9ejQsLS1ztf/CdPHiRbn5vTt27JjtuTZp0kT04MfRo0fh7u6e66B9brRp00b00EpAQACGDRsm2iY3n21euLq6CkFpWWZmZnBycsr0PVKpFI8fP8ajR49y3L+urq5cJoechIWF4eDBg7nKKtGsWbM87ZuIiIiIiIoHpu8mIiIiIiKFmjJlCn755ReoqOR8+zFgwADMmTNHbr2joyP+/vvvQp+rdsiQIRgyZIho3ZUrVzBhwgQhyGxqaoq//voLenp6me5DXV1dbrRoYSmMusuobdu26NmzZ5av29vbY8GCBXkpJgBAT08vT8E8MzMzbN68OdNUwkXJrFmzsv3sMxtlnldt2rRBx44ds3zdzs4Os2fPznE/hoaGhTY/MZAWcF++fDl69OiR47Zqampwd3fHyJEjC+34eZExdbepqSmqV6+e7XuaN28uWg4JCZFLh19QY8aMQaVKlbJ8vWvXrtl+H/Ojfv36mY7yd3FxyXa++dzQ0tLCsmXLsvxOFJSzszNcXFwUsm8iIiIiIlIujpQmIiIiIiKFUlFRwYQJE+Di4oL9+/fjxo0bCAoKQmxsLLS1tVGuXDnUrVsXPXv2hK2tbZb7cXR0xOnTp+Hj44MLFy7A398fERERkEqlMDExgZWVFRo2bAh7e/s8lW/y5MkIDw+Ht7e3sO7MmTOYOnUqli1bBhUVFTg4OODo0aPYsGEDLl26hLCwMBgaGqJu3boYMWIE7Ozssh15nF+FVXeyJBIJ5s+fj8aNG2P37t14+vQpEhMTYWlpiS5dusDV1VUYJZ4XTZs2xbVr13D16lX4+fnh6dOnCA4ORkREBL5+/QpNTU0YGxvDxsYGTZs2RefOnRUW2CpMVapUgaenJ/766y9cv34d0dHRMDY2RsOGDTF8+HBYW1vLjWrOK4lEgpUrV6JBgwbw9PTEy5cvIZFIYG5ujvbt22PIkCG4d+9ervY1ffp0WFpa4siRIwgICEBcXFyByqapqYkFCxagT58+OHjwIG7fvo0PHz4gPj4eenp6sLCwQIMGDdC7d+9cj8AubOHh4bh06ZJoXZMmTSCRSLJ9X6NGjeRGlnt7e8sFqwvC0NAQ+/fvx+bNm3HixAkEBwdDW1sbNjY26NWrF7p06YK1a9cW2vHSubq6YubMmaJ13bt3z3L7VatW4datW7h79y6ePXuGsLAwhIeHIyUlBXp6erCyskL9+vXRu3dvlClTJk9l6dq1K8zNzXH37l3cv38fHz9+REREBGJiYqCpqYkyZcqgevXqcHZ2hqOjY77Ol4iIiIiIij6JtKB5xoiIiIiIiKjIcnV1xc2bN4VlFxcXLFmyRIklIiJFu337tig1ft26dUVpxImIiIiIiL41pu8mIiIiIiIiIvpOfPnyBatXrxat69Onj5JKQ0RERERElIbpu4mIiIiIiIiIirnWrVsjJSUFnz9/FqUkr1SpEtq1a6fEkhERERERETEoTURERERERERU7L19+1ZunY6ODpYuXQpVVVUllIiIiIiIiOh/GJQmIiIiIiIiIvpOqKqqonTp0qhbty5GjhwJKysrZReJiIiIiIgIEqlUKlV2IYiIiIiIiIiIiIiIiIiI6PukouwCEBERERERERERERERERHR94tBaSIiIiIiIiIiIiIiIiIiUhgGpYmIiIiIiIiIiIiIiIiISGEYlCYiIiIiIiIiIiIiIiIiIoVhUJqIiIiIiIiIiIiIiIiIiBSGQWkiIiIiIiIiIiIiIiIiIlIYBqWJiIiIiIiIiIiIiIiIiEhhGJQmIiIiIiIiIiIiIiIiIiKFYVCaiIiIiIiIiIiIiIiIiIgUhkFpIiIiIiIiIiIiIiIiIiJSGAaliYiIiIiIiIiIiIiIiIhIYRiUJiIiIiIiIiIiIiIiIiIihWFQmoiIiIiIiIiIiIiIiIiIFIZBaSIiIiIiIiIiIiIiIiIiUhgGpYmIiIiIiIiIiIiIiIiISGEYlCYiIiIiIiIiIiIiIiIiIoVhUJqIiIiIiIiIiIiIiIiIiBSGQWkiIiIiIiIiIiIiIiIiIlIYBqWJiIiIiIiIiIiIiIiIiEhhGJQmIiIiIiIiIiIiIiIiIiKFYVCaiIiIiIiIiIiIiIiIiIgUhkFpIiIiIiIiIiIiIiIiIiJSGAaliYiIiIiIiIiIiIiIiIhIYRiUJiIiIiIiIiIiIiIiIiIihWFQmoiIiIiIiIiIiIiIiIiIFIZBaSIiIiIiIiIiIiIiIiIiUhgGpYmIiIiIiIiIiIiIiIiISGEYlCYiIiIiIiIiIiIiIiIiIoVhUJqIiIiIiIiIiIiIiIiIiBSGQWkiIiIiIiIiIiIiIiIiIlIYBqWJiIiIiIiIiIiIiIiIiEhhGJQmIiIiIiIiIiIiIiIiIiKFYVCaiIiIiIiIiIiIiIiIiIgUhkFpIiIiIiIiIiIiIiIiIiJSGAaliYiIiIiIiIiIiIiIiIhIYRiUJiIiIiIiIiIiIiIiIiIihWFQmoiIiIiIiIiIiIiIiIiIFIZBaSIiIiIiIiIiIiIiIiIiUhgGpYmIiIiIiIiIiIiIiIiISGEYlCYiIiIiIiIiIiIiIiIiIoVhUJqIiIiIiIiIiIiIiIiIiBSGQWkiIiIiIiIiIiIiIiIiIlIYBqWJiIiIiIiIiIiIiIiIiEhhGJQmIiIiIiIiIiIiIiIiIiKFYVCaiIiIiIiIiIiIiIiIiIgUhkFpIiIiIiIiIiIiIiIiIiJSGAaliYiIiIiIiIiIiIiIiIhIYRiUJiIiIiIiIiIiIiIiIiIihWFQmoiIiIiIiIiIiIiIiIiIFIZBaSIiIiIiIiIiIiIiIiIiUhgGpYmIiIiIiIiIiIiIiIiISGEYlCYiIiIiIiIiIiIiIiIiIoVhUJroB+fq6orKlSujcuXKmDp1ar73s3btWmE/LVq0KMQSFr7iUNbC+ly+Ry1atBDqZu3atcouTqELCgoSzq9y5cq4ceOGQo/Ha42IqGC+9d9tylxhte9u3Lgh+jyDgoIKsZSFqziUtTi0u5Vl6tSpQt24uroquzgK8S3b7bzWiIh+bF5eXqJ2kazvtd/je/vtKw5tW2XJ7vr+XnzLtjGvNeVSU3YB6Md27NgxeHl5wd/fH1FRUdDS0oKBgQHKlSuHypUro2nTpnBychK9R/YP7+LFi9GtW7dvXexMeXl5Ydq0aZm+pqOjg/Lly8PJyQmDBg2CiYnJNymTq6srbt68CQBwcXHBkiVLvslxlWnt2rVYt24dAKBcuXI4d+6ckktUfN24cQMDBgwQlovS962wBAUFoWXLlpm+pqWlBTMzM9SpUwcDBw6EnZ3dNy4dEREVREREBA4ePIjr16/j+fPniIqKglQqhaGhISwtLVGjRg20bNkSDg4OkEgkyi5ukVEUfxt/xPZdxnbY2bNnYW5ursQSFW+y95Df631RixYtEBwcLLdeXV0dhoaGqFatGnr06JHl95uIiIqn76lvVVZiYiKcnJwQGRkprKtatSq8vLyUV6hv6Eds/xYVsv3p32vdT506Fd7e3nLrVVRUoK+vj0qVKqFdu3bo1asXNDQ0lFBC+p4xKE1KM2XKFBw5ckS0LiYmBjExMQgODsbNmzfx/v17uYZTcRQXF4enT5/i6dOnOHjwIHbs2FFkAlx9+vRBs2bNAAA2Njb53k/jxo2ho6MDAChRokRhFE1hilNZSXm+fv2Kt2/f4u3bt/Dx8cHChQvRtWtXhR/X0NAQU6ZMEZbLly+v8GMSEX1v9u/fjyVLliAuLk7utZCQEISEhOD27dvYtm0brly5gpIlSyqhlMWPsn4bc6Ow2nfly5cX/Q4bGhoWtGgKU5zKSsqTlJSEkJAQnD9/HufPn0fPnj0xf/78b3LsX375BV++fAEA1KpV65sck4joR/I9962ePXtWFJAGgMePH+P58+ewtbVVTqGKGPZvUmFLTU1FZGQkbt++jdu3b+Pw4cPYsWPHN7m+OnToIMQmypQpo/DjkfIwKE1KcenSJVGjqWrVqnBycoKOjg7Cw8Px5MkT+Pn5KbGEYnFxcdDS0oKKSu4z3vfu3Rvly5fH169fcf36ddy6dQtA2qidqVOn4vDhwwopa2JiIgDk+immDh06FMpxa9eujdq1axfKvhStOJWVvq3GjRujcePGSElJwbNnz+Dr64vU1FQkJydj9uzZaNSoEczMzBRy7PTvrp6eHoYMGaKQYxAR/Qi2bNmC5cuXC8sSiQT169eHvb09dHR0EBkZiadPn+LOnTtISEhQYkmLB2X+NsbExEBPTy9X2xZW+65MmTLF5ne4OJWVvi0LCwv06dMHAPDhwwd4e3sjJiYGAODp6YmmTZuiVatWCjt++ne3Z8+eCjsGEdGP7nvvW81sFGf6+t9++60wi1ZssX+TCkv6g67R0dHw9fXF27dvAQCPHj3C2rVrMX36dIUdO73d2KRJEzRp0kRhx6Gig0FpUoqrV68K/7a0tMSBAwegqqoq2iYmJgbPnj0TlmVTZ6SbNm2akDJbNp3GwYMHcfnyZTx//hzh4eGIiYmBpqYmLCws4OjoiCFDhsDY2Fi0L9l0Z6NHj0bDhg2xbt06PHz4EDExMbh16xb09fVzfY4dOnRA/fr1AQC//vor+vbtizt37gAA/P398e7dO1hYWOD06dM4deoUnj59irCwMERHR0NdXR1lypRBgwYNMHjwYLlUfRnTcg8ePBirVq3CnTt3EBkZiZYtW+Ls2bOi93h7e4sadOkpAHNK8f3x40fs3LkTV69exdu3b5GUlAQTExP89NNP6NevHxo3bgwg+7QyGeu2SZMmWL16Ne7fv4/U1FTUrl0bEyZMQLVq1UTHzsvnmDHFIQAEBwdnmpIopxQ4UVFR2LlzJ86dO4c3b94gISEBRkZGqFmzJvr06SOcc7qMqdsfPnyIrVu34vDhwwgODoaxsTE6duyICRMm5Dvlydu3b7Fy5Ur8999/+Pr1K3766SeMGTMGjRo1ApD2fXFychJGhM2bNw+9evUS7WPs2LE4efIkAMDJyQlbtmzJV1ly8unTJ+zYsQNXrlxBUFAQkpOTUbJkSdSuXRsDBgxAjRo1Mn3ftWvX4Onpifv37yM0NBQaGhooU6YM6tSpg7Fjx8p9ZzMKCAjAgAEDEBoaCiDthmzbtm15GjVUq1YtUeeuubk5Nm7cCCBtdNilS5fw888/C6+/e/cO//zzD65evYoPHz4gNTUV5ubmaNGiBQYPHixX5py+u4cPH0aJEiVEaRU9PDyEvyXpTp48iUOHDuHx48eIioqCtrY2rK2t0aZNG/Tp0wfa2tpy53b69Gn8/fffeP78OfT09NCsWTO4u7vnum6IiIqDgIAA/PHHH8KyoaEhNmzYkGlnTWxsLI4cOQItLS1hXXJyMtatW4fHjx/j9evXiIyMRHx8PPT09GBtbY327dujd+/eUFdXz1V53r17Bw8PDzx+/BjBwcGIiopCcnIyjIyMULVqVfTs2VM0/9vTp0/Ro0cP4UGlmTNnCvNpJSYmonv37nj+/DmAtGDx5s2b0aZNG2EOrBEjRmDixImiMixduhTbtm0DAFhbW8PX1zdXZU+X299Gf39/7N+/H48fP8bHjx+FdOmmpqaoWbMm+vfvjzp16oj2nbFNdujQIaxZswZnz55FSEgIfvvtNyxevFj0nvy27+Li4uDp6YkzZ87gxYsXiI2NhYGBASpUqID27dujX79+ALJPmy2b5q5evXpYsWIF/vzzT1y6dAlfvnxBpUqVMHToUHTs2FF07Bs3buDIkSPw9/dHSEgIIiMjoaqqKqRCd3NzE51TZvPEybYN0tvsOaX4TklJgbe3N44ePYqnT58KHT62trZwdnZGt27doKb2vy6BjKnbPTw8EBoaih07duD58+fQ0NBAw4YNMW3atHyPXoiJicG6detw/PhxhIeHw8LCAn379kW/fv2ENPr9+/cXHujt1KkTVq5cKdrH7t27MW/ePACAgYEBLl++DE1NzXyVJztfv37Fvn37cOLECQQEBCA+Ph76+vqoWrUqXFxcsny4NyAgALt27cKNGzeE9qGpqSlq1KiBwYMHo3r16tkeNzY2FkOHDsXdu3cBpP0d27ZtG6pWrZrrsmd8YKFFixYYNGiQsHzq1ClRUDomJga7d+/GmTNn8OrVKyQkJMDU1BQNGjTAkCFD5DJq5ea76+bmJncfOGbMGNF+Hj16BA8PD9y+fRshISFQU1NDuXLl4OjoCDc3N5QuXVru3J49e4Y//vhDuEZq1aol93ePiOhH8D33rX7+/BlXrlwRlq2srBAYGAgA8PHxgbu7u6gNU1CvX7/Gjh078N9//+Hjx48AgNKlS6N+/foYOHAgrK2t5d4jlUpx8uRJHD58GI8fP0ZERAR0dHRQtmxZ1K9fH+7u7kIf4Pfev5mcnIxdu3bh+PHjCAgIQFxcHEqUKAFTU1NUrVoVTZs2lWsf54ZUKsXu3buxd+9evHnzBoaGhujQoQPGjBkjPLi6Zs0arF+/HkDaZ3b+/HnRgw8vXrxAp06dhGVPT0/UrFkzz2XJjfz01UVERGDPnj24ePEiXr9+jfj4eBgZGcHW1hbdu3fP1WCyhQsXwsPDA0Ba+u358+eL+i5zQ7bd6ObmhlatWgkPNJ46dUoUlE5NTYWPjw98fHzg7++PL1++QE9PDzVq1EC/fv3QtGlT0b4zXtOnTp3CmTNncPDgQbx79w5NmjTBX3/9JXevtXPnTtF+8tPfHBERgT///BNnzpxBTEyMcL/2raZWpcwxKE1KkZKSIvw7OjoawcHBcilq9fT04ODgkK/979mzB48fPxatS05OFlJoHz16FAcOHECpUqUyff/Vq1exYcMGUTkLqmbNmkJQGkhLHWlhYYGjR48KgcJ0SUlJCAgIQEBAAI4cOYI9e/Zk2jkFpN2U9+rVK9P0lAV18eJFTJgwAbGxsaL1Hz58wIcPH1CuXDm5BkxOrl+/jr///htJSUnCuitXruD27dvYunWrqLOyoJ9jfgQEBGDw4MFCIzTd58+fcfr0aZw+fRoDBgzAjBkzstyHm5ub6LP+9OkTtm3bhrCwMCxbtizPZQoMDESPHj1EaYvu3r2LIUOG4I8//kD79u2hp6cHFxcX7N69GwBw4MABUVA6Li4Oly5dEpa7d++e53Lkxq1bt/Drr78iKipKtD44OBjBwcE4duwYpkyZIuoUk0ql+P3333HgwAHRexITE/HixQu8ePECvXr1yjYo/ebNG7i5uQkB6Vq1amHz5s0FTi+TMc1g+v4B4MyZM5g0aRLi4+NF26R/d318fLB9+/ZMb16A/H13U1JS4O7ujuPHj4vWJyUlwc/PD35+fsIUAbKj1vbu3Ys5c+YIywkJCTh06BBu3LghCsYQERV3Hh4eovbb3Llzsxw9oKuri759+4rWJSQkYMOGDXLbRkZG4s6dO7hz5w7OnTuHLVu2yHX6Zebly5dCB4Gsz58/4/Pnzzh//jzGjBmD0aNHAwDs7Ozg7u4uBGJXrlyJpk2bonz58li7dq0QkDYyMsKSJUugqqqKvn37Cu0Lb29vjBs3TlQ22XZmYcwXmNVv4507d7B371657d+/f4/379/jxIkTWLRoUZZliIuLQ9++ffHq1asClzGjd+/eYejQoUJnpmzZQ0ND8eXLFyEonVufP39Gjx498OnTJ2HdkydPMHHiRHz+/FnU1rlw4QIOHToken9SUpKQCv3o0aPYtGmT8LBhYYiLi8Pw4cOFwF26yMhI3Lx5Ezdv3sThw4exefNm6OrqZrqP1atXi9q0X79+xcmTJ/Hs2TP4+PjkORCckJCAgQMH4tGjR8K6gIAAzJ8/H4GBgZg5cyYAcVD69OnTiIqKgoGBgfAe2XZQx44dFRKQDgkJwaBBg/DixQvR+rCwMFy6dAmXLl3CiRMn8Mcff4g6xQ8cOIC5c+eK7nWAtIB/UFAQatasmW1Q+uvXr/jll1+EgLSJiQm2b9+e5b1gbtnb24uWZdu0gYGBGDx4sNx81OkjrI8dO4Zly5ahffv2me47v9/dHTt2YOnSpUhNTRXWybb/Dx48iPXr14seznz48CEGDBggaj9fuXIFt27d4kgxIvrhfM99q0eOHBHep6mpiUWLFgnt9tDQUFy6dEn0YGdBHD9+HL/99ptcBqXAwEAEBgbC29sbS5YsEQVVExISMHbsWFy4cEH0nqioKERFRcHf3x+//vqrELj93vs3Z86cKTeyPTIyEpGRkXj58iUCAwPzFZResGCBqI4/f/6MHTt24M6dO9i9ezc0NTXRu3dvbNq0CUlJSfj48SMuX74sCorKthsrVaqkkIB0fvvqHjx4gFGjRiEkJET0vvR7RU1NzRyD0suWLRPuN1VVVbF06VI4OzsX6HyMjIxgZWUltNll241fv37FyJEjce3aNdF7IiIicPHiRVy8eBGDBg3C1KlTs9z/9OnTcfv27TyVKT/9zdHR0XJt1MePH2PChAnCVKakHAxKk1L89NNPwr8jIiLQtm1bVKlSBdWqVUO1atVQv359WFpait6TPvex7I9ehw4dhNG1ssEnExMTNG/eHOXLl4eBgQFUVVXx6dMn+Pr6IjIyEp8+fcKGDRtEQRpZfn5+0NbWRufOnWFmZgZ/f/88pe7OzP3790XL6XMXlihRAo6OjqhYsSIMDAygrq6O0NBQnDlzBu/fv0dMTAxWrFiBzZs3Z7rfJ0+eQE1NDV26dIGlpSVevXqFfv36wcHBAXv37sW7d+8AANWqVRP9kOU0ejQ4OBjjxo0TAm4SiQQtWrRAlSpVEB4ejv/++y9f9XDnzh1YWVmhXbt2+PTpE44cOYLU1FR8/foV06dPx/Hjx4WO1Lx8julz6l29elV4WtTAwAAjRowQjp3TqITk5GT8+uuvQoNNVVUVXbp0QalSpXD27FmhI9jDwwNVq1bNcg7FO3fuoHXr1rC2tsbRo0eFDp6jR4/C3d09z41MPz8/mJmZYdiwYYiNjcXBgweRmJiI1NRUzJo1C46OjihRogT69euHPXv2QCqV4uHDh3j27JnQgXXhwgXhszQ0NBSNgiks0dHRGD16tNBA0NLSQrdu3aCnp4djx44hODgYqampWLp0KapWrYp69eoBALZu3SoKSBsaGqJ9+/YwNTXF69ev5Z70zCgoKAgDBw7E58+fAQB169bF33//nWUHa15kTHVlamoKIK1z293dHV+/fgWQNh97q1atIJVKhc/806dPGDNmDI4ePZpp4CKz725OI+k3btwoauTa29ujcePGCAgIwIkTJwCk3XhMmjRJaJR+/PhRNMpMV1cXP//8M1RUVHDo0CFhdB0R0fdAtn1iYGCANm3a5On9EokEFhYWqFmzJkqVKgUDAwMkJSXh9evXOHHiBJKTk3Ht2jWcPHkyV0+tq6qqCm1cY2Nj6OnpIS4uDnfv3sWNGzcAABs2bECPHj2E9sHAgQNx+fJlXLlyBfHx8Zg+fTrc3d2xdetWYb+LFi0SOjR+/vlnrF27FvHx8fj8+TMuXLgg/M4/ePBAaIek/+YUVFa/jRoaGrC3t4ednR0MDQ2hq6uLL1++4Pr163j48CGkUimWLl2KDh06ZPpAVEREBCIiItCoUSPUrl0b4eHhMDQ0LHD7LiUlBaNGjRIFpKtXr46GDRsiJSUFDx48EEYB5EVgYCBKlCgBNzc3SCQSHDp0CNHR0QDSHiZo0aKFcD+jra2NevXqwdbWFgYGBtDS0hI6bgICApCUlIQFCxYIo9inTJmCt2/fYt++fcLxfvnlF2FkUcZRq5lZsGCBKCDt6OgIe3t73Lt3Txh5dOfOHSxYsEBuNHq6O3fuoHr16nB0dMSNGzeEQGlgYCDOnDmT587F0NBQREdHo3fv3tDX14ePj4/Q7t65cyfatGmDevXqoVWrVihdujQ+fvyIhIQEHDlyRBhdERISIuocLYwHLTIzadIkUUC6bdu2qFSpEq5duyZ8B06ePImNGzcKD5Xcu3cPs2bNEoKsampqaNeuHSpUqIBPnz7h8uXL2R4zISEBo0aNEkawmZmZYceOHVk+4JgX9+7dEy2nf29TUlIwevRo4e+EsbExOnXqBAMDA1y5cgV+fn5ITEzEb7/9hmrVqsHCwkJu35l9d9P3n5Vbt25hyZIlkEqlAICyZcuiY8eOiIuLg5eXF+Lj4/HlyxeMHTsWp06dgoGBAaRSKaZPny4EpCUSCTp16oRy5crh1KlTuH79ekGriYioWPme+1Zlpzxs2rQpHBwcYG1tjYCAAABpD2IWRlD6zZs3mDJlipClyNDQEC4uLpBIJPD29kZERITwO1i1alVYWVkBAJYsWSIKlpYpUwatWrVCiRIl8PLlS5w/f150nO+5fzM2NhY+Pj7Ce9q2bYuffvoJX758wfv37+UekMyL9PsaOzs7XLp0CQ8fPgSQ9pDa5s2bMXr0aJiZmaFNmzY4duwYgLQHBGWD0ul9ZYDi2o356auLiYmRC0g3aNAAtWvXRkxMjKi9m5VVq1YJ94jq6upYuXIl2rZtW+DziYiIEN07ybbrFi1aJASk1dXV0bFjR1haWuL58+c4ceIEpFIptm/fjqpVq2YZHL99+zZsbGzQvHlzSKXSHB/2zm9/86pVq0QB6Xr16qFu3bq4e/eu3AMl9G0xKE1K0blzZ+zevVt44iY1NRWPHz/G48ePsX//fgCAg4MDZs2aBTs7OwD/m/tYtuHk5OSU6Q/K5s2bER8fj3v37uHdu3eIi4uDubk5HBwchLTWsmlgMlJVVcXu3bvzlCItI19fXzx69AgJCQm4fv266MfEzs5OuKFfuHAhkpKScP/+fQQGBiImJgalS5dGgwYN4OXlBSCtgzUpKSnLVJGrV6+WmxOsdu3auHDhghCUtrGxydOcczt37hSNAF2+fLnoxyQ1NRXv37/P9f7SGRkZ4eDBg0JD18rKCn/++SeAtMbgjRs3hFEiefkc01PUxcXFCY22vM7Ne+HCBbx+/VpYnjlzpvAk5i+//IIOHToIDbDt27dn2WgbOHCgkNakffv2Qgdw+nWe16C0uro69u7dK6RjrF27NiZNmgQg7Yf5xIkT6NGjB6ytrdGoUSPh/A8cOCCMOJFthDk7O+c7jXh2vLy8RKO516xZIzQE01O/xMXFQSqVYseOHahXrx5SU1NFneylSpWCt7e3KI1KRERElmmZPnz4gAEDBuDDhw8A0lKZrl+/PtOUOLnh5+eHrVu3iubNTKelpSXMbbJr1y4hIG1lZYVDhw4Jo3T69euHZs2aISUlBQEBAaLgQEaZfXezChKnpqaKRtvVqlULu3fvFhpvy5cvF1Ky37hxA/7+/qhSpQp8fHxET/yuX78eDRs2BAAhhRAR0fdCdtSqpaWlqOMrICAg00Cy7PQlOjo6OHPmDMLCwnDv3j18+vRJmDbj+fPnQgfOlStXchWUTp8X6/Xr1/D390d4eDjU1NTQtGlTPHjwAPHx8UhOTsb169eFdoVEIsGSJUvQuXNnhIeH49atWxg8eLAwWqRv376iTjgDAwM4OzvD09MTQNrvf/rvjmzniJOTk/BQZF7k9rexZ8+e6NmzJ54+fYrnz58LKapbtmwpdCBFRkbi0aNHcmm808m2oWQVpH138eJF4XMDgF69emHu3LlCqmgAQns5rzZt2iSMzpT9TU1KSoKXlxcmTJgAIG0KldTUVDx69AgBAQGIjo6GqakpmjRpInSuBgQE4MOHD0Kb9saNG6KgdI8ePeSm9MlKRESEqDO3ffv2WLVqlbA8fvx44do4cuQIpkyZAiMjI7n91KhRA3v27IG6ujqSkpLQtGlThIWFAUjrDMzPiJdFixYJ9xS9evVCu3bthFHFnp6eqFevHtTU1NCnTx/hHuHAgQNCUPrkyZNC0NfW1jbHTtn88Pf3Fz3gMnToUEyePBlA2rRM/fr1EwLTO3fuxKhRo6CiooKtW7cKZVNRUcE///wjutYTExMRHh6e6TGTkpIwZswY4TovW7Ys/vnnH7kRb7n14cMHoY2dPuJZVvoDOxcuXBCC76qqqti7d6/Q4T5y5Eh07doVz58/R0JCAnbt2iVK6Skrq+9uVrZv3y4EpHV1dXHw4EGh/d+0aVMMHz4cQNrfDG9vb7i5ueH+/fui7/Ivv/yC8ePHAwCGDRuGVq1aISIiItdlICIq7r7XvtUHDx7g5cuXwnJ6e6Njx45Ys2YNAOD8+fOIiIjItP2SF7t27RIC0ioqKti5cydsbW0BpN0jdOnSBampqUhKSsLu3bsxY8YMREVFCe1uIO3hgF27dokGRnz48EHUL/U9928mJycL9yl6enpYsWKFqM9RKpXmezBEz549MX/+fABp7RIXFxeh3XLgwAHhwcD+/fsLQekLFy4gNDQUpqameP78udDWLqwHdDPKb1+dt7e3KCA9YcIE/PLLL6J9Z3eP8tdffwkZvjQ0NLBmzRo0b9483+eR3m5Mn1Na9qHd1q1bA0hrl8lmf5o7d64oE+fcuXOxZ88eAMC2bduyDErb29vDw8Mj19mO8tPfnJycLGr/1q1bF//88w9UVFQglUoxdOjQbP9+kWIxKE1Koaamhn/++QebNm3CoUOHRGkg0t25cweDBg3CsWPHcpxLNqPt27djzZo12abFzZi+RFaTJk0KFJAGIOpEkmVoaCiat9nHxweLFi3K9gY6MTERERERohQf6WxtbeWCWoVBNohubW0t90OioqKS644xWS1atBA9edm5c2ehwwlIm1csPShd0M8xrzKO/JFtlGlpaaFdu3bCj/SzZ88QHx+fafBTNhVohQoVRK+lj6DJCwcHB1Fdd+jQAdOmTRM68B49eoQePXoASGuIpTdafXx8MHnyZKSkpODixYvC+xX1ZKDsCAxjY2PRk4kmJiZo0qSJEBxP3/b169eizjlXV1e5eT2yu8mQbQw1a9YMa9euLVDAXfZJVFmqqqqYNWuW8B1MHykEpI0WymqebCDtusosKJ3X72763KbpnJ2dRU8Turi4iOYJ9/PzQ5UqVUQpMk1NTYWANJD2gIO5uTlHSxPRd0k26JhbX79+xdy5c3H48GFRStmMZIPf2QkKCsKkSZPk2hg57a9kyZJYsmSJEJhJbwvZ2Nhkmgqtf//+QufYpUuX8OnTJ5QqVUqUuju/U3fk9rfx8ePH+O233+TSHWeUXdtt5MiR+SpjdjKOMhg3bpzctZHZ6M+cWFhYiNIFZ/xNlU3RePXqVcycOTPHBzo/fvyY77maZT148ECUKtPFxUX0uouLixCUTh8tnnHuNyAtEJ7+UKy6ujrMzc2FoHTG1Hm5oa6uLnqYw9zcHLVr1xayBsjWWc+ePbF+/XokJibi+fPnuH//PmrWrCl60FJR09Fk/L7K1p+qqiqcnZ2FbSIjI/H69WtYW1uLrjVHR0e5hy80NDQynSM54zEtLCzwzz//oFy5cvk+h3fv3mU5bVD37t2FNqhsmzYlJSXb0TXZ/R3L63dX9r7ByclJ1P5v2rQpjI2NhXuE9G1l27QARPenenp6aN68ufBQNxHRj+B77VuV/Vuuq6srpNmVDUonJSXh6NGjcnMv55Xs71HVqlWFgDSQ1mdTtWpV4eHK9G3v3buH5ORkYbthw4bJZerL2J77nvs3DQwMYGNjgxcvXiAmJgYtW7ZE9erVYWlpicqVK6Nhw4b5amsDEAWR1dXV0a5dO+Fe4+PHj0LwuXbt2qhatSoeP34sPBw6fPhwUbuxSZMmOWZyyY/89tXJtht1dXUxbNgwuX1nV2+rV68GkPZ5rl+/Ho6OjgU5jSzbjT/99BPGjBkDIC0LrOy1P3369CwfSvT398/yuho8eHCept/JT3/zq1evRN+3jh07Cg+sSyQSODs7MyitRAXLR0xUAHp6epg4cSKuXLmCf//9FwsXLoSLi4vohzw8PBxHjhzJ037PnDmDJUuW5DhPa8Z5vmRl/KEtKB0dHdja2mLo0KH4999/UaVKFQD/67zLzRPd6U/uKbqs6WQ7mvITfM5KxoBjxgbBly9fABTO55hXsueso6MDHR0d0euyZZVKpVkGmGU7kDIGSLPr4M5KxjpTVVUVpV9PrzMgLTCb3miJiorCyZMnceHCBWFUb5UqVUQpngqTbP1l1tCTXZded7INN6Bg11qpUqUKdQS4hoYGLCws4OLigoMHD4o6PvPSEZvViJi8fncz1lXGOs54naTXsex1mtlNqCIa5UREyiKbjeTNmzfCSDwg7e/klClTMGXKlCwzaqxcuRJeXl45/l5n1S7L6Ndff80xIJ3V/hwdHYURi+l+/vnnTG/gK1euLKQpS0lJgZeXF+7fvy9KyVsY82Zl9dv49etXjBgxIseANJB13RkZGRV4tEtmZH+ztbW15X4v8yuz/cj+pqa3zz59+oRff/01VxmGcntd5SRjOyVjWbNqM2SUMSiacdRLXhkaGsql58uszoD/pZFOd+DAAXz+/FnowFNXV0fnzp3zXIbcyKn+Mrad0rcvrPsnAwMD0RzaBaWmpoaSJUuiefPmWLduHRYtWiS8Vhht2vx8d/Nz35DxOs3pcyEi+hF8b32riYmJwohXIG1gS/q0L1ZWVqIgd8YsIPmRn9+jjL+dOf3m/wj9mytWrEClSpUApM2HfPbsWWzbtg2//fYbmjVrluVUMTnJ2IeV8TOSLberq6vw7/QBLN/iYcb89tXJfkZlypTJMYV1VrS0tAp1LnIVFRUYGBjAwcEB06ZNw/79+4UphPLSbpRKpXJ1k65ixYp5KpMi2o2FdU9I+cOR0qR0EokENjY2sLGxwc8//4zRo0ejdevWwo+b7BwGuSGbUlBHRwfr1q1DnTp1oKmpid27d2PevHk57iPjj3V+eHh4oH79+tluc+LECeE8JRIJVq5ciebNm0NHRwcXL14URscouqyZke0IKcxRlOmjK9JlfJIzfRR1YXyOeSV7znFxcYiLixPVr2xZJRKJ8KOckWya9fyM0sooY52lpKSIfthlR56rqKigX79+wmj8AwcOiDqJFDVKGhDXX2ZP6MquS6+7jHOb5/Vaq1ixojA/yP79+6Gnp4cpU6bkaR+yRo8eLTwBmB3Zc7WxsZEbgSQrq3kf8/rdzVhXGes443WSXsey12lmnYmZfVZERMVVgwYNhLZjZGQkzp49K4wINDQ0FNLebdq0STRNSTrZdNe2trb4448/UKFCBaipqWHcuHGijo2cvHr1Ck+fPhWWO3XqhClTpsDMzAwSiQQNGzbMMsgDpM1NlrEdvG7dOrRu3TrTEZSurq7CXLSHDh0StRU6d+6c5TQwOcnNb+OtW7dE6ecGDx6MYcOGwdjYGPHx8bC3t8/xON+iTRsfH4+wsLBC6YTI+LsLiH9T09tn58+fF11rU6dOxc8//yzMOZifFNg5yRjQzFjWrNoMGWWcPqWg7drIyEikpKSIOt0yq7N0/fv3F0ZLHTt2DOXLlxfunZo1a5bnEV+5lVn9ybanM7ad0rc3MDAQ6javbdrSpUsjOjoacXFxePToEX755Rds2bIl0/nXc6NevXrYuXNnjtvJnqumpibGjRuX5bYZP590+fnuytZVbu8bMl6nYWFhovYx27RE9CP7XvpWz5w5IwomHT16FEePHs102ydPnuDZs2eoXLlyno+TLj/9WBnbCUFBQdlmz/sR+jft7Oxw7NgxPHv2DE+ePEFgYCCePHmCS5cuITU1FTt27EDz5s3RoEGDPJ1HeHi4KICZ8TOSLXfHjh2xbNkyhIeHIzAwELt27RJSd5uYmBTKA7qZyW9fnexn9OHDB7k2ck7S+0MjIyMxaNAg7NmzJ9/TvgBpI+ZzkvHad3NzyzSra7qs2o55nXIxP9/TzNqN2S3Tt8WR0qQU3t7e2Ldvn2h+gnQ6Ojqi+f8y/hGR7RzJrDNRtgPOwsICjRs3hqamJlJTU0UpDIuCjIHF9u3bC40E2U7R/MqprrLj4OAg/DsgIED0pCKQ9sRTfuaUPnfunOhz9/HxEb1erVo1APn/HAtyzrVq1RIty87F9/XrV1FHtJ2dXb7nLc6rO3fuiDq2fH19RU9QptdZuu7duwvX0c2bN3H+/HkAaY3JrObzKAyy9RceHi5KGR4WFoZLly7JbVuhQgVRh+KuXbvkOuijoqIy/VsBpKUyl00XuHXrVqxfv75gJ5ILsucaEhKCTp06YciQIaL/Bg4ciPLly6NmzZqFcswKFSqIGrtHjx4VpebM+JRwekpR2esjNDQU169fF5bv3r3L1N1E9F3p37+/6GZ+zpw58Pf3z/X7Zdsf9evXh42NDdTU1BAeHi4EfPOzLwBo164dSpUqBYlEghs3bmQbkL537x7++usvYTm9M+bLly/C1BwZtWzZEmXLlgWQlrp37969wmuKGhmQLuO5Ojs7C7/vRalNC6TNQZZxlG/6iPK8ePfunSj1ccbf1PSRPBnrplu3bkIHTXZ1kzEgnJ71Jjdq1Kgh+h5kbCPILquqqmbbkVqYkpKSRB2zQUFBojrMmOKzatWqQpsrLi4O69atE15T5DUtm5YdENdXSkqKqHPc0NBQGAkme61dvXpVLnV8cnJylqn/y5cvj9WrVwudv7du3cKYMWMKbfR8VmTbtAkJCahUqZJcm3bIkCGoU6dOoc7fLXvcy5cvizoGL168KPr7mL5txnse2c8hJiZGuOchIvpRfI99q3mdhqGg0zbI/h49fvxYlPXn+fPnoqlF0re1t7cX1d+WLVvk6vDTp09Cv92P0L+Zfr9VuXJluLi4YMKECdi8ebPogYEnT57keb+yI/yTkpJE5S5VqpRohKyGhgZ69uwpLMumo+7SpYtc27qw5LevTrbdGBsbK6RTl5XdPcrWrVuFEdIhISFwc3Mr1BTwmalZs6boHkNNTS3TdmPbtm1ha2sLPT29QjlufvqbK1asKHoQ49ixY8JDOlKpNMuHXejb4EhpUoqgoCAhdZiDgwPs7OxgaGiIyMhInDx5UjQ/gZOTk+i9pUqVEv4ob9++HZGRkdDS0sJPP/2Ehg0bokKFCsK8d8+ePcPEiRNRsWJFXL58WTQHQVEgm8omOjoaw4cPR61atXD37t1CmddANn3HxYsXsWLFCiG9Wk4jZl1dXbF3716hA8zd3R2+vr6oUqUKoqKicPPmTdSrVw8zZszIU5kiIiLQvXt3tGvXDp8+fRI1MMqXLy+MLs/v5yh7zuHh4Zg2bRqsra0hkUjQr1+/bEcbNGvWDBUqVMDr168BAAsWLMDDhw9RqlQpnD17VtQYcHNzy9N5F0RSUhL69OmDLl26IDY2FgcPHhReK1GiBNq1ayfaXl9fH87Ozti/fz+A/6WCbNGiRYHSYq5btw67du2SW29mZoaNGzfCxcUFf/31l9DgHjt2LLp37w49PT38+++/QqoiiUSCgQMHAkgb2T1kyBAsX74cQNqcMB06dED79u1hYmKC4OBgnDlzBh4eHkLa+4zGjx+P0NBQHDhwAEBaZ7Oenp5wDEVwdXXFvn37kJCQgMjISHTp0gXt2rVDmTJlEBcXh5cvX+LmzZuIjo7G2bNnCyUFo4qKCgYOHCjMG+Pn54e+ffuicePGePXqlahju379+rCzswOQFhhYu3atcB38+uuv6NGjByQSiWhObiKi74GNjQ3GjRuHP/74A0DaDXr37t2FOe3U1NQQFBSE2NjYTN9foUIFPH/+HEBathEVFRVoa2vjyJEj2QaRM2NpaQkVFRXh5nfhwoXw9/dHZGRkth1oMTExmDRpktAe7tGjB0aPHg1nZ2dER0fjzp072LBhA0aPHi16n6qqKvr06YOVK1cCSAswAWmBHNn58RQhY3rGyZMno3379ggODpZ7ADE/CtK+a9q0KWxtbYXPdd++ffD390eDBg0glUrx5MkThIWFiTrrcmv48OHo3r273G+qmpqa0NbOWDcjRoyAk5MTnj17lm1HZMY0fHPnzoWTkxNUVVXRokWLbFNiGhkZCSnWgbTg95cvX2Bvb4979+6J7jO6dOmikLTpWZk+fTpu374NfX19+Pj4iB607NGjh9z2rq6uQgr89Gu6ZMmScveIeXH+/Pks74U2btwIOzs7NGzYUHiQb8uWLXj37h1sbGxw9epVUUp+V1dXodN/yJAhOHPmDFJTU5GSkoKBAweiXbt2qFChAkJDQ3HlyhX069cvy/uIJk2aYOHChfjtt98glUpx6dIlTJo0CX/++We+UzrmpFmzZrC2thZGEv36669o06YNrK2tIZVK8fbtW9y+fRvBwcFYvHhxlu3xvHJzc8PZs2chlUoRGxuLn3/+GZ06dUJcXJzou2RoaChkJKpZs6YwZyWQ9lkFBwejXLlyOHnyZK6mxCIi+p58b32rnz59Eo4JpGUtSk8JLUt2ipqjR49i8uTJ+Q449uvXD3v37kViYiJSU1PRv39/uLi4QCKRwNvbW2jHq6uro1+/fgDSRm327NkTe/bsAZAWzO7YsSNatmwJfX19BAYG4vTp07hy5QrU1dV/iP7Nnj17wszMDHXq1IGZmRn09PTw9OlT0ejbrEbNZsfT0xPh4eGoXLkyLl26JHpoQDYAna5Pnz7YsmULkpOThXYjULCskZ8/f87y/WPGjEHz5s3z1Vfn4uKCjRs3CqN8V65cievXr8Pe3h5fv37FvXv3YGRkJHpQWVbZsmWxZcsW9OvXD9HR0QgODoabmxt2796tsNTUhoaG6N69Ozw9PQGktZEfPXqEWrVqQVNTE58+fcL9+/fx5MkTuLi4FKi9Lis//c1qamro2rWr8D29desWBg4ciLp16+Lu3buiATv07TEoTUqVkJCAa9eu4dq1a5m+3rNnT2F+vHStW7fGjh07AKSNUFizZg2AtIZEw4YNMWDAAHh7ewudjekjfNXU1ODs7FyknoTp1q0btm/fjs+fPwNIe0r88uXLANL+4BZ0fpTWrVsL+4iPj8fmzZsBpHXY5vSDXK5cOaxZswYTJkxAbGwspFIpzpw5gzNnzgjbZPxscqNhw4a4c+cONm7cKFqvqamJRYsWCR0u+f0cnZycoK2tLTxFKNvp6+Likm2jTU1NDevXr8fgwYPx8eNHYU7GjFxdXdG1a9fcn3QBVa1aFYGBgcLnl05FRQVz587NtGHn6uoqBKXTFXRESXBwcKZP6aU3CvT19bFu3TqMGjUK0dHR+Pr1K3bv3i1X5smTJ4uunSFDhiAwMFAIKkdERAiNhtyaO3cuwsPDcfbsWQDA4sWLoaenp7BRNBYWFvjjjz8wefJkxMXFISIiQjQiTVFGjBiBZ8+eCU+H3rt3T+4mxtraWgjyA2lz00ydOlVICRUbGyv8DTUzM4OxsXGeU3kRERVlI0aMgLa2NpYvX47ExESkpKTg/PnzWY6ik32y/ZdffsHEiRMBpI0i+OeffwCkBcEaN24s6ijLiYmJCXr27Il9+/YBSEvLlp7No2HDhnj16lWmoybnzZuHd+/eAUhrj02dOhV6enqYOXOmMEXFhg0b0LhxY7lRED169MC6desKrRMmt6pVqwYnJyehHfvy5UusXbsWQOG0aQvSvlNVVcVff/2FIUOG4M2bNwDSOjPv378vbJPeOZQXlSpVQnx8vPCbKmv8+PGwtLQEkPZQoGxQ3M/PTwhqZlc35ubm+Omnn4RRJTdv3hRG65crVy7HeRpnzJiBN2/e4NatWwCAK1euyD30Wrt2bcycOTOXZ1xwRkZGMDU1Fb4Tsvr27Zvp1Edt2rSBmZmZcL8EpKWjL8hol8jIyCznuEt/iG/58uVwc3PDy5cvAQAnT56Ue4igbdu2+OWXX4Rle3t7zJs3D3PnzkVSUhKSkpLyfO/ZpUsXhIaGCqN7Tp48iZkzZ2LRokWFMi1QRun3P0OGDEFwcDCSkpLkMmQpQt26dTF16lQsXboUqampeP/+PTZt2iTapkSJElizZo0wuk8ikWDRokUYOHAg4uLiIJVKhYde1NXVUatWLdEDA0REP4rvpW/1yJEjonmK58yZI5fxBgAOHjwoDJAJCwvDhQsXhOl68srS0hLLli3Db7/9Jgw62L59u2gbDQ0NLFmyRGjbAWnTsQQHBwsjNoODg+Hh4ZHpMX6U/s2goKAsM/GZm5vLDajJjXr16sn1RQNp/aRDhw6V27506dJo2bKlqM1WvXr1LKfVy42kpCTRiHlZ6Q/E5aevTk9PDxs2bMDIkSOFwHTG73HLli2zLZutrS02bNiAwYMHIyEhAa9fv8bgwYOxc+fOLFOyF9T06dMRFBQklPO///7Df//9p5Bjpctvf/P48eNx7do1oc9T9n6qXr16ec6ERoWH6btJKQYOHIg1a9agb9++qFGjBsqWLQstLS2oq6ujVKlSaNGiBdauXYv58+fLvXfChAkYMGAASpcunekT45aWlti9ezccHR2hra0NHR0d1KtXDzt27ECjRo2+xenlmqGhIfbs2YM2bdpAT08PWlpaqF69OtatW5ftHLW51bJlS8yaNQvW1tb5mkewadOmOHbsGIYMGYLKlStDR0cH6urqMDMzQ7NmzdC0adM879PBwQF79+6Fk5MTdHV1oaOjg8aNG2PXrl2oW7eusF1+P8eSJUtiw4YNqF27dr7mr7G2tsaRI0cwZswYVK1aFTo6OlBTU0PJkiXRunVrbN269Zt23gFpjYwDBw6gdevWMDAwgJaWFmrVqoVNmzZlOQ+hjY2NaK4WMzMzODo6KrysdevWxb///ovBgwfDxsYG2traUFdXR9myZeHs7Ix9+/Zh8ODBovdIJBIsWLAA27ZtE0Ybq6urQ0dHBxUqVECvXr3kRgtlpKqqij///FO4YZFKpfj9998LJWVoVlq1aoWjR49i0KBBsLW1hY6ODlRVVWFoaIhatWphyJAh2Lt3L8zNzQvtmKqqqli9ejVWr16Npk2bwsTEBGpqaihRogRq1qyJKVOm4ODBg3L11a9fP6xZswZVq1aFhoYGjIyM0KVLFxw4cCDb+V+IiIqrAQMG4OzZsxgzZgwcHBxgbGwMNTU1aGlpoWzZsmjcuDHGjBkDb29vTJ06VXhfx44dsWrVKtjZ2UFdXR2Ghobo0KEDPD098/X38vfff8fYsWNRrlw54fdwyJAh2LhxY6ZBtWPHjglZZCQSifCQFZAWrGrbti2AtDTAkyZNkkvXaGRkhE6dOgnLmpqaCp26Q9batWsxcOBAlCxZEurq6rC0tMTEiROxcOHCAu+7oO07CwsLHD58GNOmTYODgwMMDAygpqYGIyMj1K5dO9MRujkxNjaGp6cnunfvDhMTE2hoaKBKlSpYsWIFhg0bJmynrq6Of/75B926dYOhoSE0NDRga2uL+fPny412z2jt2rVo3bo1DA0N8xyQ1NHRwY4dO7BgwQLUr18fhoaGUFNTg4GBAerVq4d58+Zh586d0NXVzfO555eOjg727NkDV1dXlCpVShg9NGPGDMyaNSvT96irq6N3796idYpORw+kXXMHDx7E1KlTUatWLZQoUQJqamowNjaGk5MT/vzzT6xZs0bue9yjRw8cOXIEffr0QcWKFaGtrQ0NDQ2UKVMGbdu2zbRzPaMhQ4aI2steXl6F8j3KSoUKFeDj44PJkyejVq1aMDAwgKqqKnR1dVG5cmX06NED69evF/1tKQxubm7w9PREly5dhL+RWlpasLa2hpubG44ePSr3oEKNGjWwd+9eNGnSBDo6OtDR0UHDhg3h4eGBxo0bF2r5iIiKuu+tb1X2Qb0KFSpk+ZspO/VhxvflR/v27XH48GH07t0blpaW0NTUhKamJsqXL4+ePXvi8OHDcn1vmpqa+Pvvv7Fq1So0b95caP/q6enB1tYWAwYMEILGP0L/5pw5c9CtWzdUrlxZuO/S0dFB5cqVMXToUBw4cCBfI6UXLlwojBDX0NBAyZIlMWDAAHh4eGQZlB8wYIBo+Vu0G/PbV1ejRg38+++/GDNmDKpXrw49PT2oqanBxMQEDRo0yLLPV1adOnXwxx9/CN/jp0+fYvjw4cLo4cKmra2NrVu3YuXKlWjatClMTU2F++zy5cujbdu2mD9/vugeuzDkp7/ZwMAAe/fuRc+ePWFsbAwNDQ3Y2dlh8eLFOd6HkWJJpBkn1CIiKmQtWrQQRtiOHj0aY8aMUXKJfgyzZs0SRksPHz4c7u7uSi4RERERKdqmTZuEFN4dO3YUUplTwU2dOlXo+KxXrx527typ5BL9GI4dOyZkMLC3t5fLBkREREREBKSl227SpAmkUim0tLRw+fJlhY0aJqL8YfpuIqLvSFBQEN69e4eAgABhbkQ1NTX06tVLuQUjIiIihQkJCUFAQADev3+PrVu3CuvT574jKm6io6Ph7++PsLAw/Pnnn8J6XtNERERElNGNGzcQHx8PDw8PpI/BdHZ2ZkCaqAhiUJqI6Dvi7e2NdevWidYNHDiwUFNIExERUdFy+fJlTJs2TbSuXbt2uUoVTFQU+fv7y6VftLe3L/QU0kRERERU/GVsNxoYGDBFM1ERxaA0EdF3SE1NDeXKlcPPP/+MoUOHKrs4RERE9A2oqKigdOnS6NixIzth6LsgkUhgamqKFi1aYMKECVBRUVF2kYiIiIioiDIwMIC9vT3c3d1RunRpZReHiDLBOaWJiIiIiIiIiIiIiIiIiEhh+JgxEREREREREREREREREREpDIPSRERERERERERERERERESkMAxKExERERERERERERERERGRwqgpuwDfs5CQL8ouwjeloiKBsbEuwsNjkZrKqcq/Jda9crH+lYd1rzw/at2XLFlC2UUgyje2TelbYd0rD+teeVj3yvWj1j/bplRcsV1K3xLrX3lY98rDuleeH7Xuc9suZVCaCo2KigQSiQQqKpIf6stWFLDulYv1nz+PHz/C1q0b8fz5U8TFxcHIyBiOjk0wcuRYaGlpyW0fEvIZy5YtxJMnjxAVFQUA8PL6FyYmNkLd37p1A9u3b8azZ/5ISEhA6dJlcPDgUWEfMTExWLVqOZ48eYSQkM9QVVVFhQrWGDRoGOrVa/DNzv17wOueiIo6/p1SHta98rDulYd1/+28ehWAYcMGICEhAcbGJvDxOQkVFQmuXr2K1avXIiDgBSQSCerVa4ixYyfC1LSksotMRD84/kYoF+tfeVj3ysO6z523b9/g77/X4cGD+4iNjYWdXRWMGjUW1arVwNatf2P79s2Zvm/69Nno0ME509e2bv0bW7duklv/++/z0LZtBwDA6NHDce/eXbltvLyOwcysFJ49e4odOzbj+fNniIgIh55eCVSvXgMjRoxG+fKWBThj5WNQmgDkPTgEANeuXcGWLRsRGPgKOjq6aNasOX7/fQYACQDA0bFOpu+TDRLl9OUjou9TcnIy3N3HICbmC2xt7VC5sh3OnDmFQ4c8oaqqirFj3eXeExkZibdv38DOripu3LiW6X7fvXuLr1/jUbFiJfj7P5Z7/cuXaJw86Ytq1WqgZs1aePjwPh4+vI/ffpuALVt2wtq6UqGfKxERERERFY6EhK+YPXsakpOTResfP36EESNGIDU1FS1atEZERATOnTuNd+/eYNu23ZBIJEoqMREREREVRTExMRg/fhQ+f/6EWrUcULKkGc6ePYXx40dh714vVK1aHT169BG2Dw8Pw9mzpwAAFhblc9x/vXoNYGlZQViW/Xe6Dh2coaurJyzr6OgCAAICXuDWrRuwt6+NunXr4/LlC7h48TyePXuKvXu9oK6uns+zVj4GpSlfwaGnT/0xdepESCQStGzZBi9ePMPhw16Ii4vBvHlLAED0hQWAK1cu4sOH95l+YbP68v0IFPFAQFZP8cg+jQMAZ8+ext69O/HqVQDU1dVgYWGJqVN/R6VKNgo5V6J0kZERiIlJS9c1Y8YcWFtXgqqqGg4fPogPH95n+h4bG1vs338Yb94Eol+/zIPS3br1QLduPXD48MFMg9L6+vrYtesALC2tAABxcbHo0qUd4uPjcfv2DQaliYiIiIiKsNWrV+LTp0/o128gPDy2CevPnTuD5ORkNGjQEHPmLERqaio6dWqNFy+e4/Lli2jSpJnyCk1ERERERc7Dh/fw+fMnaGtr488/10NNTQ3x8XG4fPki9uzZiXHj3NGgQSNh+7/+WgMAqFq1OqpXr5nj/tu0aYd27Tplu82gQcNQpkxZufU1atjDy+sY9PUNAACtW7fDuHEj8fHjB7x+HQBbW7u8nGqRwqA05Ss45OGxDampqejVqx/GjJmAyMhIdOnSFqdOncKAAUNgZWWNceP+F8yOiorE0aPeAIDevfvL7S+rL9/3TlEPBKSrW7c+rKwqCsuyT+McOuSJP/9cBg0NDTRq5IQSJfTx+nUAIiLCADAoTYplaloSbdt2wMmTvli4cI5w7RsaGqFfPzeFHVdXV0/0AExqqlQYZWFqaqaw4xIRERERUcGcP38GPj7emDVrAZKTk0SvaWpqAgDev3+PiIgIRESEIT4+DgDw4sUzBqWpyLt16xa2bt2KR48eISQkBOvXr0erVq2E16VSKdasWYMDBw4gOjoatWvXxpw5c2BlZSVsExkZifnz5+P8+fNQUVFBmzZtMGPGDOjq/m/gx9OnTzFv3jw8fPgQxsbG6N+/P4YNGyYqy/Hjx7F69WoEBwfDysoKkyZNQtOmTfNUFiIioqJOQyOt/ZiYmIhXr16iVKnSCAp6ByCt/SgrLi4OPj5p8a2+fV1ztf8//1yBZcsWoWRJM7Rp0x6uroOgoaEh2mbQoH5ITk6ChUV59OnjijZt2gMAzM0tRNslJiYCAFRVVWFsbJrHMy1aGJSmfAWHnj9/CgD46aeqAABDQ0OYm1vgzZtAPH/+DFZW1qLtvb0P4uvXr7C2tkH9+g3l9pfVl+97p6gHAtK1bt0u07kN4uLisGnTegDAihVrULt25qnWiRSpXbuO8PO7g+fPnwp/Uxwdm6B8+ZzTnxSGhIQEzJkzHUlJSXBwqIumTZt/k+MSEWW0du1arFu3TrSuQoUKOHHiBIC0v1dLliyBr68vEhMT4ejoiNmzZ8PUtHjfiBAREeXWhw/vsXTpQnTo4Iw2bdrB1/eo6PWuXbvh6NHDePv2DZydW4teCwsL/ZZFJcqXuLg4VK5cGd27d8fo0aPlXt+8eTN27tyJJUuWwNzcHKtXr8aQIUPg6+srPJQxadIkhISEYPv27UhKSsL06dMxa9YsrFy5EkBamtIhQ4agYcOGmDt3Lp4/f47p06dDX18fvXr1AgDcvXsX7u7umDhxIpo3b46jR4/i119/hZeXF2xtbXNdFiIioqKuZs1aqFXLAX5+dzB4sHggZcb247//HkZMzBeYm1vAyalZtvtVVVVD7dq1YW5uiejoaFy5chHbt2/Gly9fMH78JACAjo4OGjRohFKlSuPt2zfw87uDefN+h6amllwf9cePH7FyZdpgRFfXQcW+L4hBaQKQ9+BQeHgYAEBbW0dYp62tDQAIDRV/YRMTE+HldQAA0KeP+Mudly/f90jRDwSsXr0CK1Yslnsa5/Hjh4iNjYWmpib27t2J336bCH19fbRv3wlubkOhpsY/DaRYERER+O23iUhMTMCCBUtRv34jLFo0F6dPn0BKSgrmzVus4OOHY+pUdzx+/BD16jXAwoXLed0TkVLZ2Nhg+/btwrKqqqrw70WLFuHixYtYtWoVSpQogfnz52P06NHYt2+fMopKRET0zV2+fBExMV/w8eMHTJkyHp8/fwYAxMR8wZQp4zFz5hz4+vrC09MLHz9+hKWlFY4fP4Y7d27CyMhYyaUnylnTpk1Fo5FlSaVSeHh4YOTIkcLo6WXLlqFRo0Y4c+YMOnbsiICAAFy+fBkHDx5E9erVAQAzZ87E8OHDMWXKFJQqVQo+Pj5ISkrCokWLoKGhARsbG/j7+2P79u1CUNrDwwNOTk4YOnQoAGD8+PG4du0adu3ahXnz5uWqLERERMWBmpoaVq36CxcunEVAwEsYGhoiNDQEe/bsFLUfU1JS4Om5FwDQu3c/qKioZLvfQYOGwN19HCIiYpGcnApPz71Ys2Ylzp07LQSlly79ExKJRHjPtGmTcPnyBZw7d0oUF/P3f4ypUyciLCwMAwYMxtChvxReBSgJe+ApX8EhY2MTfPz4QUiHBaQ91QlA7kmNkyd9ER4eBjOzUmjVqq3otdx++b5ninggQFVVFdWr14SVVQV8+fJF7mmciIgIAGkjr969e4eWLVvj3Lkz2LFjC9TU1ODmNlRh50sEAJ8+fUBiYgIAoFq1mtDW1oatbWWcP38GgYGvFHrswMDXmDx5PD58CEbnzi6YOPE3BqSJSOlUVVVRsmRJufVfvnzBoUOHsGLFCjRsmJZtZtGiRejQoQPu3bsHe3v7b1xSIiIiZZACAO7evS1am5iYiGvXruDr16/Q1i6N7t17IDk5FW/fBmLZsoUA0qa1IirOgoKCEBISgkaN/jevZYkSJVCzZk34+fmhY8eO8PPzg76+vhCQBoBGjRpBRUUFDx48QOvWrXHv3j3UqVNHlDrU0dERmzdvRlRUFAwMDHDv3j24ubmJju/o6IgzZ87kuiy5oaIigYqKJOcNvxOqqiqi/9O3xfpXHta98rDuc0cqTUHbtu0AAF+/foWbWz8AQP36DaCmllZ358+fxsePH2BkZIROnToL67MSFPQOxsZ2Qt2nx7ATExOgpqaCr1/jER0dDTOzUsJ70kNkSUlJMsc9izlzfkdKSjKmT5+Fzp27FtZpKxV74SlfwSEbm8r4+PEDnjx5jJYt2yAyMhLBwUH//5qtsJ1UKsX+/bsBAD169BEFfr5+/Yro6CjRly/9RjM9R/73TlEPBAwcOEQUWM74NI6x8f+e9Jk1ax5++qkaSpUqja1b/8alSxcYlCaFs7KqCENDQ0RGRmLy5LGws/sJ58+n3eTa29fGhw/v0aNHZwDAgQM+KFOmLCIjI7F+/SrExMQI+1m79k8YGuqjV6/+MDe3xP379/Dvv2lp+4C0+ewXLpwDIC1FflRUJH75ZTBiYr7AxMQUmppaWL9+NQCgfv2GaNCgEYiIlOHNmzdwdHSEpqYm7O3t4e7ujrJly+LRo0dISkoSdfxZW1ujbNmyeQ5Ks/OPvhXWvfKw7pWHda9Yffv2R9++/8u89u+/PliwYA6MjU3g63saUmkqmjVrhjp16kEikeDy5YtITExEs2YtUKcOp6ui4i0kJAQAYGJiIlpvYmIiDE4IDQ0V9fUAaSPADAwMhPeHhobC3NxctE16P1JoaCgMDAwQGhoqN9hE9ji5KUtuGBvrigap/Cj09bWVXYQfGutfeVj3ysO6z97gwYOhpaUFY2Nj3LhxA2/fvoWFhQWGDx8CfX1dAICn5x4AQP/+/VGmjPj3z8vLC9OmTUO5cuVw7tw5AED37qNgaGgIOzs7xMTECOtdXFxgZKSLoKAIdOvmjLp166J8+fJ4/fo1bt68CQDo0aM7jIx0cfXqVUyfPgVSqRTVq1dHUFAg/vprlVAOS0vLb1E9CsGgNOUrODRgwCBcvXoJBw/uQ0REOF68eIaUlBS0atUKNja2SE5OBQBcv34VgYGvoaenhy5dXETHjYgIR+/eLrC3d0C5cuXw7t1b+PndAZA2evhHoKgHAt69e4vy5WX/MKUH+9OOVaFCRaiqqiIlJUVu/zo6OnLriAqblpYW/vhjHbZs2YgnTx7jzRtfmJiYomPHLhg+fCTCwsKEbdNT2MbHx+H48X9F+zl//iwAoFWr9jA3t0Rw8DvRNvHx8cLyjBlzEBcXJ8zjHhYWigMH9grb6unpMShNREpRo0YNLF68GBUqVEBISAjWr1+Pfv364ejRowgNDYW6ujr09fVF7zExMRE6BXOLnX/0rbHulYd1rzys+29DVzdt3loVFQmMjHSRmpqKihUr4tq1K4iLi0PZsmUxaNAgjBgxAurq6kouLRFlFB4e+8M9LKmvr43o6HikpKQquzg/HNa/8rDulYd1nztWVhVx4sRxREZGQl9fH506dcbIkaORkqKKiIhY+PndwcOHD6GpqYWOHbsiIiJW9P7Y2K8AAIlEIrzWtWt3XLhwFidPnkRKSgrKl7dEp06d0aNH7//fRgPOzl1w+/Yt3L3rB01NDdSsaY/+/Qeibt3GiIiIxatXbyGVpsV0Hj58iIcPHwrHrF/fEfr6RW9eaSMj3Vxtx6A05Ss4VKVKVSxatBzbtm3C+fNnoKuriy5dXDBr1kwkJf1v3/v27QIAdO7sAh0d8UVpYGCATp264M6d23j06D40NDRRo4Y9+vYdAEfHJoo/8SJAUQ8EuLuPQYkS+rCxsUVsbCyuXLkI4H/BfhMTUzg7d8Xhw4cwb94s2NvXwrlzacft2LGzEmqCfkS2tnZYtmxVpq+9ePEMQNo1m55NoUyZsrhyRZyuT01NBUZGusIcHR06OKNDB+csj5nZPn40sn9XMrK3r4116zbJrU9OTsa2bZtw7txpfP78GRoaGqhY0Rpjx45GtWq1AQBv3wZi48b1ePToAb58iYaBgSEcHOpi9OjxMDIyhq/vUSxaNDfT4w4aNAxDhowovJMkKmZk5w+0s7NDzZo10bx5cxw/fhxaWlqFdhx2/tG3wrpXHta98rDuv63mzdviv//SpgeLiIiFqqoKdu7cKVf/MTGJAL7fTGy57fyj4i19ipewsDCYmZkJ68PCwmBnZwcgbcRzeHi46H3JycmIiooS3m9qaio3mjl9OX10dGbbhIWFCa/npiy5kZoqRWqqNNfbfy9SUlKFgTz07bH+lYd1rzys++yNHDkOI0eOk1ufXmfVq9cS9SVnrMunT9OmY3V1HSy85urqhrFjfxX6qzPuV1NTG+7u0zItT/r27dp1Qrt2nbIsd3H+TBmUJgB5Dw4BgKNjUzg6/q8TVU1NBXp6uqKnRdas2ZjlMXV0dDF58vQClrx4U9QDAZ07d8P582dw8eI54Wmcjh07o3v3XsL+xo51h6amFs6cOYHTp0/A3Lw8evfuh/bts/5j971RVHDO0THz9HClS5fBwYNHAQCxsTFYv341Ll26gLi4WFhZVcSwYSPRsGHjQjq74u3GjesoU6YsJkyYrOyifHd0dXXRo0cf0bqTJ30RHR0FC4vMU794eu6Bh8c2aGhooFWrtnj37i0ePLiHkSNH4siR49DXN8T06VMQGPgK5ubl4eTUFJcuXcDJk76Ii4vD4sUrYGVVQXTchISv8PHxBoAsj0v0o9LX14eVlRXevn2LRo0aISkpCdHR0aLR0mFhYZnOQZ0ddv7Rt8a6Vx7WvfKw7pWL9U/fI3Nzc5QsWRLXr19HlSpVAAAxMTG4f/8++vRJu8eqVasWoqOj8ejRI1SrVg0A8N9//yE1NRU1atQAANjb22PVqlVISkoSMghcu3YNFSpUgIGBgbDNf//9J5pX+tq1a8KUMbkpCxER0Y/ixo3raNq0OQf65QGD0pQjBocUSxEPBLi6usHV1S3b42poaGDMmAkYM2ZCwU6gGFNUcC7jPq9cuYgPH97DwqK8sG7+/Fm4cuUSKla0Rr16DXD27ClMnToRW7Z4wMamcuGfbDEzZcoMZRfhu6Wvb4Bx49yF5devX+HgwX2QSCTo1atvpu959+4dAKBhw8aYPn02IiLC4ezcBklJSQgNDUGJEgYIDk7bZvTo8XB0bIKyZcthw4a1+PDhPQDgp5+q4aefqgn79PY+CAAwMyuFFi1aKeRciYqr2NhYvHv3DiVLlkS1atWgrq6O69evo23btBFhr169wvv37/M0nzQRERERFV2xsbF4+/atsBwUFAR/f38YGBigbNmyGDBgADZs2ABLS0uYm5tj9erVMDMzQ6tWafdS1tbWcHJywu+//465c+ciKSkJ8+fPR8eOHVGqVFp/krOzM9avX48ZM2Zg2LBhePHiBTw8PDBt2v9Gaw0YMACurq7Ytm0bmjZtCl9fXzx69Ajz5s0DkJaeNKeyEBER/Sj27vVSdhGKHQalKUcMDikPHwhQLEUE5/T1DUX7jIqKxNGjaaNBe/fuDwB4+fIFrly5BDU1Naxbtwn6+gYwMDDEgQN78c8/W7FgwTJFnTKRnP37d0MqlaJxYydYWVXIdJsuXVxw4cJZXL9+FYsWzcW7d2//f30X2NpWRnJyKvr2HYB//tmKdetW4fr1K7h06QK0tXUwZMhwuf2lpqZi//49AICePftATY3NEfqxLV26FM2bN0fZsmXx+fNnrF27FioqKujUqRNKlCiB7t27Y8mSJTAwMICenh4WLFiAWrVqMShNRERE9J149OgRBgwYICwvXrwYAODi4oIlS5Zg2LBhiI+Px6xZsxAdHQ0HBwds2bIFmpqawntWrFiB+fPnY+DAgVBRUUGbNm0wc+ZM4fUSJUpg69atmDdvHrp16wYjIyOMGjUKvXr9L6te7dq1sWLFCqxatQp//PEHrKyssH79etja2grb5KYsRERERJlhLzBREcYHAr6twgrOyfL2PoivX7/C2toG9es3BAA8f54210S5cubQ109LkVW1ajUcOAA8e/ZMUadHJCc8PAynTh0HAPTtOyDL7aysKqJJk2Y4dswHvr5pKejTRji3ELZp0qQ5Ll48j8DAVwgKSvte1KvXMNOR/1euXEJQ0Fvo6emhc2eXwjwlomLp48ePmDhxIiIjI2FsbAwHBwd4enrC2NgYADB9+nSoqKhg7NixSExMhKOjI2bPnq3kUhMRERFRYalfv362/QESiQTjxo3DuHHy816mMzQ0xMqVK7M9jp2dHfbs2ZPtNu3bt0f79u0LVBYiIiKizDAoTUSEwg3OpUtMTISX1wEAQJ8+/YX16XOFa2vrCOvS/x0WFlrAMyHKvYMH9yMxMRE//VQNNWvWynK7zZs34NgxH1SvXhNLl/6JoKC3+OWXwRg/fjx27/ZE2bIWmDx5HMLDwzBmzAR07dodmzb9hf379+D336di8+Z/RPvbu3cnAKBLl+7Q0dFV6DkSFQd//vlntq9rampi9uzZDEQTEREREREREVGxVayC0ikpKVi7di18fHwQGhoKMzMzuLi4YNSoUZBIJAAAqVSKNWvW4MCBA4iOjkbt2rUxZ84cWFlZCfuJjIzE/Pnzcf78eSGdzYwZM6Cr+7+O8adPn2LevHl4+PAhjI2N0b9/fwwbNuxbnzIRfSOFFZwrX/5/I6xPnvRFeHgYzMxKoVWrtsJ6ExMTAEB8fJywLi4u9v9fMy3sUys05+IPKbsIciQSQDVeBSkpqZBKlV0asRba3ZVdhGx9/foVhw+nfaZ9+7pmu+27d28AABUqVIS+vj5sbe2gqamJ+Ph4BAYGQl/fCOHhaQ9bVK1aHZqaWrCz+wkAEBj4WrSvx48f4eHD+1BXV0ePHr0L+7SIiIiISIESdxXNzE5JEgkSVdPvC4rWjYFGf/nMQURERERUcJFDsx5cpjQSCSJVVZCckoqi1mFtuMVD2UUoXkHpzZs3Y+/evVi6dCkqVaqER48eYdq0aShRooQw78rmzZuxc+dOLFmyBObm5li9ejWGDBkCX19fYW6TSZMmISQkBNu3b0dSUhKmT5+OWbNmCSluYmJiMGTIEDRs2BBz587F8+fPMX36dOjr64vmWVEmQ88Oyi6CHIkEgKoKShTB4FBkT19lF4GKsMIMzqUHpaVSKfbv3w0A6NFDPGduejrjoKB3iI6Ogr6+AR4/fgQAonmaiBTp2DEfREdHwdzcAk2aNBe95uhYBwCwZs1G1K5dB/b2tXHt2hWcOHEMSUlJ+PDhPeLj46GlpYWqVavC0NAQVlYVERj4CgsWzEbt2nVw9eplAECtWrVF+04fJd26dTuYmpb8BmdKRERERERERERERMpWrILSfn5+aNmyJZo1awYAMDc3x7Fjx/DgwQMAaUEgDw8PjBw5Eq1atQIALFu2DI0aNcKZM2fQsWNHBAQE4PLlyzh48CCqV68OAJg5cyaGDx+OKVOmoFSpUvDx8UFSUhIWLVoEDQ0N2NjYwN/fH9u3by8yQWlSHsPn25RdBDkSiUTmgYCi9URApO1gZRchR4UZnEt3/fpVBAa+hp6eHrp0Ec+Za2Nji0aNnHDt2mWMHj0clSrZ4uzZU1BRUcGAAUMUf8L0w0tNTcWBA3sBAD179oWKiorwmuzfEFXVtGZC7979kZiYiFOnjuPcudPQ0NBErVoOGDduDEqVKo3k5FQsXfoHNm1aj3v3/HD8+L8wMjJGp05dMGLEaGF/798H4/LlC5BIJOjd+38p7YmIiIiIiIiIiIjo+1asgtK1atWCp6cnXr9+jQoVKuDp06e4c+cOpk6dCgAICgpCSEgIGjVqJLynRIkSqFmzJvz8/NCxY0f4+flBX19fCEgDQKNGjaCiooIHDx6gdevWuHfvHurUqQMNDQ1hG0dHR2zevBlRUVEwMDDIVXlVVCRQUZEU0tmLSRSz2wJJL1NRLJuamkrOG+WSpAieoET2/0WsfIVZ94ogG5zr3bsfNDT+92dRNjinoaEONTUV9O8/AMnJyTh50hfnzp2BpqYGatd2wNixY1C2bFmkpKQCAPbv3wUA6NKlG/T1S8gdd+7cBVi7dhUuXTqP8+fPwNraBsOH/4KqVX9S5OkWSBG7tABkvPaVWJBMFO1rXwUHDx7J9JWnT/0BALVr10GtWvb/H7BWwdChwzF06HBhO1VVFejrayM6Oh4AYGlZHgsXLs32qOXLW+Dq1VuFcwpEREREREREREREVGwUq6D08OHDERMTg/bt20NVVRUpKSmYMGECOnfuDAAICQkB8L/5WtOZmJggNDQUABAaGgpjY2PR62pqajAwMBDeHxoaCnNzc9E2pqamwmu5DUobG+sqLoCpWnSDHaoqRa9sRka6OW+UW0W57otg2Qq17hXk7Nkzma5//PgxAKBevXpo2rSRMJrU3X0c3N3HZbvPPXt2Z/u6kZEuli9fko/SKo9qfNG7vtKp8NovNA8e3IG+vj7++GMFTEzkH6jISF9f+xuUioiIiIiIiIiIiIiKs2IVlD5+/DiOHj2KlStXolKlSvD398fixYthZmYGFxeXnHfwjYWHxypspHSJ/x+NWZSkZZBWQUpq0ZtT+ktEbKHtq0jWPdIC0ikpqShiVV+odf+tnT59DiVKlMCMGXMQFRWf5XayI0ZTiuD1UViK4rlJkBaQTi2C135EMb32e/bsj54901JrZ3cOP8p1n1FxfdiAiIiIiIiIiIiISJmKVVB62bJlGD58ODp27AgAqFy5Mt6/f4+///4bLi4uKFmyJAAgLCwMZmZmwvvCwsJgZ2cHIG3Ec3h4uGi/ycnJiIqKEt5vamoqjKxOl76cPmI6N1JTpUhNVUyYpKgFfWVJpUWvfMnJhRcwKWpzNgMQ8ipLUfTKV5h1/6316+eGfv3cAOTuPFJSUov1+eakiF1aaf7/uZ+0a1+pJZHzPV8Lsr73656IiIiIiIiIiIiICq7o5TvNxtevX+XSYauqqgpBOHNzc5QsWRLXr18XXo+JicH9+/dRq1YtAGnzUkdHR+PRo0fCNv/99x9SU1NRo0YNAIC9vT1u376NpKQkYZtr166hQoUKuU7dTURERERERERERERERERExSwo3bx5c2zcuBEXLlxAUFAQTp8+je3bt6NVq1YAAIlEggEDBmDDhg04e/Ysnj17hilTpsDMzEzYxtraGk5OTvj999/x4MED3LlzB/Pnz0fHjh1RqlQpAICzszPU1dUxY8YMvHjxAr6+vvDw8MCgQYOUdu5ERERERERERERERERERMVRsUrfPXPmTKxevRpz584VUnT36tULv/76q7DNsGHDEB8fj1mzZiE6OhoODg7YsmULNDU1hW1WrFiB+fPnY+DAgVBRUUGbNm0wc+ZM4fUSJUpg69atmDdvHrp16wYjIyOMGjUKvXr1+qbnS0REBACRQwcouwjyJBJEqqogOSW1yOVON9zioewiEBEREREREREREZGMYhWU1tPTw4wZMzBjxowst5FIJBg3bhzGjRuX5TaGhoZYuXJltseys7PDnj178l1WIip8v1wZrOwiZEoiAVTVVJCSnFrUYnPY6LhN2UUgIiIiIiIiIiIiIqIfXLFK301ERERERERERERERERERMULg9JERERERERERERERERERKQwDEoTEREREREREREREREREZHCMChNREREREREREREREREREQKw6A0EREREREREREREREREREpDIPSRERERERERERERERERESkMAxKExERERERERERERERERGRwjAoTURERERERERERERERERECsOgNBERERERERERERERERERKQyD0kREREREREREREREREREpDAMShMRERERERERERERERERkcIwKE1ERERERERERERERERERArDoDQRERERERERERERERERESkMg9JERERERERERERERERERKQwasouABERERERERVfr14FYNiwAUhISICxsQl8fU8jMTERo0f/goCAl/jyJRp6enqoVMkWQ4aMQPXqNZVdZCIiIiIiIiL6xhiUJiIiIiIionxJSPiK2bOnITk5WbQ+OTkZoaEhqFevPrS1dXD79k3cvn0T/v6PcezYWaip8VaUiIiIiIiI6EfCngAiIiIiIiLKl9WrV+LTp0/o128gPDy2Cet1dHSwb98hJCenAgCePvXH0KGuiI2NRWRkBExNSyqryERERERERESkBAxKExERERERUZ6dP38GPj7emDVrAZKTkzLdZvv2zQgLC8Xt2zcBAJ06dWFAmoiIiIiIiOgHxKA0ERERERER5cmHD++xdOlCdOjgjDZt2sHX92im2x075oOPHz8AAExMTFGnTr1vWUwiIiIiIiIiKiJUlF0AIiIiIiIiKl4uX76ImJgv+PjxA6ZMGQ9Pz70AgJiYL3B3H4uwsDAAwMGDR3H27BUsXLgcERHhmDNnBp49e6rMohMRERERERGREnCkNBEREREREeWRFABw9+5t0drExERcvXoFoaGhMDMzBwBoamqhQYNG0NLSRlxcLF69eonKle2+eYmJiIiIiIiISHkYlCYiIiIiIqI86dmzL3r27Css+/oexaJFc2FsbAJf39M4cuQAdu7ciZ9+qg5tbW3cv++HuLhYaGhookYNe+UVnIiIiIiIiIiUgkFpIiIiIiIiKlS2trYwMDDEtWtXkJDwFYaGRmjWrCX69RuAcuXMlV08IiIiIiIiIvrGGJQmIiIiIiKiAunQwRkdOjgLy40aNcLWrTWRnJyqxFIRERERERERUVGhouwCEBERERERERERERERERHR94tBaSIiIiIiIiIiIiIiIiIiUhgGpYmIiIiIiIiIiIiIiIiISGEYlCYiIiIiIiIiIiIiIiIiIoVhUJqIiIiIiIiIiIiIiIiIiBRGTdkFyKsWLVogODhYbn3fvn0xe/ZsJCQkYMmSJfD19UViYiIcHR0xe/ZsmJqaCtu+f/8ec+bMwY0bN6Cjo4OuXbvC3d0damr/q44bN25gyZIlePHiBcqUKYORI0eiW7du3+QciYiIiIiIcuPt/Y/KLoIciUSCt6oqSElJhVQqVXZxRMrXLK3sIhARERERERH9kIpdUPrgwYNISUkRll+8eIFBgwahXbt2AIBFixbh4sWLWLVqFUqUKIH58+dj9OjR2LdvHwAgJSUFI0aMgKmpKfbt24fPnz/jt99+g7q6OiZOnAgAePfuHUaMGIHevXtjxYoVuH79OmbOnImSJUvCycnp2580EREREREREREREREREVExVezSdxsbG6NkyZLCf+fPn0f58uVRr149fPnyBYcOHcLUqVPRsGFDVKtWDYsWLYKfnx/u3bsHALhy5QpevnyJ5cuXo0qVKmjatCnGjRuH3bt3IzExEQCwb98+mJubY+rUqbC2tkb//v3Rtm1b7NixQ3knTkRERERERERERERERERUDBW7kdKyEhMT4ePjg0GDBkEikeDRo0dISkpCo0aNhG2sra1RtmxZ3Lt3D/b29rh37x5sbW1F6bwdHR0xZ84cvHz5Ej/99BPu3buHhg0bio7l6OiIRYsW5al8KioSqKhICnaSWZAoZrcFkl6molg2NbXCe/5CUgRPUCL7/yJWvsKt+0LbVeGS+QCKWhG/9/oXX/tKLEgmCrPui2Lly9a9tIiVr1DrnoiIiIiIiIiIiIgKrFgHpc+cOYMvX77AxcUFABAaGgp1dXXo6+uLtjMxMUFISIiwjWxAGoCwnNM2MTEx+Pr1K7S0tHJVPmNjXcUFMFWLboe7qkrRK5uRkW7h7awo130RLFth1r1qEQ80fff1H1/0zi+dynde95FF8PzSfe/XPREREREREREREREVXLEOSh86dAhNmjRBqVKllF2UTIWHxypspHSJlFSF7LcgJJK0gHRKaiqkUmWXRuxLRGyh7atI1j3SAkMpKakoYlVfqHWfklz06h4AIPlf/Re1DyCiMOu/iF77KqoqSC2C135h1n1yEa37ovp3pzDrPiMGvImIiIiIiIiIiIjyrtgGpYODg3Ht2jWsXbtWWGdqaoqkpCRER0eLRkuHhYWhZMmSwjYPHjwQ7Ss0NBQARNukr5PdRk9PL9ejpAEgNVWK1FTFdNUXtaCvLKm06JUvuRCDmdKidnKAkNpXiqJXvsKt+0LbVaESHj357q/9QttV4fn/yk+79pVaEjmFWfdF7uTwv5TdUqDIla9Q656IiIiIiIiIiIiICqzo5dzMJS8vL5iYmKBZs2bCumrVqkFdXR3Xr18X1r169Qrv37+Hvb09AMDe3h7Pnz9HWFiYsM21a9egp6eHSpUqCdv8999/ouNdu3ZN2AcREREREREREREREREREeVOsQxKp6amwsvLC127doWa2v8Ge5coUQLdu3fHkiVL8N9//+HRo0eYPn06atWqJQSUHR0dUalSJUyZMgVPnz7F5cuXsWrVKvTr1w8aGhoAgN69e+Pdu3dYtmwZAgICsHv3bhw/fhxubm5KOFsiIiIiIiIiIiIiIiIiouKrWKbvvnbtGt6/f4/u3bvLvTZ9+nSoqKhg7NixSExMhKOjI2bPni28rqqqio0bN2LOnDno1asXtLW14eLigrFjxwrbWFhY4O+//8bixYvh4eGB0qVLY8GCBXBycvom50dERERERERERERERERE9L0olkFpR0dHPHv2LNPXNDU1MXv2bFEgOqNy5cph8+bN2R6jfv36OHz4cEGKSURERERERERERERERET0wyuW6buJiIiIiIiIiIiIiIiIiKh4KJYjpYmIiIiIiABg9eqVuHTpPCIiwqGuro5y5czx88+90blzFwDAqVMnsGuXB969ewNNTU04OTXH6NHjoKurp+SSExERERERERH9OBiUJiIiIiKiYuv9+yBUqVIVhoZGePXqJR48uIdFi+aiYsUKiI//glmzpkNDQxOtWrXB69evcPSoNyIiwrBkyR/KLjoRERERERER0Q+D6buJiIiIiKjYWrr0TyxYsBSTJk3F+vWboaurCwAIDg7GsWPHAADt23fE9Omz8ccf6wAAV65cwosXz5RWZiIiIqK8SElJwapVq9CiRQvUqFEDrVq1wvr16yGVSoVtpFIpVq9eDUdHR9SoUQNubm4IDAwU7ScyMhLu7u6oXbs26tSpg+nTpyM2Nla0zdOnT9G3b19Ur14dTZs2xebNm+XKc/z4cbRr1w7Vq1eHs7MzLl68qJDzJiIiou8Lg9JEREREREXEpk2bULlyZSxcuFBYl5CQgLlz56J+/fqoVasWxowZg9DQUCWWsug5deoE/vxzGX79dRhiY2Nha1sZjo5O0NTUBAC8eROI2NgY+Ps/Ft7z/DmD0kRERFQ8bN68GXv37sWsWbPg6+uLSZMmYcuWLdi5c6dom507d2LOnDnw9PSEtrY2hgwZgoSEBGGbSZMm4eXLl9i+fTs2btyI27dvY9asWcLrMTExGDJkCMqWLQsvLy9MmTIF69atw/79+4Vt7t69C3d3d/z88884fPgwWrZsiV9//RXPnz//NpVBRERExRaD0kRERERERcCDBw+wb98+VK5cWbR+0aJFOH/+PFatWoWdO3fi8+fPGD16tJJKWTTduvUfDh3yxIMH96Curo7GjZtAU1MLgwYNgo6ODu7du4u2bZth4sT/1Vt4eJgSS0xERESUe35+fmjZsiWaNWsGc3NztGvXDo6Ojnjw4AGAtFHSHh4eGDlyJFq1agU7OzssW7YMnz9/xpkzZwAAAQEBuHz5MhYsWICaNWuiTp06mDlzJo4dO4ZPnz4BAHx8fJCUlIRFixbBxsYGHTt2hKurK7Zv/z/27js8iqrt4/h3NyShpJBCCwlIkRqBIBgD4cECKCBIeRSkK0ovIlIEpIkBERR8QIEYQboogoAgiEozgICE0HuPShIgIRFI2/cPXlZWuu5mJ+H3uS6vZOecPXPPnXWZnXvPmZnWWGbPnk2dOnV49dVXKVOmDK+//jqVKlVi7ty52Z8YERERyVF0T2kRERERESdLTU1lwIABjBkzhk8++cS6/dKlSyxevJgJEyYQFhYGXCtSN2rUiJiYGKpVq+akiI1l6NCRDBo0jGPHjjB4cH9mzozEy8uTHj26smjREtasWc2FCxeoUKEi06dP5dSpk/j4+Dg7bBEREZF7EhISwqJFizh+/DilSpXiwIED7Nixg8GDBwNw5swZ4uPjqVWrlvU5np6eVK1alZ07d9K4cWN27tyJl5cXjzzyiLVPrVq1MJvNxMbGUr9+fWJiYqhRowZubm7WPuHh4URGRpKUlIS3tzcxMTF06tTJJr7w8HBr8ftemM0mzGbTP8xGzuPiYrb5KdlL+Xce5d55Hpjcm4z3b4nphp8Wg8WXJ4/zXw8qSouIiIiIONno0aOpW7cutWrVsilK79mzh/T0dJsLjGXKlCEgIOC+i9K58eLf1atXMZvNuLq6kiePG5UqVeKhh0px7twfHD16hIyMDAoVKkSbNu0A2LFjO6dOncRsNvPYY6GG+ED2b5kM9iEXsPkUbsJY8eWGv/mdPDAXnwzoQcl9uhHfc/7GaO+Luf19R7JHly5dSElJoWHDhri4uJCZmUm/fv1o2rQpAPHx8QD4+fnZPM/Pz89625eEhAR8fX1t2vPkyYO3t7f1+QkJCQQGBtr08ff3t7Z5e3uTkJBg3Xar/dwLX98Chvt/NTt4eeVzdggPNOXfeZR758ntub9o4HNvI34u8PEp4OwQVJQWEREREXGmb7/9ln379vHVV1/d1JaQkICrqyteXl422/38/KwXD+9Vbrz4t3//KTp16sRjjz2Gn58fR48e5ZdffgHgySfrcvbsWV5++WVCQ0O5cuWKdQZPx44dqVy5nDNDt5tTBvyge52L2XixGeFDeHbI7RefjCy35z7NwO85oIt/4njJycns3LmTI0eOcOHCBUwmEz4+PpQpU4Zq1arh7e3tkP2uWrWK5cuXM3HiRMqWLcv+/fsZO3YshQsXpnnz5g7ZpyOdP5+a674seScuLma8vPKRnHyZzMwsZ4fzwFH+nUe5d54HJfcZBjw2E9fyn5mZhcXZwfzNhQupDhv7Xs95VZQWEREREXGS3377jXfffZfPPvsMd3d3h+4rN178M5vdKVeuAtu2befSpWQ8PT0JCXmUFi3+y3/+8zTp6X/i6+vHd9+tJj09jcDAIJo3/y8vvNDKoR/GspMhLzCYrhWkM7OyMNqn8Nzyd7+dB+XikxE9KLk38rFdv/hnNEa4+Cf/TlpaGitWrGDJkiXs2LGDrKxbv87MZjPVq1enRYsWPPfcczZLYP9b48ePp0uXLjRu3BiA8uXLExcXx/Tp02nevDmFChUCIDExkcKFC1ufl5iYSIUKFYBrM57Pnz9vM25GRgZJSUnW5/v7+9804/n64+uzo2/VJzEx8abZ03eSlWUhK8tgJwnZIDMzi4wM471PPSiUf+dR7p0n1+feYrx/S64v2W0Bw8VnhNeCitIiIiIiIk6yd+9eEhMTadGihXVbZmYm27ZtY968eURFRZGenk5ycrLNbOnExETrxcN7lRsv/vn6FuKDD6bcsi0zMws/Pz8iI2fd9MErM9OC4aql/5DFYB9y4YYluy3Gi88IH8KzQ66/+GRguT33Rvt/+robVwIxWoy5+fXwIFiwYAGffPIJFy5coHbt2rz11ltUrlyZoKAgvL29sVgsJCUlcebMGfbs2UN0dDQjRoxg0qRJ9OjRg9atW9sljitXrty04o2Li4v19R4YGEihQoXYvHkzFStWBCAlJYVdu3bx0ksvAdfuS52cnMyePXsIDg4GYMuWLWRlZVGlShUAqlWrxqRJk0hPT8fV1RWA6OhoSpUqZZ0FXq1aNbZs2WJzX+no6Oj7uq2MiIiIPJhUlBYRERERcZLHH3+c5cuX22x76623KF26NK+99hrFihXD1dWVzZs388wzzwBw7Ngx4uLidOFPRERExMGmT5/OK6+8QsuWLfH09Lxln8KFC1O4cGGqV69Ohw4dSElJ4auvvmLGjBl2K0o/+eSTTJs2jYCAAOvy3TNnzqRly5bAtS9mdOjQgU8++YSSJUsSGBjI5MmTKVy4MPXq1QOgTJky1KlTh7fffptRo0aRnp7OO++8Q+PGjSlSpAgATZo0YerUqQwdOpTXXnuNw4cPM3v2bN566y1rLB06dKB9+/Z89tln1K1bl5UrV7Jnzx5Gjx5tl2MVERGR3EtFaRERERERJ/Hw8KBcOdt7G+fPn5+CBQtat7ds2ZJx48bh7e2Nh4cHY8aMISQkREVpEREREQdbu3YtefLc3+VTDw8POnXqRLt27ewWx7Bhw5g8eTKjRo2yLtHdqlUrevbsae3z2muvcfnyZYYPH05ycjKPPvoon376qc0tYiZMmMA777xDx44dMZvNNGjQgGHDhlnbPT09iYqKYvTo0bRo0QIfHx969OhBq1atrH2qV6/OhAkTmDRpEh988AEPPfQQU6dOvemcVkREROTvVJQWERERETGwIUOGYDab6dOnD2lpaYSHhzNixAhnhyUiIiKS691vQdpez/07Dw8Phg4dytChQ2/bx2Qy0bdvX/r27XvbPgULFmTixIl33FeFChWYP3/+Hfs0bNiQhg0b3jloERERkb9RUVpERERExEDmzJlj89jd3Z0RI0aoEC0iIiLiBG+99RYhISG8+OKLd+0bHR3NtGnTmD17djZEJiIiIpKzqCgtIiIiIiL/yvef7HV2CDcxmUy4uJjJzMzCYrE4Oxwb9btXdnYIIiIico+WLFnC0qVL2bBhAxEREXh5ed22b0JCAtu2bcvG6ERERERyDrOzAxARERERERERERExqipVqvDDDz/QrFkzfv31V2eHIyIiIpIjqSgtIiIiIiIiIiIichvt2rUjMjKSK1eu0KFDBz755BNnhyQiIiKS46goLSIiIiIiIiIiInIH4eHhfPPNN9SoUYPJkyfTqVMn4uPjnR2WiIiISI6horSIiIiIiIiIiIjIXRQqVIiZM2fSu3dvtm3bRrNmzdiwYYOzwxIRERHJEVSUFhEREREREREREbkHJpOJnj178vnnn+Pi4kK3bt147733yMjIcHZoIiIiIoaWx9kBiIiIiIiIiMi9mzx5Ihs2/MSFC+dxdXWlePFA/vvf1jRt+jwAGRnpzJo1k++++5Y//vidAgUKULZsOSZM+Ig8eXQZQETEHmrUqMGyZcsYNGgQM2fOZPv27dStW9fZYYmIiIgYlj6NioiIiIiIiOQgcXFnqFixMgUL+nDs2BFiY2OIiBhF6dKlqFMnjOHDh/Ljj2vx9fWjfv1nsVgs7N4dS2ZmporSIiJ2VLBgQaZPn85nn33GBx98wJ49e5wdkoiIiIhh6dOoiIiIiMg9iIuLIy4ujho1ali3HThwgM8++4y0tDSee+456tWr58QIReRB8d57H1p/t1gsPPvsE6SmpnL27Fm2bdvGjz+upWDBgnz++UJ8fHycGKmISM4XEBBA/vz579jnlVdeoUaNGvTr14+4uLhsikxEREQkZ1FRWkRERETkHowZM4Y///yTWbNmAZCQkECHDh1IT0+nQIECrF69msmTJ9OgQQPnBioiD4Q1a75j795YDh8+RGpqKuXKlSc8vA5ffjkfAG/vgvTv35tTp05QrFgAHTt2pl69Z5wctYhIzvPjjz/eU78qVarw7bffkpiY6OCIRERERHIms7MDEBERERHJCWJjY6lVq5b18dKlS7ly5QrffPMNGzZsICwsjM8++8yJEYrIg2Tbti0sXryI2NgYXF1dqV37P7i75+X8+fMAnDx5gvz581OrVh1OnDjOqFHDiIn51clRi4jkbnnz5qV48eLODkNERETEkFSUFhERERG5B0lJSfj5+Vkfr1u3jpo1a1KiRAnMZjP169fn2LFjToxQRB4kQ4eOZN26LXz22Vx8fHyZOTOSL79caH2fKlCgAJMmfczo0WMJCXkUi8XCxo3rnRy1iEjus3LlSvr27cugQYPYtGmTs8MRERERMSwVpUVERERE7oGvr6/1HoHJycnExMRQp04da3tmZiYZGRnOCk9EHhBXr14lPT0dgDx58lCuXAVKlnwIgCNHDlOxYsXbPvdu90QVEZHb6927Ny1btrTZ9vXXX/PGG2+wdetW1q1bx2uvvcaaNWucFKGIiIiIseme0iIiIiIi96BWrVrMmTMHDw8Ptm7disVi4emnn7a2HzlyhGLFijkxQhF5EJw6dYK+fXsQElIdHx8/Tp48zs6dOwAIDQ2jfv36lC5dhmPHjvL66z3w9fVj584d5M2bV/eUFhH5F3755Rc6d+5ss23q1KnUqlWL6dOnk5WVxauvvsqMGTNo0KCBk6IUERERMa4cN1P6jz/+4M033yQ0NJQqVarQpEkTdu/ebW23WCxMnjyZ8PBwqlSpQqdOnThx4oTNGBcvXqR///5Ur16dGjVqMGTIEFJTU236HDhwgDZt2vDII49Qt25dIiMjs+PwRERERMSg+vfvT+nSpXnvvff4+eefGThwIEFBQQCkpaWxatUqwsLCnByliOR23t4FKV++ArGxu1ixYinHjx+jWrXqjBoVQYMGz2I2m/nww//xxBNPcfjwQX75ZTMhIY8yadLH1hnVIiJyb+Li4oiLi+PYsWMkJSXh5eVl3fbrr79y9uxZGjZsSHx8PImJiTRo0IDjx4/z22+/ERcXR0pKirMPQURERMQwctRM6aSkJF566SVCQ0OJjIzEx8eHkydP4u3tbe0TGRnJnDlzGDduHIGBgUyePJnOnTuzcuVK3N3dAXjzzTeJj49n5syZpKenM2TIEIYPH87EiRMBSElJoXPnzoSFhTFq1CgOHTrEkCFD8PLyolWrVk45dhERERFxLn9/fxYuXMilS5dwd3fHzc3N2paVlcXnn39O0aJFnRihiDwIChcuwocfTr1jnyJFijJmzPhsikhEJPcaNGgQJpOJzMxMABYuXMi3334LwLlz5zCZTCxbtoxly5YBkJqayp9//smgQYMAaNGiBc2aNXNK7CIiIiJGk6OK0pGRkRQtWpSxY8dat12fnQLXZknPnj2b7t27U69ePQDGjx9PrVq1WLt2LY0bN+bo0aNs3LiRr776ikceeQSAYcOG0aVLFwYOHEiRIkVYtmwZ6enpRERE4ObmxsMPP8z+/fuZOXOmitIiIiIiDzhPT8+btuXNm5cKFSo4IRoRERERcZQ5c+YA1645hoSE0KxZMzp16gTA0KFDcXNzs/YB2LBhA4MHD2b27NnOCFdERETE0HJUUfrHH38kPDycPn36sG3bNooUKUKbNm148cUXAThz5gzx8fHUqlXL+hxPT0+qVq3Kzp07ady4MTt37sTLy8takIZr9wc0m83ExsZSv359YmJiqFGjhs3sl/DwcCIjI0lKSrKZmX0nZrMJs9lkp6O3ZXLMsP/K9ZiMGFuePPZbqd5kwAM03fjTYPHZN/d2G8q+bvgDGC3E3J5/29e+EwO5BXvm3ojJvzH3FoPFZ9fci/xNXFwc06ZNY+vWrZw/f56PP/6YmjVrWn9v0aIFlSpVcnaYIiIiImJHJpOJ2rVrM2XKFNLS0rh8+TLLli2jT58+Nv1iYmIoVaqUk6IUERERMbYcVZQ+ffo0CxYs4OWXX6Zbt27s3r2bMWPG4OrqSvPmzYmPjwfAz8/P5nl+fn4kJCQAkJCQgK+vr017njx58Pb2tj4/ISGBwMBAmz7+/v7WtnstSvv6FnBcAdPFuBfcXczGi83Hp4D9BjNy7g0Ymz1z72LwQlOuz/9l4x3fdeZcnvuLBjy+63L7617kRkeOHKFt27ZkZWVRpUoVTp06RUZGBgC+vr7s2LGDP//8k4iICCdHKiIiIiL2Nnz4cN58800+/PBDTCYTDRs2tM6aBrh69SqLFy/mlVdecV6QIiIiIgaWo4rSFouF4OBg3njjDQAqVarE4cOHWbhwIc2bN3dydDc7fz7VYTOlPTOzHDLuv2EyXStIZ2ZlYbE4Oxpbly6k2m0sQ+aea4WhzMwsDJZ6u+Y+M8N4uQfA9Ff+jfYHuGDP/Bv0tW92MZNlwNe+PXOfYdDcG/V9x565/zsVvB9s77//Pp6enixatAjAZnUegLp167Jq1SpnhCYiIiIiDlakSBHmzJlDamoqLi4u5M2b16bdZDIxf/58ChUq5KQIRURERIwtRxWlCxUqRJkyZWy2lS5dmtWrV1vbARITEylcuLC1T2JiovUef/7+/pw/f95mjIyMDJKSkqzP9/f3t86svu764+szpu9FVpaFrCzHXKo3WtH3RhaL8eLLsGMx02K0gwPr0r4WjBeffXNvt6HsyvrVk1z/2rfbUPbz/8m/9tp3aiQ3sWfuDXdw/LVktwUMF59dcy9yg23bttGzZ098fX25cOHCTe0BAQH88ccfTohMRJzh2/eGODuEm5lM5MljvvZvocH+fW48SKtIiEjuUKDArb+o6ubmRvHixbM5GhEREZGcI9vX3Dx9+jRHjx79R8+tXr06x48ft9l24sQJ6wlfYGAghQoVYvPmzdb2lJQUdu3aRUhICAAhISEkJyezZ88ea58tW7ZYl2EEqFatGtu3byc9Pd3aJzo6mlKlSt3z0t0iIiIikrtYLJabZsTc6Pz587i5uWVjRCIiIiLiSJcvX3bKc0VERERyI4cVpWfPnk2/fv1str311ls0aNCA5557jhYtWpCYmHhfY3bs2JFdu3Yxbdo0Tp48yfLly1m0aBFt2rQBri2T06FDBz755BN++OEHDh48yMCBAylcuDD16tUDoEyZMtSpU4e3336b2NhYduzYwTvvvEPjxo0pUqQIAE2aNMHV1ZWhQ4dy+PBhVq5cyezZs3n55ZftkBkRERERyYkqVarE+vXrb9mWkZHBt99+S9WqVbM5KhERERFxlCeeeIIpU6Zw7ty5e37OH3/8weTJk3niiSccF5iIiIhIDuSw5bu//PJLQkNDrY83btzIkiVLaNWqFeXKlWPy5MlMmTKFESNG3POYVapUYcqUKXzwwQdMnTqVwMBAhgwZQtOmTa19XnvtNS5fvszw4cNJTk7m0Ucf5dNPP8Xd3d3aZ8KECbzzzjt07NgRs9lMgwYNGDZsmLXd09OTqKgoRo8eTYsWLfDx8aFHjx60atXqX2ZFRERERHKqLl260K1bN0aMGEHjxo2Ba7eJiY6OZtq0aRw7dozhw4c7OUoRERERsZcRI0YwZcoUPv74Y6pXr05YWBiVK1cmMDAQLy8vLBYLycnJnDlzhj179hAdHc2uXbsoWbLkfV3zFBEREXkQOKwoHRcXZ3P/51WrVhEYGMioUaOAa/do/uabb+573CeffJInn3zytu0mk4m+ffvSt2/f2/YpWLAgEydOvON+KlSowPz58+87PhERERHJnerWrcvYsWOJiIhg0aJFAAwYMACLxYKHhwfvvfceNWvWdHKUIiIiImIvjRo14tlnn+XHH3/k66+/Ztq0aaSnp2MymWz6WSwWXF1dqV27Nh999BFPPfUUZnO23zVRRERExNAcVpS2WCw2j3/++Weefvpp6+PixYuTkJDgqN2LiIiIiNhds2bNaNCgAT///DMnT54kKyuLEiVKEB4ejoeHh7PDExERERE7M5vN1KtXj3r16pGWlsaePXs4duwYFy9eBK5NfildujTBwcG4ubk5N1gRERERA3NYUfqhhx5i7dq1vPTSS2zcuJFz587xn//8x9r++++/4+Xl5ajdi4iIiIg4RP78+alfv76zwxARESeZPHkiGzb8xIUL53F1daV48UBefPEl2rd/iXPn/mDYsLc4efI4qampeHl5U7lyMF279uKhh0o5O3QR+Zfc3NyoXr061atXd3YoIiIiIjmOw4rSnTt3pn///tSsWZPLly9TpkwZwsPDre1bt26lQoUKjtq9iIiIiMi/EhcXB0BAQIDN47u53l9ERHKnuLgzVKxYmYIFfTh27AixsTGMGTOSRx6pSFaWC1euXKFWrTrkyeNKdPRGNm5cz6lTJ5k37ytnhy4iIiIiIuI0DitKN27cGB8fH9atW4eXlxdt2rQhT55ru7t48SLe3t48//zzjtq9iIiIiMi/8tRTT2Eymdi1axdubm7Wx3ezf//+bIhORESc5b33PrT+brFYePbZJ0hNTeX06dOEhz/FZ5/NtbavW/cDw4YNIi7uLBaL5Z7+HREREREREcmNHFKUTktLY+PGjRQvXpwhQ4bc1F6wYEGmTJniiF2LiIiIiNhFREQEJpMJV1dXm8ciIiJr1nzH3r2xHD58iNTUVMqVq8CTTz5Jevq19smTJ3LlymU2b/4Zs9lMhw6v6N8QERERERF5oDmkKO3q6krfvn0ZOnSolugWERERkRypRYsWd3wsIiIPrm3btrBq1Qrg2jWQOnXqkDdvXtLTrwLw5ZcLrH2DgkoQHPyIU+IUERERERExCrMjBjWZTDz00ENcuHDBEcOLiIiIiGS7K1eu3LXP2bNnsyESERFxtqFDR7Ju3RY++2wuPj6+REVFMnfuX8t2b9q0nTVr1tOv30BOnz7FoEFvkJCQ4MSIRUREREREnMshRWmArl27Mm/ePI4dO+aoXYiIiIiIZJumTZuyY8eO27bPnz+fJk2aZGNEIiKS3a5evUr6/6/RnSdPHsqVq0DJkg8BcPDgQVJTU6x98+cvQN26TwLXbnN2+vTJbI9XROzn8uXLtGjRggULFty9s4iIiIjcxCHLdwPs2rWLggUL0qRJEx577DGKFy9O3rx5b+o3bNgwR4UgIiIiImI37u7utG/fno4dO9KvXz/c3NwA+O233xg6dCjR0dHUr1/fyVGKiIgjnTp1gr59exASUh0fHz9OnjzOzp3XvrBUu3ZtIiOnsW3bL5QrV4E8efLwyy9bAChYsCDlypV3Zugi8i/ly5ePM2fO6P7wIiIiIv+Qw4rSNy5btXnz5lv2MZlMKkqLiIiISI7w9ddf89FHH/HZZ5+xfv16xo4dy6FDhxg3bhx58uTh/fff10xpEZFcztu7IOXLVyA2dheXLiXj4eFJtWrVadnyBZ577jlSUq6wY8d21q//iYyMdHx8fGnUqAnt2nWkQAEPZ4cvIv9SnTp12LRpE61bt3Z2KCIiIiI5jsOK0gcOHHDU0CIiIiIi2c7V1ZX+/ftTr149Bg4caL0Y+cQTTzB69GgKFSrk5AhFRMTRChcuwocfTr1pe5481+6O9swzDXn66WeyOywRySY9evSgb9++DBgwgFatWhEUFIS7u/tN/QoWLJj9wYmIiIgYnMOK0iIiIiIiudHp06e5ePEirq6upKWlkZ6ejsVicXZYIiIiIuJgjRs3BuDIkSOsWLHitv3279+fXSGJiIiI5BgqSouIiIiI3IPz588zcuRI1qxZQ506dRgzZgxbt27l3Xff5bnnnmPo0KE8//zzzg5TRERERBykZ8+euqe0iIiIyD/k0KL0+vXrmTVrFvv27ePSpUu3nEGibw6KiIiISE7QuHFjrl69yujRo3nxxRcBaNq0KY8//jhvv/02gwYNYs2aNUydevOyriIiIiKS8/Xu3dvZIYiIiIjkWGZHDbx69Wq6detGQkICjRo1Iisri8aNG9OoUSPy5s1L+fLl6dmzp6N2LyIiIiJiVw8//DDLli2zFqSvK1y4MNOnT+fdd9/ll19+cVJ0IiIiIiIiIiIixuWwmdLTp0+nSpUqzJ8/n6SkJBYsWEDLli0JCwvjzJkztGrVisDAQEftXkRERETErmbPnn3H9pYtWxIeHp5N0YiIPLhOrv/W2SHcxGQClzxmMjOyuMUicU5Vsm5jZ4cgkuvs2LHDujJkVlaWTZvJZNJEHBEREZFbcFhR+ujRo7zxxhu4uLiQJ8+13WRkZAAQGBjISy+9RGRkJM2aNXNUCCIiIiIi2apIkSLODkFEREREHOTixYt07dqV2NhYLBYLJpPJervC67+rKC0iIiJyaw4rSufNmxdXV1cAvLy8cHNzIz4+3tru7+/PmTNnHLV7ERERERG7u3r1KqtXr77jzJiIiAgnRSciIiIijjR+/HgOHjzIxIkTqVKlCvXq1SMqKorAwEBmzZpFTEwMkZGRzg5TRERExJAcVpQuVaoUR48etT6uWLEi33zzDU2bNiUzM5MVK1ZQrFgxR+1eRERERMSuzp49S4cOHTh79ixeXl5cunQJb29vLl26RGZmJj4+PuTPn9/ZYYqIiIiIg2zYsIFWrVrRqFEjLly4AIDZbKZkyZKMGDGCXr16ERERwQcffODkSEVERESMx+yogevXr88PP/xAWloaAN26deOXX36hZs2aPP7442zfvp0uXbo4avciIiIiInY1fvx4UlJSWLRoEd999x0Wi4UPP/yQnTt38uabb5I3b16ioqKcHaaIiIiIOEhycjJly5YFoECBAgCkpqZa22vXrs2mTZucEpuIiIiI0TmsKN25c2fWrVuHm5sbAE8++SRz5szhhRdeoHXr1syaNYsWLVo4avciIiIiIna1ZcsWXnrpJapUqYLZ/NdptJubG6+++iqPP/64lu4WERERycUKFy5MQkICcO0c0M/PjwMHDljb//jjD0wmk7PCExERETE0hy3ffSs1atSgRo0a2blLERERERG7uHLlCsWLFwfAw8MDk8nEpUuXrO0hISG89957zgpPRERERBysZs2aREdH0717dwAaNmxIVFQULi4uZGVl8fnnn1OnTh0nRykiIiJiTA6bKV2xYkWWL19+2/aVK1dSsWJFR+1eRERERMSuihUrxh9//AFAnjx5KFKkCDExMdb2I0eO4O7u7qToRERERMTROnXqxFNPPWW9XWHv3r2pWrUqkydP5n//+x/BwcEMHTrUyVGKiIiIGJPDZkpbLJY7tmdmZmo5GxERERHJMR5//HF++OEHevXqBUDz5s2ZMWMGycnJZGVlsWzZMp5//nknRykiIiIijlK+fHnKly9vfezt7c2sWbNITk7GbDbj4eHhxOhEREREjM2hy3ffruickpLCpk2b8PHxceTuRURERETspkuXLuzevZu0tDTc3Nzo1q0b586dY/Xq1ZjNZp577jneeustZ4cpIiIiIg4yZcoUGjRoQLly5Wy2e3l5AXD48GFWr15t/RKjiIiIiPzFrkXpKVOmMHXqVOBaQXrAgAEMGDDgln0tFgvt27e35+5FRERERBwmICCAgIAA62N3d3feffdd3n33XSdGJSIiIiLZZcqUKZQsWfKmovR1hw8fZurUqSpKi4iIiNyCXYvSjzzyCG3atMFisTB//nxq167NQw89ZNPHZDKRL18+KleuTIMGDey5exERERERERERERGnuHjxIq6urs4OQ0RERMSQ7FqUrlu3LnXr1gXg8uXLtG7dmqpVq9pzFyIiIiIi2WLKlCn3/RyTyUTPnj0dEI2IiIiIOMO2bdvYunWr9fH333/PyZMnb+p36dIlVq5cedtZ1CIiIiIPOofdU3rs2LGOGlpERERExOFUlBYRERGRrVu3Ws8LTSYTa9asYc2aNbfsW7ZsWd5+++3sDE9EREQkx7BrUTo+Pp4TJ05QqVIlChQoYN2enp7Oxx9/zPLly4mPj6d06dL06tWLp59++r7G/9///nfTxcFSpUrx3XffAXD16lXGjRvHypUrSUtLIzw8nBEjRuDv72/tHxcXx8iRI9m6dSv58+enWbNm9O/fnzx5/krF1q1bGTduHIcPH6ZYsWJ0796dFi1a/JOUiIiIiEgOdeDAAWeHICIiIiJO9uqrr9K2bVssFgu1atVi1KhRN92S8PrtCt3d3Z0UpYiIiIjxme052IwZM+jbt+9N90557733mDZtGsnJyZQtW5bjx4/Tp08ftm3bdt/7ePjhh9m0aZP1v/nz51vbIiIi+Omnn5g0aRJz5szh3Llz9OrVy9qemZlJ165dSU9PZ+HChYwbN44lS5bw0UcfWfucPn2arl27EhoayjfffEPHjh0ZNmwYGzdu/AcZERERERG5s/nz59OkSROqV69O9erVadWqFevXr7e2X716lVGjRhEaGkpISAi9e/cmISHBiRGLiIiIPDjy5s2Lj48Pvr6+/PDDDzRt2hQfHx+b/woWLOjwgvQff/zBm2++SWhoKFWqVKFJkybs3r3b2m6xWJg8eTLh4eFUqVKFTp06ceLECZsxLl68SP/+/alevTo1atRgyJAhpKam2vQ5cOAAbdq04ZFHHqFu3bpERkbeFMuqVat49tlneeSRR2jSpInNuauIiIjI7di1KL1t2zaefPJJ3NzcrNvOnz/P/PnzKVOmDGvXrmXx4sV8++23+Pj48Nlnn933PlxcXChUqJD1P19fX+DafVsWL17M4MGDCQsLIzg4mIiICHbu3ElMTAwAmzZt4siRI7z//vtUrFiRunXr0rdvX+bNm0daWhoACxcuJDAwkMGDB1OmTBnatWvHM888w6xZs/51fkRERERE/q5o0aK8+eabfP311yxevJjHH3+cnj17cvjwYeDuX7wUERERkexRvHhx8uXLZ318/vx5li5dSmRkJGvXriUrK8sh+01KSuKll17C1dWVyMhIvv32WwYNGoS3t7e1T2RkJHPmzGHkyJEsWrSIfPny0blzZ65evWrt8+abb3LkyBFmzpzJtGnT2L59O8OHD7e2p6Sk0LlzZwICAvj6668ZOHAgU6ZM4YsvvrD2+fXXX+nfvz///e9/Wbp0KU8//TQ9e/bk0KFDDjl2ERERyT3sunz3b7/9RrNmzWy2/fTTT2RlZfHKK6/g5eUFXDuBa9myJV999dV97+PkyZOEh4fj7u5OtWrV6N+/PwEBAezZs4f09HRq1apl7VumTBkCAgKIiYmhWrVqxMTEUK5cOZvlvMPDwxk5ciRHjhyhUqVKxMTEEBYWZrPP8PBwIiIi7jtWs9mE2Wy67+fdC5Njhv1XrsdkxNjy5LHf9y9MBjxA040/DRaffXNvt6Hs64Y/gNFCzO35t33tOzGQW7Bn7o2Y/BtzbzFYfHbNvcjfHDhwgLlz57Jv3z4uXbp004VHk8nE2rVr72vMp556yuZxv379WLBgATExMRQtWpTFixczYcIE6zlqREQEjRo1sp7jioiIiIjjrFixgi+//JIPP/zQOjkGYOfOnXTr1o3k5GQsFgsmk4kqVaowc+ZM8ufPb9cYIiMjKVq0KGPHjrVuCwoKsv5usViYPXs23bt3p169egCMHz+eWrVqsXbtWho3bszRo0fZuHEjX331FY888ggAw4YNo0uXLgwcOJAiRYqwbNky0tPTiYiIwM3NjYcffpj9+/czc+ZMWrVqBcDs2bOpU6cOr776KgCvv/460dHRzJ07l9GjR9v1uEVERCR3sWtROi0t7aaTru3bt2MymW4q9AYFBZGUlHRf41epUoWxY8dSqlQp4uPjmTp1Km3btmX58uUkJCTg6upqLXxf5+fnR3x8PAAJCQk2BWnA+vhufVJSUrhy5Qp58+a953h9fQs4roDpYtwL7i5m48Xm41Pg7p3ulZFzb8DY7Jl7F4MXmnJ9/i8b7/iuM+fy3F804PFdl9tf9yI32rp1K6+++ire3t4EBwezb98+Hn/8ca5evUpMTAxly5YlODj4X+0jMzOT7777jj///JOQkJB7+uKliIiIiDjOihUryMjIsClIWywWBg4cSEpKCj179iQ4OJh169axcOFCPv30U/r06WPXGH788UfCw8Ott0MsUqQIbdq04cUXXwTgzJkzxMfH25wzenp6UrVqVXbu3Enjxo3ZuXMnXl5e1oI0QK1atTCbzcTGxlK/fn1iYmKoUaOGzSqY4eHhREZGkpSUhLe3NzExMXTq1MkmvvDw8Pv6YqYjJ/IY0fXPzUb8/PwgUP6dR7l3ngcm9wabKAOayHPXGOw5WGBgIPv377fZtnXrVgICAihWrJjN9j///JOCBQve1/h169a1/l6hQgWqVq3Kk08+yapVq+6rWJxdzp9PddgJlmemY5YD+jdMpmsF6cysLCwWZ0dj69KF1Lt3ukeGzD3X/oHJzMzCYKm3a+4zM4yXewBMf+XfaH+AC/bMv0Ff+2YXM1kGfO3bM/cZBs29Ud937Jn7v1PB+8H20UcfERQUxKJFi0hLS6NWrVp07dqVsLAwdu3axWuvvcabb775j8Y+ePAgrVu35urVq+TPn5+pU6dStmxZ9u/ff9cvXt4rx67iY6wPWn9ntPhy+yo+tqvIGCu+XL+SyQ2rV1lyce4NmPoHZuWwdCMe4N8Y7X3RCBf/5N85ePAgTZs2tdn266+/cvr0adq1a2e9rcoTTzzB77//zvfff2/3ovTp06dZsGABL7/8Mt26dWP37t2MGTMGV1dXmjdvbj0v9PPzs3men58fCQkJwLWJODcW1gHy5MmDt7e3zWSdwMBAmz7XJ+8kJCTg7e19ywk9N+7nXjh0Io+BeXnlu3sncRjl33mUe+fJ7bnXRJ77Y4TrmnYtStevX5+ZM2dSs2ZNQkJCWLp0KXFxcdblXG60a9eum05y7peXlxcPPfQQp06dolatWqSnp5OcnGxz0S4xMZFChQoB106iYmNjbca4fsJ0Y5+/n0QlJCTg4eFx34XvrCwLWVmOuVRvtKLvjSwW48WXYcdipsVoBwfWKx8WjBeffXNvt6HsyvoxKte/9u02lP38f/KvvfadGslN7Jl7wx0cf33TzwKGi8+uuRe5wb59++jduzceHh7WFX+uL99dtWpVWrVqxeTJk22+SHmvSpUqxdKlS7l06RKrV69m0KBBzJ07167xO/LinxE/bF1nxNjs+UHwlAGP77rcvoKSkQtNuf11b+QVlHL7Cj5pBjy+G+X21744R2Ji4k3XMH/++WdMJhMNGza02V67dm0mTpxo9xgsFgvBwcG88cYbAFSqVInDhw+zcOFCmjdvbvf9OZojJ/IYkYuLGS+vfCQnXzbkF/5zO+XfeZR753lQcq+JPPfHCBN57FqUfvXVV/npp5944403MJlMWCwWSpUqRbdu3Wz6XbhwgR9//JHOnTv/q/2lpqZy+vRpChUqRHBwMK6urmzevJlnnnkGgGPHjhEXF2dd1rBatWpMmzaNxMRE6zcHo6Oj8fDwoGzZstY+GzZssNlPdHS0lkYUERERecC5uLhQoMC1k2wvLy/y5MlDYmKitT0oKIijR4/+o7Hd3NwoWbIkAMHBwezevZvZs2fTsGHDu37x8l458uKfUT/kWlcyMZjcvpIJN6ygZLRP4XZdycSAX4Iy3bCCj8G+M2bf171Bc29dwSc3596I7zn/70F4z/87FbyzR8GCBUlOTrbZtmPHDvLkyXPTrVvy5cvnkC8BFipUiDJlythsK126NKtXr7a2w7VzxMKFC1v7JCYmUqFCBeDaRJzz58/bjJGRkUFSUtJdJ+tcb7tdn8TExJtmT9+JIyfyGFlmZpYhzx8eFMq/8yj3zpPrc2+0E280kedu7FqUzp8/P19++SXff/89p0+fpnjx4tSrVw93d3ebfn/88Qe9e/e2Fo/v1XvvvceTTz5JQEAA586d43//+x9ms5nnnnsOT09PWrZsybhx4/D29sbDw4MxY8YQEhJiLSiHh4dTtmxZBg4cyIABA4iPj2fSpEm0bdvWeq+U1q1bM2/ePMaPH0/Lli3ZsmULq1atYvr06XbJkYiIiIjkTCVKlODEiRPAtaVBS5cuzdq1a63LOa5bt+6+LsbdSVZWFmlpaff0xct7H9ORq/gY64MW2C7farT4cvsqPqYbljIxWny5fiWT/8+9xYDLyOT6FXz+n1YOc44H5T1fnKN8+fJ8++23dOzYkTx58vDHH3/w66+/EhoaetM1z9OnT9sUhe2levXqHD9+3GbbiRMnKF68OHDtloqFChVi8+bNVKxYEYCUlBR27drFSy+9BEBISAjJycns2bPHWkzfsmULWVlZVKlSBbg2WWfSpEmkp6fj6uoKXJusU6pUKby9va19tmzZYnNfaU3oERERkXth16I0XLsXyd+Xrvm7ChUqWL+ldz9+//133njjDS5evIivry+PPvooixYtst4PZciQIZjNZvr06UNaWhrh4eGMGDHC+nwXFxemTZvGyJEjadWqFfny5aN58+Y293kJCgpi+vTpjB07ltmzZ1O0aFHGjBlDnTp17jteEREREck96taty+LFi+nfvz958uTh5Zdf5q233qJBgwYAnDp1yrqk4v2YOHEi//nPfyhWrBipqamsWLGCX375haioqHv64qWIiIiIOE7Xrl1p3749zZs355FHHmHLli1kZGTw8ssv39T3xx9/vGn2tD107NiRl156iWnTptGwYUNiY2NZtGgRo0ePBq59MaNDhw588sknlCxZksDAQCZPnkzhwoWpV68eAGXKlKFOnTq8/fbbjBo1ivT0dN555x0aN25MkSJFAGjSpAlTp05l6NChvPbaaxw+fJjZs2fz1ltvWWPp0KED7du357PPPqNu3bqsXLmSPXv2WGMRERERuR27F6Ud6cMPP7xju7u7OyNGjLApRP9d8eLFiYyMvOM4oaGhLF269J+EKCIiIiK5VI8ePejQoQMuLi4ANG/eHLPZzJo1a3BxcaFbt260aNHivsdNTExk0KBBnDt3Dk9PT8qXL09UVBS1a9cG7v7FSxERERFxnBo1avDBBx8wdepUVqxYQUBAAGPGjLGeq123efNmzpw5Q/fu3e0eQ5UqVZgyZYo1jsDAQIYMGWJdsQfgtdde4/LlywwfPpzk5GQeffRRPv30U5vZ3BMmTOCdd96hY8eOmM1mGjRowLBhw6ztnp6eREVFMXr0aFq0aIGPjw89evSgVatW1j7Vq1dnwoQJTJo0iQ8++ICHHnqIqVOnUq5cObsft4iIiOQuOaooLSIiIiLiLK6urvj4+Nhse/7553n++ef/1bgRERF3bL+XL16KiIiIiOM0bNjwritDhoWFsXPnTofF8OSTT/Lkk0/ett1kMtG3b1/69u172z4FCxZk4sSJd9xPhQoVmD9//h373Es+RERERP7O7OwAREREREREREREREREREQk99JMaRERERGR28jKymL69OkEBQXx3HPPAXDp0iXatGlzU9/ixYvzySefYDKZsjtMERERERERERERQ7PbTOnZs2dz/Phxew0nIiIiIuJ0q1at4qOPPqJUqVLWbRkZGRw+fBiz2UzBggWt/61fv55Vq1Y5MVoRERERERERERFjsltReuzYsezZs8f6uGLFiixfvtxew4uIiIiIZLsVK1bw+OOPU7ly5ZvaBg8ezJw5c6z/hYaG6vxXRERERERERETkFuxWlPby8iIxMdH62GKx2GtoERERERGn2LNnD2FhYffUt1atWjZf0hQREREREREREZFr7HZP6dDQUP73v/+xf/9+PD09AVi6dCm7du264/OGDRtmrxBEREREROzqwoULFCpUyGZbgQIFeOuttyhdurTNdn9/fy5cuJCd4YmIiIhINrly5QoffvghoaGhPPXUU84OR0RERCTHsVtResSIEURERPDzzz+TmJiIyWTi559/5ueff77tc0wmk4rSIiIiImJY+fPnJykpyWabm5sbHTt2vKlvcnIy+fLly67QRERERCQb5c2bly+++IKyZcs6OxQRERGRHMluRWk/Pz8mTpxofVyhQgXef/99mjRpYq9diIiIiIhkq7Jly/Lzzz/TqVOnu/aNjo7WRUoRERGRXKxy5cocOnTI2WGIiIiI5Eh2u6f0340dO5aQkBBHDS8iIiIi4nANGzZk06ZNrF279o79fvjhBzZu3EijRo2yKTIRERERyW5Dhgxh5cqVfPnll2RkZDg7HBEREZEcxW4zpf+uefPm1t+PHDnC2bNnAShevLhmkIiIiIhIjtCqVSuWLFlC3759adWqFU2aNOHhhx+mQIECpKamcvjwYZYvX86iRYuoWLEirVq1cnbIIiIiIuIggwcPxmQyMXz4cMaMGUORIkVwd3e36WMymVi2bJmTIhQRERExLocVpQHWrl3LuHHjrAXp6wIDAxk8eDBPP/20I3cvIiIiIvKvuLm58emnnzJgwADmz5/PggULbupjsVioXbs277//Pm5ubk6IUkRERESyQ8GCBSlYsCClSpVydigiIiIiOY7DitLr16+nT58+BAQE0K9fP8qUKQPA0aNHWbRoEb1792batGn85z//cVQIIiIiIiL/mq+vL1FRUcTExPDTTz9x7NgxUlJSKFCgAKVLl+aJJ56gevXqzg5TRERERBxszpw5zg5BREREJMdyWFH6448/pnz58sybN4/8+fNbtz/99NO0a9eONm3aMHXqVBWlRURERCRHqFatGtWqVXN2GCIiIiIiIiIiIjmO2VEDHzx4kGbNmtkUpK/Lnz8/zZs35+DBg47avYiIiIiIiIiIiIhdpaSkMGPGDDp37kyzZs2IjY0F4OLFi8ycOZOTJ086OUIRERERY3LYTGl3d3eSkpJu256UlIS7u7ujdi8iIiIiIiIiIiJiN7///jvt2rXj999/p2TJkhw7dozU1FTg2v2mFy5cyNmzZxk2bJiTIxURERExHofNlA4NDWX27Nns3LnzprZdu3YxZ84cwsLCHLV7EREREREREREREbsZP348qampLF26lDlz5mCxWGza69Wrx+bNm50UnYiIiIixOWym9IABA2jdujVt2rShSpUqlCpVCoDjx48TGxuLn58fb775pqN2LyIiIiIiIiIiImI3P//8Mx07dqRs2bJcuHDhpvagoCB+++03J0QmIiIiYnwOmykdFBTEsmXLaN++PUlJSaxcuZKVK1eSlJREhw4d+OabbwgMDHTU7kVERERE/pXZs2dz/PhxZ4chIiIiIgZx5coVfH19b9t+fSlvEREREbmZw2ZKA/j5+TFkyBCGDBniyN2IiIiIiNjd2LFj8fHxsa74U7FiRcaPH0+TJk2cHJmIiIiIOEOZMmXYtm0brVu3vmX72rVrqVSpUjZHJSIiIpIzOGymtIiIiIhITubl5UViYqL18d/vGSgiIiIiD5aOHTuycuVKZsyYQUpKCnDtHPHkyZMMGDCAmJgYOnXq5NwgRURERAzKoTOlRURERERyqtDQUP73v/+xf/9+PD09AVi6dCm7du264/OGDRuWHeGJiIiISDZ7/vnniYuLY/LkyUyaNAmAV199FYvFgtlspl+/ftSrV8+5QYqIiIgYlIrSIiIiIiK3MGLECCIiIvj5559JTEzEZDLx888/8/PPP9/2OSaTSUVpERERkVyse/fuPP/886xZs4aTJ0+SlZVFiRIlaNCgAUFBQc4OT0RERMSwVJQWEREREbkFPz8/Jk6caH1coUIF3n//fd1TWkREROQBFxAQoGW6RURERO6TitIiIiIiIvdg7NixhISEODsMEREREXGyQ4cOsX79es6ePQtAYGAgderUoXz58k6OTERERMS4HFKUvnz5Mm3btuWFF17gpZdecsQuRERERESyVfPmza2/HzlyxHoRsnjx4pQtW9ZZYYmIiIhINklLS2P48OF888031vtIA2RlZTFx4kSaNGnCmDFjcHNzc3KkIiIiIsbjkKJ0vnz5OHPmDCaTyRHDi4iIiIg4xdq1axk3bpy1IH1dYGAggwcP5umnn3ZSZCIiIiLiaO+//z5Lly6lTZs2tGvXjhIlSmAymTh58iRz5sxhwYIFeHt7M3ToUGeHKiIiImI4ZkcNXKdOHTZt2uSo4UVEREREstX69evp06cPAP369WPKlClMmTKFfv36YbFY6N27Nxs2bHBylCIiIiLiKMuWLeP5559n+PDhlC5dmjx58uDi4kLp0qUZMWIETZo0YdmyZc4OU0RERMSQHFaU7tGjBydOnGDAgAFs376dP/74g4sXL970n4iIiIhITvDxxx9Tvnx5li1bRpcuXXj66ad5+umn6dKlC8uWLaNcuXJMnTrV2WGKiIiIiINkZGRQtWrV27aHhISQmZmZjRGJiIiI5BwOK0o3btyYI0eOsHz5ctq3b88TTzxBWFjYTf/9GzNmzKB8+fK8++671m1Xr15l1KhRhIaGEhISQu/evUlISLB5XlxcHF26dKFq1aqEhYXx3nvvkZGRYdNn69atNG/enODgYOrXr8/XX3/9r2IVERERkZzt4MGDNGvWjPz589/Ulj9/fpo3b87BgwedEJmIiIiIZIfw8PA7rgy5ceNGateunY0RiYiIiOQcDrmnNEDPnj0dek/p2NhYFi5cSPny5W22R0REsH79eiZNmoSnpyfvvPMOvXr1YuHChQBkZmbStWtX/P39WbhwIefOnWPQoEG4urryxhtvAHD69Gm6du1K69atmTBhAps3b2bYsGEUKlSIOnXqOOyYRERERMS43N3dSUpKum17UlIS7u7u2RiRiIiIiGSnvn378vrrr9OrVy/atm1LiRIlADh58iTz5s0jLi6ODz/88KbVIQsWLJj9wYqIiIgYjMOK0r1793bU0KSmpjJgwADGjBnDJ598Yt1+6dIlFi9ezIQJE6yzsCMiImjUqBExMTFUq1aNTZs2ceTIEWbOnIm/vz8VK1akb9++TJgwgV69euHm5sbChQsJDAxk8ODBAJQpU4YdO3Ywa9YsFaVFREREHlChoaHMnj2bOnXqEBISYtO2a9cu5syZo5kxIiIiIrlYo0aNADh06BA//PCDTZvFYgGurR75d/v373d8cCIiIiIG57Ci9N9dunSJ/Pnz4+Li8q/HGj16NHXr1qVWrVo2Rek9e/aQnp5OrVq1rNvKlClDQECAtSgdExNDuXLl8Pf3t/YJDw9n5MiRHDlyhEqVKhETE3PT0uLh4eFERETcV5xmswmz2TGzxR04Cf0fux6TEWPLk8d+K9U7cgWAf8p040+DxWff3NttKPu64Q9gtBBze/5tX/tODOQW7Jl7Iyb/xtxbDBafXXMvcoMBAwbQunVr2rRpQ5UqVShVqhQAx48fJzY2Fj8/P958800nRykiIiIijuLolSFFREREcjOHFqV3797NpEmT2L59O+np6URFRREWFsb58+cZOnQonTp1IjQ09L7G/Pbbb9m3bx9fffXVTW0JCQm4urri5eVls93Pz4/4+HhrnxsL0oD18d36pKSkcOXKFfLmzXtPsfr6FnDciaqLcS+4u5iNF5uPTwH7DWbk3BswNnvm3sXghaZcn//Lxju+68y5PPcXDXh81+X2173IjYKCgli2bBnTp09nw4YNrFy5EoCAgAA6dOhAly5d8PPzc3KUIiIiIuIojlwZUkRERCS3c1hR+tdff6Vjx44UKVKEpk2b8uWXX1rbfH19SUlJ4YsvvrivovRvv/3Gu+++y2effZYj7td3/nyqw2ZKe2ZmOWTcf8NkulaQzszK4v9XLDKMSxdS7TaWIXPPtcJQZmYWBku9XXOfmWG83ANg+iv/RvsDXLBn/g362je7mMky4GvfnrnPMGjujfq+Y8/c/50K3uLn58eQIUMYMmSIs0MRERERERERERHJMRxWlP7www8pU6YMixYtIiUlxaYoDdfuybdkyZL7GnPv3r0kJibSokUL67bMzEy2bdvGvHnziIqKIj09neTkZJvZ0omJiRQqVAi4NuM5NjbWZtyEhAQAmz7Xt93Yx8PD455nSQNkZVnIynLMpXqjFX1vZLEYL74MOxYzLUY7OLAu7WvBePHZN/d2G8qurF89yfWvfbsNZT//n/xrr32nRnITe+becAfHX0t2W8Bw8dk19yIiIiIiIiIiIiLyrzmsKL17927eeOMN3NzcbrmEdZEiRW4q/N7N448/zvLly222vfXWW5QuXZrXXnuNYsWK4erqyubNm3nmmWcAOHbsGHFxcVSrVg2AatWqMW3aNBITE63LK0ZHR+Ph4UHZsmWtfTZs2GCzn+joaOsYIiIiIiIiIiIiIiIiIiJybxxWlM6TJw9ZWbefqfTHH3+QP3/++xrTw8ODcuXK2WzLnz8/BQsWtG5v2bIl48aNw9vbGw8PD8aMGUNISIi1oBweHk7ZsmUZOHAgAwYMID4+nkmTJtG2bVvc3NwAaN26NfPmzWP8+PG0bNmSLVu2sGrVKqZPn35f8YqIiIiIiIiIiIiIiIiIPOjMjhq4atWqrF69+pZtf/75J19//TU1a9a0+36HDBnCE088QZ8+fWjXrh3+/v7873//s7a7uLgwbdo0zGYzrVq1YsCAATRr1ow+ffpY+wQFBTF9+nSio6N5/vnnmTlzJmPGjKFOnTp2j1dEREREREREREREREREJDdz2Ezp60XhLl260LhxYwAOHjzImTNniIqK4vz58/To0eNf72fOnDk2j93d3RkxYgQjRoy47XOKFy9OZGTkHccNDQ1l6dKl/zo+EREREREREREREREREZEHmcOK0lWrVmXGjBmMHDmSQYMGATBu3DgASpQowYwZM6hQoYKjdi8iIiIiYjeXL1+mbdu2vPDCC7z00kvODkdEREREnOjIkSOcPn2apKSkW7Y3a9YsewMSERERyQEcVpQGCAsLY/Xq1ezbt4+TJ09isVgICgoiODgYk8nkyF2LiIiIiNhNvnz5OHPmjM5hRURERB5gp06dYsCAAcTGxmKxWG7Zx2QyqSgtIiIicgsOLUpfV6lSJSpVqpQduxIRERERcYg6deqwadMmWrdu7exQRERERMQJhg8fzqFDhxgyZAg1atTAy8vL2SGJiIiI5BgOLUqnpaWxaNEi1q9fz9mzZ4Fr93OuW7cuL7zwAu7u7o7cvYiIiIiI3fTo0YO+ffsyYMAAWrVqRVBQ0C3PZwsWLJj9wYmIiIiIw/3666907dqV9u3bOzsUERERkRzHYUXp33//nZdffpnjx49TqFAhSpYsCcCBAwfYuHEjc+fOZdasWRQtWtRRIYiIiIiI2E3jxo2Ba/cQXLFixW377d+/P7tCEhEREZFs5OPjg6enp7PDEBEREcmRHFaUHjVqFHFxcUyaNIlnn33Wpm3VqlUMHjyYUaNG8cknnzgqBBERERERu+nZs6fuKS0iIiLyAGvdujXLli2jbdu2uLi4ODscERERkRzFYUXpLVu20KlTp5sK0gANGzZk3759zJ0711G7FxERERGxq969ezs7BBERERFxooceeoisrCyef/55WrZsSdGiRW9ZnG7QoIETohMRERExNocVpQsUKICvr+9t2/39/SlQoICjdi8iIiIi4lCXLl0if/78miUjIiIi8oDo16+f9ff33nvvln1MJpNu5yIiIiJyCw4rSrdo0YIlS5bw4osvki9fPpu21NRUvv76a1q2bOmo3YuIiIiI2N3u3buZNGkS27dvJz09naioKMLCwjh//jxDhw6lU6dOhIaGOjtMEREREXGA2bNnOzsEERERkRzLbkXpNWvW2DyuWLEi69ato2HDhjRr1oySJUsCcOLECb755hu8vb0pX768vXYvIiIiIuJQv/76Kx07dqRIkSI0bdqUL7/80trm6+tLSkoKX3zxhYrSIiIiIrnUY4895uwQRERERHIsuxWl+/Tpg8lkwmKxANj8Pm3atJv6//777/Tv359GjRrZKwQREREREYf58MMPKVOmDIsWLSIlJcWmKA0QGhrKkiVLnBSdiIiIiGSnI0eOcPbsWQCKFy9O2bJlnRyRiIiIiLHZrSit5WtEREREJDfbvXs3b7zxBm5ubphMppvaixQpQkJCghMiExEREZHssnbtWsaNG2ctSF8XGBjI4MGDefrpp50UmYiIiIix2a0oreVrRERERCQ3y5MnD1lZWbdt/+OPP8ifP382RiQiIiIi2Wn9+vX06dOHgIAA+vXrR5kyZQA4evQoixYtonfv3kybNo3//Oc/To5URERExHjsVpQWEREREcnNqlatyurVq+nUqdNNbX/++Sdff/01NWvWzP7ARERERCRbfPzxx5QvX5558+bZfBnx6aefpl27drRp04apU6eqKC0iIiJyCw4tSm/fvp3Fixdz5swZkpKSrPeYvs5kMrFs2TJHhiAiIiIiYhd9+vShXbt2dOnShcaNGwNw8OBBzpw5Q1RUFOfPn6dHjx5OjlJEREREHOXgwYP069fvlqvj5M+fn+bNm/Phhx86ITIRERER43NYUXrmzJmMHz8ed3d3SpUqhbe3t6N2JSIiIiLicFWrVmXGjBmMHDmSQYMGATBu3DgASpQowYwZM6hQoYIzQxQRERERB3J3dycpKem27UlJSbi7u2djRCIiIiI5h8OK0lFRUVSvXp1p06bh6enpqN2IiIiIiGSbsLAwVq9ezb59+zh58iQWi4WgoCCCg4MxmUzODk9EREREHCg0NJTZs2dTp04dQkJCbNp27drFnDlzqF27tsPjmDFjBhMnTqRDhw4MHToUgKtXrzJu3DhWrlxJWloa4eHhjBgxAn9/f+vz4uLiGDlyJFu3biV//vw0a9aM/v37kyfPX5eIt27dyrhx4zh8+DDFihWje/futGjRwmb/8+bNIyoqivj4eCpUqMDbb79NlSpVHH7cIiIikrM5rCh9+fJlmjRpooK0iIiIiOQ6lSpVolKlSnYZa/r06axZs4Zjx46RN29eQkJCePPNNyldurS1z71cZBQRERERxxowYACtW7emTZs2VKlShVKlSgFw/PhxYmNj8fPz480333RoDLGxsSxcuJDy5cvbbI+IiGD9+vVMmjQJT09P3nnnHXr16sXChQsByMzMpGvXrvj7+7Nw4ULOnTvHoEGDcHV15Y033gDg9OnTdO3aldatWzNhwgQ2b97MsGHDKFSoEHXq1AFg5cqVjB07llGjRlG1alU+//xzOnfuzHfffYefn59Dj11ERERyNrOjBg4NDeXQoUOOGl5EREREJNulpaUxd+5cXnvtNRo1akSjRo147bXXmDt3LlevXv1HY/7yyy+0bduWRYsWMXPmTDIyMujcuTN//vmntU9ERAQ//fQTkyZNYs6cOZw7d45evXrZ67BERERE5B4EBQWxbNky2rdvT1JSEitXrmTlypUkJSXRoUMHvvnmGwIDAx22/9TUVAYMGMCYMWNsbpV46dIlFi9ezODBgwkLCyM4OJiIiAh27txJTEwMAJs2beLIkSO8//77VKxYkbp169K3b1/mzZtHWloaAAsXLiQwMJDBgwdTpkwZ2rVrxzPPPMOsWbOs+5o5cyYvvvgiLVu2pGzZsowaNYq8efOyePFihx23iIiI5A4Omyn99ttv88orrxAVFUXLli0pWLCgo3YlIiIiIuJwv//+Oy+//DLHjx+nUKFClCxZEoADBw6wceNG5s6dy6xZsyhatOh9jRsVFWXzeNy4cYSFhbF3715q1qxpvcg4YcIEwsLCgGtF6kaNGhETE0O1atXscnwiIiIicnd+fn4MGTKEIUOGZPu+R48eTd26dalVqxaffPKJdfuePXtIT0+nVq1a1m1lypQhICDAer4YExNDuXLlbFbaCQ8PZ+TIkRw5coRKlSoRExNjPd+8sU9ERARw7Quae/fupWvXrtZ2s9lMrVq12Llz5z0fh9lswmx+cG594+Jitvkp2Uv5dx7l3nkemNwb8DZqpht+WgwWX548zn89OKwoXaxYMVq1asX48eOZMGEC7u7umM22B2wymdixY4ejQhARERERsZtRo0YRFxfHpEmTePbZZ23aVq1axeDBgxk1apTNBcJ/4tKlSwDW2S/3cpHxXjjy4p/R76dttPjs+UHQaMcG2HwKN2Gs+Oz6IdyAub8ekskEllycewOm3ib3RmPP3Kcb8QD/xmjvi0a4+Ce5w7fffsu+ffv46quvbmpLSEjA1dUVLy8vm+1+fn7Ex8db+/z91i/XH9+tT0pKCleuXCEpKYnMzMyblun28/Pj2LFj93wsvr4FDPf/anbw8srn7BAeaMq/8yj3zpPbc3/RwEV3I34hwMengLNDcFxRevLkyUybNo0iRYoQHByse0uLiIiISI62ZcsWOnXqdFNBGqBhw4bs27ePuXPn/qt9ZGVlERERQfXq1SlXrhxwbxcZ74UjL/4Z8cPWdUaMzZ4fBE8Z8PiuczEbLzZ75t7Ihabc/rp3MXDuzbk892kGPL4b5fbXvmS/t956C5PJxDvvvIOLiwtvvfXWXZ9jMpmsM4vt5bfffuPdd9/ls88+w93d3a5jO8P586kP3ExpL698JCdfJjMzy9nhPHCUf+dR7p3nQcl9hgGPzcS1/GdmZmFxdjB/c+FCqsPGvtdzXocVpRcuXEjdunX5+OOPb5ohLSIiIiKS0xQoUABfX9/btvv7+1OgwL+78Dxq1CgOHz7M/Pnz/9U4t+LIi39G/ZB7/YOg0djzg6ARjw/TtYJ0ZlYWRvsUbs/cZ2QYL/cm0w0XQHJx7jMNmnuzi5ms3J57I77n/L8H4T3/71TwdrytW7diMpnIysrCxcWFrVu33vU5jvgS4N69e0lMTKRFixbWbZmZmWzbto158+YRFRVFeno6ycnJNl9kTExMpFChQsC1c9XY2FibcRMSEgBs+lzfdmMfDw8P8ubNi9lsxsXFhcTERJs+iYmJN82wvpOsLAtZWQZ7s8wGmZlZhjx/eFAo/86j3DtPrs+90U68+WvJbgsYLj4jvBYcVpROT0/niSeeUEFaRERERHKFFi1asGTJEl588UXy5bNdAis1NZWvv/6ali1b/uPxR48ezbp165g7d67Nfan9/f3vepHxXjjy4p/FYB+0wPaCsNHis+cHQaMdG9ywZLfFePHZ9UO4wY4N/lqy22LBcPHZ93Vvt6HszmIxXny5/T0HHpz3fMl+P/744x0fZ5fHH3+c5cuX22x76623KF26NK+99hrFihXD1dWVzZs388wzzwBw7Ngx4uLirLd6qVatGtOmTSMxMdG6/HZ0dDQeHh6ULVvW2mfDhg02+4mOjraO4ebmRuXKldm8eTP16tUDrq30s3nzZtq1a+eowxcREZFcwmFF6SeeeILt27fTunVrR+1CRERERMRh1qxZY/O4YsWKrFu3joYNG9KsWTNKliwJwIkTJ/jmm2/w9vamfPny970fi8XCO++8w/fff8+cOXMICgqyaQ8ODr7rRUYRERERcby4uDh8fX3JmzfvLduvXLnC+fPnCQgIsOt+PTw8rLd2uS5//vwULFjQur1ly5aMGzcOb29vPDw8GDNmDCEhIdbzxfDwcMqWLcvAgQMZMGAA8fHxTJo0ibZt2+Lm5gZA69atmTdvHuPHj6dly5Zs2bKFVatWMX36dOt+X375ZQYNGkRwcDBVqlTh888/5/LlyzazuEVERERuxWFF6V69etGvXz9GjhzJf//7XwICAm45a7pgwYKOCkFERERE5B/r06cPJpPJOuPqxt+nTZt2U//ff/+d/v3706hRo/vaz6hRo1ixYgUff/wxBQoUsN4n2tPTk7x58+Lp6XnXi4wiIiIi4nhPP/0048ePp0mTJrds//HHH+nfvz/79+/P5shgyJAhmM1m+vTpQ1paGuHh4YwYMcLa7uLiwrRp0xg5ciStWrUiX758NG/enD59+lj7BAUFMX36dMaOHcvs2bMpWrQoY8aMoU6dOtY+jRo14vz583z00UfEx8dTsWJFPv300/tavltEREQeTA4rSj/77LMA7N+/ny+++OK2/ZxxkiYiIiIicjezZ8/Olv0sWLAAgPbt29tsHzt2rHXGyd0uMoqIiIiI491tefj09PRsu5XhnDlzbB67u7szYsSIO54jFi9enMjIyDuOGxoaytKlS+/Yp127dlquW0RERO6bw4rSPXv2tLmnj4iIiIhITvLYY49ly34OHjx41z73cpFRREREROwvJSWF5ORk6+OLFy8SFxd3U7/k5GRWrlxJoUKFsjM8ERERkRzDYUXp3r17O2poEREREREREREREYebNWsWU6dOBa7dziUiIoKIiIhb9rVYLLz++uvZGJ2IiIhIzuGworQjzJ8/nwULFnD27FkAHn74YXr06EHdunUBuHr1KuPGjWPlypU2yxreeE+TuLg4Ro4cydatW8mfPz/NmjWjf//+5MnzVyq2bt3KuHHjOHz4MMWKFaN79+7WpRNFRERE5MG1fft2Fi9ezJkzZ0hKSrppCUeTycSyZcucFJ2IiIiI2Fvt2rXJnz8/FouF999/n8aNG1O5cmWbPiaTiXz58lG5cmUeeeQRJ0UqIiIiYmwOK0pPmTLlrn1MJhM9e/a85zGLFi3Km2++ScmSJbFYLCxdupSePXuyZMkSHn74YSIiIli/fj2TJk3C09OTd955h169erFw4UIAMjMz6dq1K/7+/ixcuJBz584xaNAgXF1deeONNwA4ffo0Xbt2pXXr1kyYMIHNmzczbNgwChUqRJ06df5ZMkREREQkx5s5cybjx4/H3d2dUqVK4e3t7eyQRERERMTBQkJCCAkJAeDy5cs0aNCAcuXKOTkqERERkZzHKUVpk8mExWK576L0U089ZfO4X79+LFiwgJiYGIoWLcrixYuZMGECYWFhAERERNCoUSNiYmKoVq0amzZt4siRI8ycORN/f38qVqxI3759mTBhAr169cLNzY2FCxcSGBjI4MGDAShTpgw7duxg1qxZKkqLiIiIPMCioqKoXr0606ZNw9PT09nhiIiIiEg269Wrl7NDEBEREcmxHFaUPnDgwE3bsrKyOHv2LPPnz2fbtm1ERkb+4/EzMzP57rvv+PPPPwkJCWHPnj2kp6dTq1Yta58yZcoQEBBgLUrHxMRQrlw5m+W8w8PDGTlyJEeOHKFSpUrExMRYi9o39rndvWLuxGw2YTab/vEx3onJMcP+K9djMmJsefKY7TaWyYAHaLrxp8His2/u7TaUfd3wBzBaiLk9/7avfScGcgv2zL0Rk39j7i0Gi8+uuRe5weXLl2nSpIkK0iIiIiIPuB07drBv3z4uXbpEVlaWTdv9TsIREREReVBk6z2lzWYzQUFBDBo0iP79+zNmzBgmTpx4X2McPHiQ1q1bc/XqVfLnz8/UqVMpW7Ys+/fvx9XVFS8vL5v+fn5+xMfHA5CQkGBTkAasj+/WJyUlhStXrpA3b957jtXXt4DjCpguxr3g7mI2Xmw+PgXsN5iRc2/A2OyZexeDF5pyff4vG+/4rjPn8txfNODxXZfbX/ciNwoNDeXQoUPODkNEREREnOTixYt07dqV2NhY6yqQFosF+OcrQ4qIiIg8KLK1KH2jmjVrMmHChPt+XqlSpVi6dCmXLl1i9erVDBo0iLlz5zogwn/v/PlUh82U9szMununbGYyXStIZ2Zl8f/n44Zx6UKq3cYyZO65VhjKzMzCYKm3a+4zM4yXewBMf+XfaH+AC/bMv0Ff+2YXM1kGfO3bM/cZBs29Ud937Jn7v1PB+8H29ttv88orrxAVFUXLli0pWLCgs0MSERERkWw0fvx4Dh48yMSJE6lSpQr16tUjKiqKwMBAZs2aRUxMzL9aGVJEREQkN3NaUXrPnj2Y/8GMWjc3N0qWLAlAcHAwu3fvZvbs2TRs2JD09HSSk5NtZksnJiZSqFAh4NqM59jYWJvxEhISAGz6XN92Yx8PD4/7miUNkJVlISvLMZfqjVb0vZHFYrz4MuxYzLQY7eDAurSvBePFZ9/c220ou7J+9STXv/btNpT9/H/yr732nRrJTeyZe8MdHH8t2W0Bw8Vn19yL3KBYsWK0atWK8ePHM2HCBNzd3W86nzWZTOzYscNJEYqIiIiII23YsIFWrVrRqFEjLly4AFxbGbJkyZKMGDGCXr16ERERwQcffODkSEVERESMx2FF6aVLl95ye3JyMtu3b2fNmjW88MIL/3o/WVlZpKWlERwcjKurK5s3b+aZZ54B4NixY8TFxVGtWjUAqlWrxrRp00hMTMTPzw+A6OhoPDw8KFu2rLXPhg0bbPYRHR1tHUNEREREHkyTJ09m2rRpFClShODgYN1bWkREROQBk5ycbL2GWKDAtVWUUlP/Wqmpdu3afPjhh06JTURERMToHFaUHjx48G3bfHx86NKly33fX2XixIn85z//oVixYqSmprJixQp++eUXoqKi8PT0pGXLlowbNw5vb288PDwYM2YMISEh1oJyeHg4ZcuWZeDAgQwYMID4+HgmTZpE27ZtcXNzA6B169bMmzeP8ePH07JlS7Zs2cKqVauYPn36P86FiIiIiOR8CxcupG7dunz88cf/aMUfEREREcnZChcubF1h0c3NDT8/Pw4cOEC9evUA+OOPPzCZHHMrPxEREZGczmFF6R9++OGmbSaTCS8vLzw8PP7RmImJiQwaNIhz587h6elJ+fLliYqKonbt2gAMGTIEs9lMnz59SEtLIzw8nBEjRlif7+LiwrRp0xg5ciStWrUiX758NG/enD59+lj7BAUFMX36dMaOHcvs2bMpWrQoY8aMoU6dOv8oZhERERHJHdLT03niiSdUkBYRERF5QNWsWZPo6Gi6d+8OQMOGDYmKisLFxYWsrCw+//xzXUMUERERuQ2HFaWLFy9u9zEjIiLu2O7u7s6IESNsCtF/V7x4cSIjI+84Tmho6G2XHxcRERGRB9MTTzzB9u3bad26tbNDEREREREn6NSpE9HR0aSlpeHm5kbv3r05cuQIkydPBq4VrYcNG+bkKEVERESMyWFFaRERERGR3KRXr17069ePkSNH8t///peAgIBbzpouWLBg9gcnIiIiIg5Xvnx5ypcvb33s7e3NrFmzSE5Oxmw2/+PVIUVEREQeBHYtSjdp0uS++ptMJpYtW2bPEEREREREHOLZZ58FYP/+/XzxxRe37bd///7sCklEREREDMDLy8vZIYiIiIgYnl2L0vc6KyQhIYHjx49jMpnsuXsREREREYfp2bOnzl9FREREHmCzZ89m/fr1REVF3bL91Vdf5amnnqJNmzbZHJmIiIiI8dm1KD1nzpw7tsfHxxMZGckXX3yBi4sLTZs2tefuRUREREQcpnfv3s4OQURERESc6KuvvuLxxx+/bXvZsmVZtGiRitIiIiIit5At95ROSEhgxowZLFq0iIyMDJo0aUL37t0pUaJEduxeRERERERERERE5F85ffo0bdu2vW176dKlWbRoUTZGJCIiIpJzOLQofX1m9I3F6B49ehAUFOTI3YqIiIiI2N2UKVPu2sdkMtGzZ89siEZEREREspurqyvx8fG3bT937hxmszkbIxIRERHJORxSlI6Pj2fGjBl8+eWXZGRk0LRpU7p3765itIiIiIjkWHcqSptMJiwWi4rSIiIiIrlY1apVWbJkCZ06dcLDw8Om7dKlS3z99ddUrVrVSdGJiIiIGJtdi9Lnzp2zFqMzMzN5/vnn6datm4rRIiIiIpLjHThw4KZtWVlZnD17lvnz57Nt2zYiIyOdEJmIiIiIZIdevXrRrl07mjVrRseOHSlbtiwAhw8f5vPPPyc+Pp6JEyc6OUoRERERY7JrUbp+/fqkpaVRsWJFunbtSmBgIMnJyezdu/e2z6lcubI9QxARERERyTZms5mgoCAGDRpE//79GTNmjC5EioiIiORSVatWZdq0aQwfPpx3330Xk8kEgMViITAwkE8++YSQkBAnRykiIiJiTHYtSl+9ehWAffv28frrr9+x7/XlDffv32/PEEREREREnKJmzZpMmDDB2WGIiIiIiAPVrl2b77//nn379nHq1CkASpQoQeXKla1FahERERG5mV2L0mPHjrXncCIiIiIiOcaePXswm83ODkNEREREHMxsNhMcHExwcLCzQxERERHJMexalG7evLk9hxMRERERMYylS5fecntycjLbt29nzZo1vPDCC9kblIiIiIhkq8zMTJYtW8a6deuIi4sDICAggCeffJImTZrg4uLi5AhFREREjMmuRWkRERERkdxq8ODBt23z8fGhS5cu9OzZMxsjEhEREZHsdOnSJTp37szu3bspUKAAQUFBAERHR7NmzRoWLFhAVFQUHh4eTo5URERExHhUlBYRERERuQc//PDDTdtMJhNeXl668CgiIiLyAPjwww/Zu3cvw4YN48UXX8TV1RWA9PR0vvzyS959910+/PBD3n77bSdHKiIiImI8KkqLiIiIiNyD4sWLOzsEEREREXGi77//npdeeom2bdvabHd1daVNmzYcO3aM7777TkVpERERkVtQUVpERERERERERETkLi5evEipUqVu216qVCmSkpKyMSIREcnJ3nvvXfbujeWPP34nK8tCUFAJXnqpHfXrP2vt89//NuH333+zeZ6Liwvr12+949gnT57kvffeZ9u2X7hy5TL+/oVo3vwFXnqpHSkpKUya9D779u0hPv4cLi4ulCpVhpdffo3HHnvcOkZ4eI2bxi1ePJAvvlj67w5cHlgqSouIiIiI3EaTJk3uq7/JZGLZsmUOikZEREREnKlkyZL8+OOPN82Uvu7HH3+kRIkS2RyViIjkVMuXL6FcuQo8+WQ9jh49zP79+xg1ahienl48/ngtm74vvPCS9Xez2XzHcX/7LY6XX27HxYsXqVQpmIcfLsf584mcPn0SgEuXklm9eiXBwVWoWjWE3bt3sXv3LgYN6senn86hTJmy1rHy5y9A48ZNrY8LFixohyOXB5WK0iIiIiIit3GvH7YSEhI4fvw4JpPJsQGJiIiIiNO89NJLvPPOO7z22mt07NiRhx56CIDjx48zZ84coqOjtXS3iIjcs+nTZ1G5cjAAGRkZvPRSS3777SxbtkTfVJTu27f/PY8bFTWDixcv0qhRE4YMGXFTu5eXF3PnfknJkg8B8OefqTz//LNcvnyZ7du32hSlvby87mvfIneiorSIiIiIyG3MmTPnju3x8fFERkbyxRdf4OLiQtOmTe/YX0RERERyrrZt23L+/HlmzJjBpk2bbNry5MlDz549adOmjZOiExGRnOZ6Qfq69PQ0AAoVKnRT34YNnyIzM5PSpcvQqdOrNxWtb7R16xYAEhPjef75Z7h6NY0qVarRt29/ihcPpEABDwoU8LD2z8qykJGRAYC/f2GbseLjz1G//n9wdXWlXLnydOnSg0qVbOMWuVcqSouIiIiI3KeEhARmzJjBokWLyMjIoEmTJnTv3l3LNYqIiIjkcr1796Zt27Zs3ryZs2fPAlC8eHHCwsLw9fV1cnQiIpITZWVlMWHCWBIS4ilVqjTNm//X2ubl5cXDD5fHz8+PAwf2s2dPLIMG9WPatM+oWLHyLce7cOE8ADt3/kq9es9w6NBBoqM3cvbsaT7/fCF58vxVGrx69SojRw4hPT2dRx+tSd26T1rbfH39qFo1BC8vL2JifmX79l/Yv38vn3++kKJFizkoG5KbqSgtIiIiInKPrs+MvrEY3aNHD4KCgpwdmoiIiIhkE19fXxo3buzsMEREJBe4fPkyo0YNZdOmDZQrV56JE/9H/vwFrO1RUXOttwrLysri1Vc7cOjQAdat+/G2RWlfXz/OnfuD5557njfeGMTvv//Of//7HCdPnuDkyRPW5bkvXDjP4MH92bt3N4899jjvvvu+TcH6m2++s+776tUrvPhiMxITE9iy5WeaNfvvLfctcicqSouIiIiI3EV8fDwzZszgyy+/JCMjg6ZNm9K9e3cVo0VERERysbi4uH/0vICAADtHIiIiuVFCQjwDB/bj0KED1K5dhxEj3iV//vzW9qSkiwB4exe84VkWANLS0m477sMPl+PcuT9u2ZYvXz4ATpw4zoABr/Pbb2dp2rQ5b7wxyKYgnZAQT/78BWziuZd9i9yJitIiIiIiIrdx7tw5azE6MzOT559/nm7duqkYLSIiIvIAeOqpp6wzxO7H/v37HRCNiIjkNl26dOLcuT8oUKAAxYoFEBn5CQAVK1amQYNnOXr0CG++2ZdHH61B4cJFOHjwAIcOHcTFxYX69Z8B4Ndft9OnTzcANm3aDsDLL3cmOnoTK1Z8w5UrVzh06CAAjz5ak4CA4iQlXaRbt1dISbmEn58/7u55mTp1MgChoWE8/ngtfvllCx99NJGQkBr4+voSE/MriYmJ5MuXn//858m/H4rIPVFRWkRERETkNurXr09aWhoVK1aka9euBAYGkpyczN69e2/7nMqVb718loiIiIjkLBEREf+oKC0iInIvrs9mTk1N5auvvrBub9jwORo0eJbAwCCefPJpYmNj2LFjG/nzF+Cxxx6nY8dXqVQp2GYsFxcX6+/BwVWYMmUKkyZN5vvvv8PHx5dmzf5Lly49APjzzz9JSbkEQGJiAl9+ucD6XA8PDx5/vBYVKlSkRo1Q9u7dzcWLF/Dy8qZu3Sd55ZWuup+0/GMqSouIiIiI3MbVq1cB2LdvH6+//vod+1osFkwmk2bGiIiIiOQSLVq0cHYIIiKSi12f2Xw7hQsX4e23R9+xz6FDBwDo0OEVm+316tXj0UfDyMjIuuk5xYoF3HXfpUuXZcyY9+7YR+R+qSgtIiIiInIbY8eOdXYIIiIiIiIiIiK39MsvW6hYsTIdO3Z2digid6WitIiIiIjIbTRv3tzZIYiIiIiIk0yZMuW+n2MymejZs6cDohEREbnZBx/c/79VIs6iorSIiIiIiIiIiIjI36goLSIiImI/KkqLiIiIiIiIiIiI/M2BAwecHYKIiBjcj5cXOzuEm5hM4HLZTGZmFhaLs6Ox9VS+ls4OQZzI7OwA7sf06dNp2bIlISEhhIWF0aNHD44dO2bT5+rVq4waNYrQ0FBCQkLo3bs3CQkJNn3i4uLo0qULVatWJSwsjPfee4+MjAybPlu3bqV58+YEBwdTv359vv76a4cfn4iIiIiIiIiIiORcSUlJzg5BRERExJByVFH6l19+oW3btixatIiZM2eSkZFB586d+fPPP619IiIi+Omnn5g0aRJz5szh3Llz9OrVy9qemZlJ165dSU9PZ+HChYwbN44lS5bw0UcfWfucPn2arl27EhoayjfffEPHjh0ZNmwYGzduzNbjFREREREREREREWNLS0tj1apV9OjRg/DwcGeHIyIiImJIOWr57qioKJvH48aNIywsjL1791KzZk0uXbrE4sWLmTBhAmFhYcC1InWjRo2IiYmhWrVqbNq0iSNHjjBz5kz8/f2pWLEiffv2ZcKECfTq1Qs3NzcWLlxIYGAggwcPBqBMmTLs2LGDWbNmUadOnWw/bhERERERERERETEOi8XC5s2bWb58Od9//z0pKSn4+vry3HPPOTs0EREREUPKUUXpv7t06RIA3t7eAOzZs4f09HRq1apl7VOmTBkCAgKsRemYmBjKlSuHv7+/tU94eDgjR47kyJEjVKpUiZiYGGtR+8Y+ERER9xWf2WzCbDb908O7I5Njhv1XrsdkxNjy5LHfogAmAx6g6cafBovPvrm321D2dcMfwGgh5vb82772nRjILdgz90ZM/o25txgsPrvmXkRERERE5AZ79uxh+fLlfPvttyQkJGAymWjUqBHt2rWjWrVqhrxuJCIiImIEObYonZWVRUREBNWrV6dcuXIAJCQk4OrqipeXl01fPz8/4uPjrX1uLEgD1sd365OSksKVK1fImzfvPcXo61vAcSeiLsa94O5iNl5sPj4F7DeYkXNvwNjsmXsXgxeacn3+Lxvv+K4z5/LcXzTg8V2X21/3IiIiIiIip0+fZtmyZSxfvpyTJ09SpEgRmjRpQpUqVejXrx/PPPMMISEhzg5TRERExNBybFF61KhRHD58mPnz5zs7lNs6fz7VYTOlPTOzHDLuv2EyXStIZ2ZlYbE4Oxpbly6k2m0sQ+aea4WhzMwsDJZ6u+Y+M8N4uQfA9Ff+jfYHuGDP/Bv0tW92MZNlwNe+PXOfYdDcG/V9x565/zsVvEVEREREHiytWrUiNjYWHx8fnnnmGcaMGUONGjUAOHXqlJOjExEREck5cmRRevTo0axbt465c+dStGhR63Z/f3/S09NJTk62mS2dmJhIoUKFrH1iY2NtxktISACw6XN92419PDw87nmWNEBWloWsLMdcqjda0fdGFovx4suwYzHTYrSDA+vSvhaMF599c2+3oezK+tWTXP/at9tQ9vP/yb/22ndqJDexZ+4Nd3D8tWS3BQwXn11zLyIiIiIiD7Rdu3YRGBjI4MGDeeKJJ8iTJ0deThURERFxOuOtuXkHFouF0aNH8/333/P5558TFBRk0x4cHIyrqyubN2+2bjt27BhxcXFUq1YNgGrVqnHo0CESExOtfaKjo/Hw8KBs2bLWPlu2bLEZOzo62jqGiIiIiIiIiIiI5H5vv/02hQoVolevXtSuXZvhw4ezZcsWw00KEBERETG6HPXVvlGjRrFixQo+/vhjChQoYL0HtKenJ3nz5sXT05OWLVsybtw4vL298fDwYMyYMYSEhFgLyuHh4ZQtW5aBAwcyYMAA4uPjmTRpEm3btsXNzQ2A1q1bM2/ePMaPH0/Lli3ZsmULq1atYvr06c46dBEREREREREREclmbdu2pW3btpw+fZrly5ezYsUKFi1ahL+/P6GhoZhMJkwmx9y+T0QkO3z//XcsWjSfI0cOk56eTrVq1ZkyZYa1/ZdftjBzZiTHjh3BZDLx2GNh9OnzBv7+hW47ZmTkJ2zZ8jO///4bV65cpVixAJ5/vgUvvNDa2mfRogV8++0yTpw4RmZmJg0bPsfQoSNvim3BgrmcPn0Sd3d36tR5kl69+lKggIfd8yAijpejitILFiwAoH379jbbx44dS4sWLQAYMmQIZrOZPn36kJaWRnh4OCNGjLD2dXFxYdq0aYwcOZJWrVqRL18+mjdvTp8+fax9goKCmD59OmPHjmX27NkULVqUMWPGUKdOnWw4ShERERERERERETGSoKAgevToQY8ePdizZw/Lly9n5cqVWCwWRo0axYYNG3jqqaeoVasW7u7uzg5XROSeHT16BJPJTFBQCY4dO2rTtm/fHgYM6IvFYuGpp+pz4cIFfvzxe06fPslnn8277ZdyVq9eSd68eXn66ac5efIUO3ZsZ/LkCbi6utKsWUsADh7ch6enJ4ULF+W3387eNMb69T8yatQw3NzcqVevAcePH2P58iVcuJDIuHEf2D8RIuJwOaooffDgwbv2cXd3Z8SIETaF6L8rXrw4kZGRdxwnNDSUpUuX3m+IIiIiIiIiIiIikosFBwcTHBzMoEGD2LJlC8uWLWPlypV8+eWX5MuXj507dzo7RBGRe9atWy8APvnkfzcVpdet+4HMzEweeyyMkSPfJSsri+eeq8/hw4fYuHE9//nPE7ccc/TosVSpUgUfnwJcuJBK166d2bVrJ1u2/GwtSr/99jsAjBjx1i2L0mvXrgGgYcPGDBgwhEuXLtGw4ZNs2rSBw4cP8vDD5e2VAhHJJjnqntIiIiIiIiIiIiIiRmA2m6lVqxbjxo0jOjqaDz74gMcff9zZYYmI2I2b27WVH3777SwXLlzgxIljXL78JwCHD99+EmGlSsE2j9PS0gDw9y98H/u+drvVkydPkJqawv79e61thw7dfQKjiBhPjpopLSIiIiIiIiIiImI07u7uNGrUiEaNGjk7FBERu2natDnLly/h9OlTNGlS36YtMTHhnsaIiprB/v178fPzp2PHV+55361bt2XDhnXExPzKM888YdN2/nziPY8jIsahmdIiIiIiIiIiIiIiBjV9+nRatmxJSEgIYWFh9OjRg2PHjtn0uXr1KqNGjSI0NJSQkBB69+5NQoJtwSguLo4uXbpQtWpVwsLCeO+998jIyLDps3XrVpo3b05wcDD169fn66+/vimeefPm8dRTT/HII4/wwgsvEBsba/+DFhFDKFy4CHPnfkX//oNp3/5lhg0bxaOPPgaAj4/vHZ+bkZHB8OHDiYycRrFiAUydGkmhQvc+U/rhh8uzYMHX9OnzBu3bv8y7746nRImS/79vn39+UCLiNCpKi4iIiIg40bZt2+jWrRvh4eGUL1+etWvX2rRbLBYmT55MeHg4VapUoVOnTpw4ccI5wYqIiIhItvvll19o27YtixYtYubMmWRkZNC5c2f+/PNPa5+IiAh++uknJk2axJw5czh37hy9evWytmdmZtK1a1fS09NZuHAh48aNY8mSJXz00UfWPqdPn6Zr166EhobyzTff0LFjR4YNG8bGjRutfVauXMnYsWPp2bMnS5YsoUKFCnTu3JnERM1aFMmt8uXLR/Pm/6Vr155UqlSZ3btjAKhZM/S2z0lNTaF//z588cUXBAc/wowZswgMDLqv/WZkZODr68uLL7aha9eeeHp6cerUScxmM9Wr1/w3hyQiTqLlu0VEREREnOjPP/+kfPnytGzZ0ubC4XWRkZHMmTOHcePGERgYyOTJk+ncuTMrV67E3d3dCRGLiIiISHaKioqyeTxu3DjCwsLYu3cvNWvW5NKlSyxevJgJEyYQFhYGXCtSN2rUiJiYGKpVq8amTZs4cuQIM2fOxN/fn4oVK9K3b18mTJhAr169cHNzY+HChQQGBjJ48GAAypQpw44dO5g1axZ16tQBYObMmbz44ou0bNkSgFGjRrFu3ToWL15Mly5dsjErImIvGzasY+PGdRw8uB+AU6dO8u67I/H2Lki3br1o0aIxNWo8hslk4uefN5CWlkbduk9SrVp1AFauXE5ExCiKFi3GV18tB2DAgNeJjY3B1dWVhx8ux+zZMwEIDAykZctWACxfvpTY2Bj27bt2r+jY2BjefXckJUo8RPv2nfj999/o168nISGPcvXqFTZuXA/ACy+8REBA8WzMkIjYi2ZKi4iIiIg4Ud26denXrx/169e/qc1isTB79my6d+9OvXr1qFChAuPHj+fcuXM3zagWERERkQfDpUuXAPD29gZgz549pKenU6tWLWufMmXKEBAQQExMDAAxMTGUK1cOf39/a5/w8HBSUlI4cuSItc/1ovaNfa6PkZaWxt69e232YzabqVWrFjt37rT7cYpI9jh8+CCrVq3g2LGjwLX7Na9atYJ1637AbDZTsuRDREdvYu3a1Xh7F+SVV7owatRY6/MtFgsALi4u1m3nzv0BQHp6OkuWLObLLxfw5ZcL+OmnH6x9YmNjWLVqBb/9FgfA2bNnWLVqBVu3RgNQoEABfH39WLfuRzZsWEdAQCCvv/4mvXq97tB8iIjjaKa0iIiIiIhBnTlzhvj4eJsLf56enlStWpWdO3fSuHHjex7LbDZhNpscESYmk2PGtRejxZcnj/2+G2y0YwPA9NdPE8aKz565x4C5vx6SyQSWXJx7A6beJvdGY8/cpxvxAP/GaO+Ldn3fEQGysrKIiIigevXqlCtXDoCEhARcXV3x8vKy6evn50d8fLy1z40FacD6+G59UlJSuHLlCklJSWRmZuLn53fTfv5+j+s7ceR5qRG5uJhtfkr2Uv7vrmvX7nTt2v227Z98EnnH5x85cgiAl1/ubP13b+nSb3FxMePllY/k5MtkZmbd9LwRI0YzYsTo245bqJA/UVGf38shOJXBTj0Am49kGOxjQe7/THbDT4vB4jPCeamK0iIiIiIiBnX9AuGtLvwlJCTc11i+vgUcdqHeyBd4jBibj08Bu411yoDHd52L2Xix2TP3RvhAfzu5/XXvYuDcm3N57tMMeHw3yu2vfRG4tlz24cOHmT9/vrND+ccceV5qZF5e+ZwdwgNN+Xecbdu20KBBA9q3b3PL9tyee5fLxjv/uC63n5teNODxXafz0ltTUVpERERE5AFw/nyqw2ak3Opb70bg4mI2ZGwXLqTabSwjHh+mawXpzKwssDg7GFv2zH1GhvFybzL99bq35OLcZxo092YXM1m5PfdGfM/5fw/Ce/7fGeHComSv0aNHs27dOubOnUvRokWt2/39/UlPTyc5OdlmtnRiYiKFChWy9omNjbUZ7/qXHG/s8/cvPiYkJODh4UHevHkxm824uLiQmJho0ycxMfGmGdZ34sjzUiO622xRcSzl3/EWLvwauPnfvAcl90Y8NhM3nJs6O5i/setnMoPm3vqZzNnB/I0RzktVlBYRERERMajrFwgTExMpXLiwdXtiYiIVKlS4r7GysixkZTnmI5HFaBUYbJdvNVp89ixmGu3Y4IYluy3Gi8+uhWSDHRv8tWS3xYLh4rPv695uQ9mdxWK8+HL7ew48OO/58uCyWCy88847fP/998yZM4egoCCb9uDgYFxdXdm8eTPPPPMMAMeOHSMuLo5q1aoBUK1aNaZNm0ZiYqJ1FZ7o6Gg8PDwoW7astc+GDRtsxo6OjraO4ebmRuXKldm8eTP16tUDri0nvnnzZtq1a3fPx+PI81Ijy8zM0nuCE+X2/Hfb9IqzQ7iJyXRthZvMDON9aW9a+Gd2G8toxwZww0cyw8WX6z+T/f95qQUMF58R3gONN39cREREREQACAwMpFChQmzevNm6LSUlhV27dhESEuLEyEREREQku4waNYply5YxceJEChQoQHx8PPHx8Vy5cgUAT09PWrZsybhx49iyZQt79uxhyJAhhISEWAvK4eHhlC1bloEDB3LgwAE2btzIpEmTaNu2LW5ubgC0bt2a06dPM378eI4ePcq8efNYtWoVnTp1ssby8ssvs2jRIpYsWcLRo0cZOXIkly9fpkWLFtmdFhEREclhNFNaRERERMSJUlNTOXXqlPXxmTNn2L9/P97e3gQEBNChQwc++eQTSpYsSWBgIJMnT6Zw4cLW2SkiIiIikrstWLAAgPbt29tsHzt2rLUYPGTIEMxmM3369CEtLY3w8HBGjBhh7evi4sK0adMYOXIkrVq1Il++fDRv3pw+ffpY+wQFBTF9+nTGjh3L7NmzKVq0KGPGjKFOnTrWPo0aNeL8+fN89NFHxMfHU7FiRT799NP7Wr5bREREHkwqSouIiIiIONGePXvo0KGD9fHYsWMBaN68OePGjeO1117j8uXLDB8+nOTkZB599FE+/fRT3N3dnRWyiIiIiGSjgwcP3rWPu7s7I0aMsClE/13x4sWJjIy84zihoaEsXbr0jn3atWt3X8t1i4iIiICK0iIiIiIiThUaGnrHC40mk4m+ffvSt2/fbIxKRERERERERETEfnRPaRERERERERERERERERERcRgVpUVERERERERERERERERExGFUlBYREREREREREREREREREYdRUVpERERERERERERERERERBwmj7MDEBERERERERERERGRB9f333/HokXzOXLkMOnp6VSrVp0pU2YA8NtvcXzyyf84cGAfiYkJ5M2bl/LlK/Laa92pWLHybcdMTExg+vQpbN/+CxcuXMDDw5NHHqlK9+69CQoqAcCiRQv49ttlnDhxjMzMTBo2fI6hQ0daxzh48ACzZkVy6NBBLlw4//9jVKFr116UKFHSoTkREcltNFNaRERERGidqZQAAQAASURBVERERERERESc5ujRI5hMZmux+Ea//RbHhg0/UaxYAA0aNMTdPS+//LKFfv16cf584m3HHDfuHVauXIHFYuG555qSN28+Nmz4ieHDB1v7HDy4D09PTwoXLnqbuA6zbdtWSpUqTYMGDcnMzGD9+p94441epKen//sDFxF5gGimtIiIiIiIiIiIiIiIOE23br0A+OST/3Hs2FGbthIlSrJo0TcULlwEgLNnz9CqVTNSUi6xe3csdes+ecsxT58+DUDXrl157rkWrF69mhEj3uK33+Ksfd5++x2A/99+9qYxqlSpxtdff4uXlzcA9es/S9++3fn99984fvwo5cpV+JdHLiLy4FBRWkREREREREREREREDMnfv5DN4xtnKBcqVOjv3a3atGnPxInjmDFjBnv37mfLli24urrStWuve953YGCQzeO0tDQAXFxc8PX1v+dxREREy3eLiIiIiIiIiIiIiEgOkJyczDvvDAfg2WcbU6lS8G37PvpoTSpXfoRz586xZMlifvvtLA8/XJ7g4Cr/aN+///47EyeOA6B9+5fx91dRWkTkfqgoLSIiIiIiIiIiIiIihnb27Bm6du3EwYP7adjwOd56a/gd+7/99mBiY2Po2LEj69ZF06fPG+zbt4cBA/qSmZl5X/vev38vXbt25Pfff6NDh1d49dVu/+ZQREQeSFq+W0REREREREREREREDGvXrhiGDn2TpKQkOnfuyssvv3bX55w+fRKAKlWqkDdvXuus6oSEeFJSLuHtXfCe9r1+/Y+MHv02mZmZDB48jOeea/ZPD0NE5IGmorSIiIiIiIiIiIiIiDjNhg3r2LhxHQcP7gfg1KmTvPvuSLy9C9K4cVP69etBWloaJUqUJDk5mcmTJwJQv/4zVKoUzK+/bqdPn2uzlzdt2g5AtWrV2bz5Z8aNG0ft2j+zffu17aVKlbYWpJcvX0psbAz79u0FIDY2hnffHUmJEg/Rvn0ntm3bwrBhg7BYLFSsWImjR49a992y5Ys33XNaRERuT0VpERERERERERERERFxmsOHD7Jq1Qrr4/PnE1m1agVFixajVq1w0tLSgGvF6lOnTlr7PfxwOZv7Sru4uFh/HzJkJJGRH/PLL5v59tvleHl58dRT9enatae1T2xsjM1+z549w9mzZ6hWrTrt23ciPj4ei8UCwP79+9i/f5+1b506dVWUFhG5DypKi4iIiIiIiIiIiIiI03Tu3JXOnbvetv367OfbOXToAAAdOrxi3ebj48OQIW/j41OACxdSycjIuul5Q4eOZOjQkbcdt1GjJjRq1OQu0YuIyL0wOzsAERERERERERERERGRf+qXX7ZQsWJlOnbs7OxQRETkNnJcUXrbtm1069aN8PBwypcvz9q1a23aLRYLkydPJjw8nCpVqtCpUydOnDhh0+fixYv079+f6tWrU6NGDYYMGUJqaqpNnwMHDtCmTRseeeQR6tatS2RkpKMPTURERERERERERERE7tMHH0whMvJz8uTR4rAiIkaV44rSf/75J+XLl2fEiBG3bI+MjGTOnDmMHDmSRYsWkS9fPjp37szVq1etfd58802OHDnCzJkzmTZtGtu3b2f48OHW9pSUFDp37kxAQABff/01AwcOZMqUKXzxxRcOPz4RERERERERERERERERkdwkx31tqG7dutStW/eWbRaLhdmzZ9O9e3fq1asHwPjx46lVqxZr166lcePGHD16lI0bN/LVV1/xyCOPADBs2DC6dOnCwIEDKVKkCMuWLSM9PZ2IiAjc3Nx4+OGH2f9/7N13XFbl/8fxNzdDcYCguGcmmgMXaipKzly4M/fMrEyzNDM1c+X6ppmjzFlYaua2HKXlyr333lrKEBBcjPv3Bz9O3IIKyu2N8Ho+Hj7kPuc61/mc676BD+dzznVOnNC8efP05ptvPrdjBQAAAAAAAADgRZDt9Fxbh5CAnZ2dZG9S1ugYmc1mW4djIcSz+5MbAUAa8sIVpR/n6tWrCggIULVq1YxlWbNmVdmyZXXgwAE1btxYBw4ckIuLi1GQlqRq1arJZDLp8OHDqlevng4ePChvb285OTkZbXx8fDRr1iyFhobK1dU1SfGYTHYymexS7gDjsbNOt88kLqbUGJuDQ8pNCmCXCg/QLv7/qSy+lB37FOsqZcV7A1JbiGl9/C0/+zYMJBEpOfapcfDjj705lcWXomMPAAAAAAAAAHhmaaooHRAQIEnKnj27xfLs2bMrMDBQkhQYGCh3d3eL9Q4ODnJ1dTW2DwwMVP78+S3a5MiRw1iX1KK0u3tm6xUw7VPvCXd7U+qLzc0tc8p1lprHPhXGlpJjb5/KC01pfvzvpr7ji2NK42MfkgqPL05a/9wDAAAAAAAAAJ5dmipKpzbBwRFWu1M6a3SMVfp9FrEzoZgUHROjVDYTim7fikixvlLl2Cu2MBQdHaNUNvQpOvbRUalv7CVJdv+Nf2p7A26l5Pin0s++yd6kmFT42U/JsY9KpWOfWn/upOTYP4yCNwAAAAAAAAAkX5oqSnt4eEiSgoKClDNnTmN5UFCQSpQoISn2jufg4GCL7aKiohQaGmpsnyNHDuPO6jhxr+PumE6KmBizYmKsc6o+tRV94zObU198USlYzExtzx6RZEzta1bqiy9lxz7FukpRxqUnaf6zn2JdpZz/H/zYz75NI0kgJcc+1R2c/puy2yyluvhSdOwBAAAAAAAAAM8s9c25+Qzy588vDw8P7dixw1gWHh6uQ4cOqXz58pKk8uXLKywsTEePHjXa7Ny5UzExMfLy8pIklStXTnv37lVkZKTRZvv27SpSpEiSp+4GAAAAAAAAAAAAALyARemIiAidOHFCJ06ckCRdvXpVJ06c0PXr12VnZ6fOnTvr22+/1caNG3Xq1CkNHDhQOXPmVN26dSVJRYsWVY0aNfTZZ5/p8OHD2rdvn0aNGqXGjRsrV65ckiQ/Pz85OjpqyJAhOnPmjNasWSN/f39169bNZscNAAAAAAAAAAAAAC+iF2767qNHj6pz587G67Fjx0qSWrRooXHjxqlnz566e/euhg0bprCwMFWsWFGzZ89WhgwZjG2+/PJLjRo1Sl26dJHJZFL9+vU1dOhQY33WrFk1Z84cjRw5Ui1btpSbm5vee+89vfnmm8/vQAEAAAAAAAAAAAAgDXjhitJVqlTRqVOnHrnezs5OH3zwgT744INHtsmWLZsmTpz42P2UKFFCCxYseOo4AQAAAAAAAAAAAAAvYFEaAAAAAAAAAIDnYe/e3fr++9k6dSr2cZJ58+bX++/3U6VKVR65TUxMjD744F0dOLBPkjRr1iyVKVNRkmQ2m7Vggb9WrFimgIAbypkzl5o3b6327TtZ9LFx4x9auHC+zp8/J0dHBxUoUEiDBn2ml18uZqUjBQDAuihKAwAAAAAAAADwkG3bNmvw4I8lSa++Wl0eHh66cuWybtz457Hb+fvP1eHDBxNdt3jxAn377VS5ubmrXr0G2rHjb33zzddycnJU69ZtJUlLly7WV19NkJOTk6pVq6GsWV104cI53boVJImiNADgxURRGgAAAAAAAACAh0yZMkkxMTEaPPhzNWrkl6RtDh06qHnzZqlnz3c1Y8Y0i3XR0dGaP/97SdInnwyVj09NbdmySYMHD9APP8xVixZv6P79+5o5c7ok6csvp6hCBe8UPSYAAGzFZOsAAAAAAAAAAABITa5evaLr169JkrZu3aQGDV5Ts2YNNGnSeN25cyfRbcLCwjRixBBVrFhZHTp0SbD+5s0bCgm5JUkqWbKUJKlUqdKSpFu3ghUQEKBjx44oIiJCGTJk0MKF81WvXk21atVEs2fPUFRUVMofKAAAzwlFaQAAAAAAAAAA4rl1K9j4+sSJ46pVq57MZrOWLftFU6ZMTHSbsWNHKjo6Sp99NkJ2dnYJ1gcFBRlfOztnsvg/dn2gbt2KLVrfv39fV65cUZ069XT79m19//1s/fjj9ylxaAAA2ARFaQAAAAAAAAAA4nF3z2583afPR/rkkyF6990+kqQtWzYlaB8eHq6tWzfJ2TmTxo4dqYED+xnrpk6dqvXr1yp79v/6vHs39m7r+HddZ8+eQ+7u7sbrYcNGatCgz9SuXcdH7hcAgBcFRWkAAAAAAAAAAOLJlSu3smZ1SXSds7NzgmVms1lS7LTf27dv0/bt24x1hw8f1uXLl5QzZy5ly5ZNknT8+DFJ0rFjRyRJ2bK5ycPDQ0WKvCR7e/tE95spU6ZElwMA8CJwsHUAAAAAAAAAAACkJg4ODurQobNmzJimqVMnae/e3fr77y2SpCZNmumff67rjTeaSpJ++WWV8uTJq23b9lr04ePjLUmaNWuWypSpqKioGHXo0FXTp0/W+PGjtWVLdaN43blzd9nb2yt79hzy82uuFSuWauTIYSpXrrz+/HODJKlx46bP6/ABAEhxFKUBAAAAAAAAAHhI+/adFR0drdWrV2j9+t+UO3cetWvXSW3atNONG/8a7R51Z3Ni2rbtoKioKK1atUzr169Rzpy51K5dR73xRlujTd++/ZUhQ0Zt2LBOf/yxTvnzF1Tbth3UsGGTFD0+AACeJ4rSAAAAAAAAAAA8xGQyqUuXHurSpUeCdWfOnJIkNWjQWDlz5kp0+23b9srBwSQ3t8y6dStCkmRnZ6dOnbqqU6euj9yvk5OT+vT5UH36fPjsBwEAQCrBM6UBAAAAAAAAAEiGXbt2KE+evPrww49tHQoAAC8E7pQGAAAAAAAAACAZBg4cYusQAAB4oVCUBgAAAAAAAAC88LItbmTrEBKws5Nkb1LW6BiZzbaOxlJImzW2DgEAkI4wfTcAAAAAAAAAAAAAwGooSgMAAAAAAAAAAAAArIaiNAAAAAAAAAAAAADAaihKAwAAAAAAAAAAAACshqI0AAAAAAAAAAAAAMBqKEoDAAAAAAAAAAAAAKyGojQAAAAAAAAAAAAAwGooSgMAAAAAAAAAAAAArIaiNAAAAAAAAAAAAADAaihKAwAAAAAAAAAAAACshqI0AAAAAAAAAAAAAMBqKEoDAAAAAAAAAAAAAKyGojQAAAAAAAAAAAAAwGooSgMAAAAAAAAAAAAArIaiNAAAAAAAAAAAAADAaihKAwAAAAAAAAAAAACshqL0E/z000+qXbu2ypQpozfeeEOHDx+2dUgAAABIh8hLAQAAkFqQmwIAgOSiKP0Ya9as0dixY9W7d28tX75cJUqUUI8ePRQUFGTr0AAAAJCOkJcCAAAgtSA3BQAAT4Oi9GPMmzdPbdq0UatWrfTyyy9rxIgRypgxo5YuXWrr0AAAAJCOkJcCAAAgtSA3BQAAT8PB1gGkVg8ePNCxY8fUq1cvY5nJZFK1atV04MCBJPVhMtnJZLKzSnx21un2mcTFlBpjc3BIuesv7FLhAdrF/z+VxZeyY59iXaWseG9AagsxrY+/5WffhoEkIiXHPjUOfvyxN6ey+FJ07IFUICXy0thtrJmbpq6fAw9LbfGl9dzUMjdKXfGl+d/P8f4mM6fhsU+FQ59u/h6OTI0H+JDU9nOR3BRpDedMky+9/I6QUt/PYInzpjbFOVOb4Zyp7XDO9Akx2DqA1OrWrVuKjo5W9uzZLZZnz55d58+fT1If2bNnsUZosd7bar2+n5G9rQNIhFtKdlatb0r2lqLS+tgvaf5LCvaG5Grj1tXWIaRbbiuW2ToEADaUEnlpbHvr5abtPqtitb7xeG51XrZ1COlW1/9NsXUI6VbFVm1tHUK65davoq1DAGBjnDN9emn9vJ0kzpsmE+dN0wbOmdoO50xfPLYviwMAAAAAAAAAAAAA0iyK0o/g5uYme3t7BQUFWSwPCgpSjhw5bBQVAAAA0hvyUgAAAKQW5KYAAOBpUZR+BCcnJ5UqVUo7duwwlsXExGjHjh0qX768DSMDAABAekJeCgAAgNSC3BQAADwtnin9GN26ddMnn3yi0qVLy8vLSz/88IPu3r2rli1b2jo0AAAApCPkpQAAAEgtyE0BAMDToCj9GI0aNVJwcLCmTJmigIAAvfLKK5o9ezZT0QAAAOC5Ii8FAABAakFuCgAAnoad2Ww22zoIAAAAAAAAAAAAAEDaxDOlAQAAAAAAAAAAAABWQ1EaAAAAAAAAAAAAAGA1FKUBAAAAAAAAAAAAAFZDURoAAAAAAAAAAAAAYDUUpfHM9uzZo3feeUc+Pj4qXry4NmzYYOuQ0o3vvvtOrVq1Uvny5VW1alW99957On/+vK3DShcWLFggPz8/VahQQRUqVNCbb76pzZs32zqsdGnmzJkqXry4vvjiC1uHki5MnTpVxYsXt/jXoEEDW4cFAAZyU9shN7UdctPUg9z0+SEvBfAiIDe1DfJS2yEvTT3IS58vctOkcbB1AHjx3blzR8WLF1erVq30/vvv2zqcdGX37t3q0KGDypQpo+joaE2aNEk9evTQb7/9pkyZMtk6vDQtd+7cGjBggAoVKiSz2awVK1aod+/eWr58uYoVK2br8NKNw4cPa9GiRSpevLitQ0lXihUrpnnz5hmv7e3tbRgNAFgiN7UdclPbITdNHchNnz/yUgCpHbmpbZCX2g55aepAXmob5KZPRlEaz8zX11e+vr62DiNdmjNnjsXrcePGqWrVqjp27JgqVapko6jSh9q1a1u8/vDDD7Vw4UIdPHiQBOs5iYiI0Mcff6zRo0fr22+/tXU46Yq9vb08PDxsHQYAJIrc1HbITW2H3NT2yE1tg7wUQGpHbmob5KW2Q15qe+SltkNu+mRM3w2kIbdv35Ykubq62jiS9CU6Olq//fab7ty5o/Lly9s6nHRj5MiR8vX1VbVq1WwdSrpz6dIl+fj4qE6dOurfv7+uX79u65AAAKkQualtkJvaBrmpbZCXAgCSgrzUNshLbYO81HbITZ+MO6WBNCImJkZjxoxRhQoV5Onpaetw0oVTp06pbdu2un//vjJlyqTp06fr5ZdftnVY6cJvv/2m48ePa8mSJbYOJd3x8vLS2LFjVaRIEQUEBGj69Onq0KGDVq9erSxZstg6PABAKkFu+vyRm9oOualtkJcCAJKCvPT5Iy+1HfJS2yE3TRqK0kAaMWLECJ05c0YLFiywdSjpRpEiRbRixQrdvn1b69ev1yeffKIff/yRJMvK/vnnH33xxReaO3euMmTIYOtw0p34046VKFFCZcuWVa1atbR27Vq98cYbNowMAJCakJs+f+SmtkFuajvkpQCApCAvff7IS22DvNS2yE2ThqI0kAaMHDlSmzZt0o8//qjcuXPbOpx0w8nJSYUKFZIklS5dWkeOHJG/v79Gjhxp48jStmPHjikoKEgtW7Y0lkVHR2vPnj366aefdOTIEdnb29swwvTFxcVFhQsX1uXLl20dCgAglSA3tQ1yU9sgN009yEsBAA8jL7UN8lLbIC9NXchNE0dRGniBmc1mjRo1Sn/88Yfmz5+vAgUK2DqkdC0mJkYPHjywdRhp3quvvqrVq1dbLPv000/10ksvqWfPniRXz1lERISuXLkiDw8PW4cCALAxctPUhdz0+SA3TT3ISwEAcchLUxfy0ueDvDR1ITdNHEVpPLOIiAiLqz2uXr2qEydOyNXVVXnz5rVhZGnfiBEj9Ouvv+qbb75R5syZFRAQIEnKmjWrMmbMaOPo0raJEyeqZs2aypMnjyIiIvTrr79q9+7dmjNnjq1DS/OyZMmS4BlAmTJlUrZs2Xg20HMwfvx41apVS3nz5tXNmzc1depUmUwmNWnSxNahAYAkclNbIje1HXJT2yE3tR3yUgAvAnJT2yAvtR3yUtshL7UtctOkoSiNZ3b06FF17tzZeD127FhJUosWLTRu3DhbhZUuLFy4UJLUqVMni+Vjx461mKYDKS8oKEiffPKJbt68qaxZs6p48eKaM2eOqlevbuvQAKv6999/9dFHHykkJETu7u6qWLGiFi9eLHd3d1uHBgCSyE1tidzUdshNkR6RlwJ4EZCb2gZ5qe2QlyK9IjdNGjuz2Wy2dRAAAAAAAAAAAAAAgLTJZOsAAAAAAAAAAAAAAABpF0VpAAAAAAAAAAAAAIDVUJQGAAAAAAAAAAAAAFgNRWkAAAAAAAAAAAAAgNVQlAYAAAAAAAAAAAAAWA1FaQAAAAAAAAAAAACA1VCUBgAAAAAAAAAAAABYDUVpAAAAAAAAAAAAAIDVUJQGYFO7du1S8eLFtW7dOluH8lhTp05V8eLFU7TP2rVra9CgQUlq+88//6hMmTLat29fisbwPLVp00YTJkywdRgAAACPRG5KbgoAAJAakJeSlwJpEUVpABaWLVum4sWL68iRI7YO5YmuXr2q4sWLG/9eeeUVvfbaa+rdu7dOnDhh6/BS1PTp01W2bFlVrFhRYWFh8vHxUdu2bWU2mxO0PXjwoEqUKKHx48fbINJH69mzpxYsWKCAgABbhwIAAF4Q5KapE7kpAABIb8hLUyfyUuDFQlEawAuvSZMmmjBhgsaMGaMmTZpo586datOmTYomWe+++64OHz6cYv0lR3BwsFasWKG2bdtKklxcXDR48GAdOHBAixcvtmgbFRWlzz//XHnz5lXfvn1tEe4j1alTR1myZNGCBQtsHQoAAIDVkJv+h9wUAADAdshL/0NeCqQOFKUBvPBKliypZs2aqUWLFhowYID+97//6cGDB1q4cOEz933nzh1JkoODgzJkyPDM/T2NVatWyd7eXrVq1TKWNWrUSDVr1tTEiRMVGBhoLPf399fJkyf1+eefy9nZ2eqxxY1PUphMJr3++utauXJlolcrAgAApAXkpuSmAAAAqQF5KXkpkNpQlAbwVI4fP6633npLFSpUUPny5dWlSxcdPHgwQbuwsDCNGTNGtWvXVunSpVWzZk0NHDhQwcHBj+z7wYMH6tWrlypWrKj9+/cnO7ZXX31VUuxUNXEOHTqkHj16qGLFiipbtqw6duyY4Fkjcc9AOXv2rPr3769KlSqpffv2Fuvii4qK0vTp01W3bl2VLl1atWvX1qRJk/TgwQOLdmazWd98841q1qypsmXLqlOnTjpz5kySj2fDhg3y8vJS5syZLZZ//vnnevDggcaOHSsp9hkqU6dOVaNGjeTr6ytJ2rx5s9q3b69y5cqpfPnyevvttxPs++TJkxo0aJDq1KmjMmXKqHr16vr0009169atJI9PQECAPv30U9WsWVOlS5eWj4+P3n33XYv3QJKqVauma9eupbmpggAAgG2Rm5KbkpsCAIDUgLyUvJS8FHg0B1sHAODFc+bMGXXo0EGZM2fWW2+9JQcHB/3888/q1KmTfvzxR5UtW1aSFBERoQ4dOujcuXNq1aqVSpYsqVu3bunPP//UjRs35O7unqDve/fu6b333tPRo0c1b948eXl5JTu+y5cvS5KyZcsmSdqxY4d69uyp0qVL6/3335ednZ2WLVumLl26aMGCBQn28cEHH6hQoUL68MMPH3t12tChQ7V8+XK9/vrr6tatmw4fPqzvvvtO586d0/Tp0412X3/9tb799lv5+vrK19dXx44dU/fu3RUZGfnEY4mMjNSRI0fUrl27BOvy58+vPn36aMKECWrZsqUWLFggBwcHDR48WJK0YsUKDRo0SD4+PhowYIDu3r2rhQsXqn379lq+fLny588vSdq+fbuuXLmili1bysPDQ2fOnNHixYt19uxZLV68WHZ2dk8cnz59+ujs2bPq2LGj8uXLp+DgYP3999/6559/jP1IUunSpSVJ+/fvV8mSJZ94/AAAAE9CbhqL3JTcFAAA2BZ5aSzyUvJS4JHMABDP0qVLzZ6enubDhw8/ss17771nLlWqlPny5cvGshs3bpjLly9v7tChg7Hs66+/Nnt6epp///33BH3ExMSYzWazeefOnWZPT0/z2rVrzeHh4eaOHTuaq1SpYj5+/PgTY71y5YrZ09PTPHXqVHNQUJA5ICDAvGvXLnPz5s3Nnp6e5vXr15tjYmLM9evXN3fv3t3Yp9lsNt+9e9dcu3Ztc7du3YxlU6ZMMXt6epo/+uijBPuKWxfnxIkTZk9PT/OQIUMs2o0bN87s6elp3rFjh9lsNpuDgoLMpUqVMr/99tsW+580aZLZ09PT/Mknnzz2GC9dumT29PQ0z58/P9H1kZGR5mbNmpkrV65s9vT0NC9atMhsNpvN4eHhZm9vb/PQoUMt2gcEBJgrVqxosfzu3bsJ+v3111/Nnp6e5j179iQYg4fHJzQ01Ozp6WmePXv2Y48lTqlSpcyff/55ktoCAID0jdyU3NRsJjcFAAC2R15KXmo2k5cCz4rpuwEkS3R0tP7++2/VrVtXBQoUMJbnzJlTTZo00b59+xQeHi5J+v3331WiRAnVq1cvQT8PX0l2+/Zt9ejRQ+fPn9f8+fP1yiuvJDmmqVOnqmrVqqpevbo6deqky5cva8CAAapfv75OnDihixcvys/PT7du3VJwcLCCg4N1584dVa1aVXv27FFMTIxFf23btn3iPjdv3ixJ6tatm8Xy7t27W6zfvn27IiMj1bFjR4tj7tKlS5KOLSQkRJLk4uKS6HoHBweNHDlSISEhKleunNq0aWPsNywsTI0bNzaOOTg4WCaTSWXLltWuXbuMPjJmzGh8ff/+fQUHBxtXbh47dizBPh8en4wZM8rR0VG7d+9WaGjoE4/J1dU1wTQ3AAAAT4PcNBa56X/ITQEAgC2Ql8YiL/0PeSmQENN3A0iW4OBg3b17V0WKFEmwrmjRooqJidE///yjYsWK6fLly6pfv36S+h0zZowePHig5cuXq1ixYsmK6c0331SDBg1kZ2cnFxcXFStWTE5OTpKkixcvSpI++eSTR25/+/Ztubq6Gq/jT53yKNeuXZPJZFLBggUtlnt4eMjFxUXXrl2TJF2/fl2SVLhwYYt27u7uFvt8EvNjpsSJm0qnVKlSRhIXd9yPSuSyZMlifB0SEqJp06ZpzZo1CgoKsmh3+/btBNs+PD5OTk4aMGCAxo8fr+rVq6ts2bJ67bXX1Lx5c3l4eCR6LA8n2AAAAE+D3DQWuel/yE0BAIAtkJfGIi/9D3kpkBBFaQCpQp06dbRmzRrNnDlTEyZMkMmU9IkcChUqpGrVqiW6Li4xGThw4COvJMyUKZPF6wwZMiR539ZOFOKe8RIWFpas7eKOe8KECYkmOfb29sbX/fr104EDB9SjRw+98sorypQpk2JiYvTWW28lmtglNj5du3ZV7dq1tWHDBm3btk1ff/21Zs6cqR9++CHBc1DCwsLk5uaWrOMBAAB4nshNE0duCgAA8HyRlyaOvBR4MVGUBpAs7u7ucnZ21oULFxKsO3/+vEwmk/LkySNJKliwoM6cOZOkfuvWrSsfHx8NGjRImTNn1ogRI1Ik3rjpcrJkyfLIJOxp5MuXTzExMbp06ZKKFi1qLA8MDFRYWJjy5csnScqbN6+k2Kvw4k/dExwcnKRpW/LkyaOMGTPq6tWryYovbl/Zs2d/7HGHhoZqx44d6tOnj95//31jedxVg8lRsGBBde/eXd27d9fFixfVvHlzzZ07V19++aXR5saNG4qMjLQYMwAAgKdFbhqL3DQhclMAAPA8kZfGIi9NiLwU+A/PlAaQLPb29qpevbo2btxo8Us/MDBQv/76qypWrGhMc1K/fn2dPHlSf/zxR4J+EruarHnz5ho6dKgWLVqk//3vfykSb+nSpVWwYEHNnTtXERERCdYHBwc/Vb++vr6SpB9++MFi+bx58yzWV6tWTY6Ojvrxxx8tjvnh7R7F0dFRpUuX1tGjR5MVX40aNZQlSxZ99913ioyMTLA+7rjjX/0XX1Ljk6S7d+/q/v37FssKFiyozJkz68GDBxbL446jfPnySe4fAADgUchNY5Gb/ofcFAAA2AJ5aSzy0v+QlwIJcac0gEQtXbpUW7duTbC8c+fO6tevn7Zv36727durffv2sre3188//6wHDx7o448/Ntr26NFD69ev1wcffKBWrVqpVKlSCg0N1Z9//qkRI0aoRIkSCfrv2LGjwsPD9dVXXylr1qx65513nuk4TCaTRo8erZ49e6pJkyZq2bKlcuXKpRs3bmjXrl3KkiWLZsyYkex+S5QooRYtWujnn39WWFiYKlWqpCNHjmj58uWqW7euXn31VUmxV0l2795d3333nXr16iVfX18dP35cW7ZsSfJ0LHXq1NFXX32l8PBwi+eaPE6WLFk0fPhwDRw4UC1btlSjRo3k7u6u69eva/PmzapQoYKGDRumLFmyqFKlSpo9e7YiIyOVK1cu/f3338m6yvDixYvq2rWrGjRooJdffln29vbasGGDAgMD1bhxY4u227dvV968eRNMTwMAAPA45KaPR276H3JTAABgTeSlj0de+h/yUiAhitIAErVw4cJEl7ds2VLFihXTTz/9pIkTJ+q7776T2WyWl5eX/ve//6ls2bJG28yZM+unn37S1KlT9ccff2j58uXKnj27qlatqly5cj1y3++8845u375tJFkdOnR4pmOpUqWKfv75Z33zzTf68ccfdefOHXl4eMjLy0tvvvnmU/c7evRo5c+fX8uXL9eGDRuUI0cO9erVy2JKFyn2+SNOTk5atGiRdu3aJS8vL82dO1e9evVK0n6aNWumiRMnauPGjWrWrFmS4/Pz81POnDk1c+ZMzZkzRw8ePFCuXLnk7e2tli1bGu0mTpyoUaNGacGCBTKbzapevbpmzZqlGjVqJGk/uXPnVuPGjbVjxw6tWrVK9vb2eumllzR58mS9/vrrRruYmBitX79erVu3tvpzZQAAQNpCbvpk5KaxyE0BAIA1kZc+GXlpLPJSICE7c2LzQQAAUpXBgwfr4sWLWrBgga1DeWobNmxQ//799ccffyhnzpy2DgcAAABPidwUAAAAqQF5KfBi4ZnSAPACeP/993XkyBHt27fP1qE8tVmzZqlDhw4kVwAAAC84clMAAACkBuSlwIuFO6UBAAAAAAAAAAAAAFbDndIAAAAAAAAAAAAAAKuhKA0AAAAAAAAAAAAAsBqK0gAAAAAAAAAAAAAAq6EoDQAAAAAAAAAAAACwGorSAAAAAAAAAAAAAACroSgNAAAAAAAAAAAAALAaitIAAAAAAAAAAAAAAKuhKA0AAAAAAAAAAAAAsBqK0gAAAAAAAAAAAAAAq6EoDQAAAAAAAAAAAACwGorSAAAAAAAAAAAAAACroSgNAAAAAAAAAAAAALAaitIAAAAAAAAAAAAAAKuhKA0AAAAAAAAAAAAAsBqK0gAAAAAAAAAAAAAAq6EoDQAAAAAAAAAAAACwGorSAAAAAAAAAAAAAACroSgNAAAAAAAAAAAAALAaitIAAAAAAAAAAAAAAKuhKA0AAAAAAAAAAAAAsBqK0gAAAAAAAAAAAAAAq6EoDQAAAAAAAAAAAACwGorSAAAAAAAAAAAAAACroSgNAAAAAAAAAAAAALAaitIAAAAAAAAAAAAAAKuhKA0AAAAAAAAAAAAAsBqK0gAAAAAAAAAAAAAAq6EoDQAAAAAAAAAAAACwGorSAAAAAAAAAAAAAACroSgNAAAAAAAAAAAAALAaitIAAAAAAAAAAAAAAKuhKA0AAAAAAAAAAAAAsBqK0gAAAAAAAAAAAAAAq6EoDQAAAAAAAAAAAACwGorSAAAAAAAAAAAAAACroSgNAAAAAAAAAAAAALAaitIAAAAAAAAAAAAAAKuhKA0AAAAAAAAAAAAAsBqK0gAAAAAAAAAAAAAAq6EoDQAAAAAAAAAAAACwGorSAAAAAAAAAAAAAACroSgNAAAAAAAAAAAAALAaitIAAAAAAAAAAAAAAKuhKA0AAAAAAAAAAAAAsBqK0gAAAAAAAAAAAAAAq6EoDQAAAAAAAAAAAACwGorSAAAAAAAAAAAAAACroSgNAAAAAAAAAAAAALAaitIAAAAAAAAAAAAAAKuhKI006+rVqypevLjxb9euXbYOyWYeNxZTp041lteuXduGUaasXbt2WRzz1atXbR3SM4t/PMuWLbN1OKlGevheX7ZsmcUxWhufNQAAAAAAAABASnKwdQBIf27duqUlS5Zox44dOn36tEJDQ2U2m5UtWzYVKlRIXl5eqlOnjipWrCg7Oztbh5tq9erVS5s2bTJeOzo6atu2bcqWLZvNYnpedu3apc6dOxuvN27cqPz589swovRj6tSpmjZtmvE6LY79smXL9Omnnya6LlOmTCpYsKBq1Kihbt26KXv27M85OgAAnp/atWvr2rVrj23z008/ydvbO9F1V65cUdOmTXXnzh1JUr58+fTrr78qU6ZMFu02b96st99+23jt6+urmTNnPmP0z8fDeWkck8mkTJkyKV++fPL29lanTp1UpEgRG0SYesS/sK5FixYaN26cDaOxnU6dOmn37t2S0vc4AAAAAEh/KErjufr55581btw448RUfAEBAQoICNDevXs1d+5cbdu2TR4eHjaIMvULCAjQ1q1bLZZFRkbq119/VceOHW0UVepSsGBBDRw40HidHor1sL47d+7o5MmTOnnypJYsWaLvv/9eJUqUsPp+y5QpY/F5BgDgRVCgQAENGDBAI0eOlCRdu3ZNkydP1uDBg4024eHh+vzzz43XLi4uGjVq1HOPNaXFxMQoPDxcp06d0qlTp7Rs2TL5+/vLy8vL1qEBAAAAAGATFKXx3MyePVv/+9//jNd2dnaqUqWKypUrp0yZMikkJEQnT57Uvn37dP/+fRtGmvqtXLlS0dHRCZYvW7aMovT/y5Mnj3r06GHrMJAGtG3bVgULFtS9e/e0Y8cO7dmzR1LsrA+DBg3SihUrrLbv8PBwZcmSRcWKFVOxYsWsth8AAJ7kURdHFShQ4LHbtW/fXuvWrTPuDJ0/f74aN26ssmXLSpImTpyof/75x2g/ePBg5cqVK4WifjYPHjyQJDk5OSV5m0aNGql06dKKjo7W4cOH9ccff0iS7t69qxkzZuibb76xSqwAAAAAAKR2FKXxXJw7d06TJk0yXmfLlk3ffvutKlSokKBtRESEVq5cqYwZMxrLoqKiNG3aNB07dkwXLlxQSEiI7t69qyxZsqho0aJq2LCh2rZtK0dHxyTFc+XKFfn7++vYsWO6du2aQkNDFRUVJTc3N5UqVUpt2rSxeL7yyZMn9cYbbxgnpoYOHapOnTpJij1Z1apVK50+fVqSVL16dc2aNUv169c3nmPcq1cvffTRRxYxjB8/XnPnzpUkFS1aVGvWrElS7JK0fPly4+vChQvr4sWLkqRjx47p9OnT8vT0THJfTxIaGqr58+frzz//1KVLl3T//n25ubmpbNmyateunapXr57odocPH9bChQu1d+9e3bx5UyaTSTlz5lSFChX07rvvqmDBgpJipzxcuXKlTpw4oYCAAIWEhMje3l45c+aUt7e3unbtajHVX2LP061Tp47xddwUeE+a4js6OlrLly/X6tWrdfLkSaP45+npKT8/P7Vs2VIODv/9iLx69arFfvz9/RUYGKjvv/9ep0+flpOTk6pWrapPP/1UefLksYhv48aNWrBggU6cOKHQ0FBlyJBB7u7u8vT0VNmyZdWzZ0+ZTKakviWG7du3a/r06Tp+/LgcHBxUtWpV9e/fX4UKFZIk7dy5U126dDHar1u3zmLayJiYGNWoUUOBgYGSpP79+1tMnZmSjh49Kn9/f+3du1cBAQFycHBQvnz55OPjo65duyp37twJtomKitKKFSu0Zs0anTx5UmFhYcqSJYsKFiyomjVr6v3333/iftetW6ePPvrIuIijVatWGj16dLLGu1GjRqpSpYokqXfv3mrfvr327dsnSTpx4oSuXLlicUJ+7969+umnn3TgwAEFBgbKyclJxYoVU9OmTdWmTZsEP6fif6bHjh0rFxcXzZ49W6dOnZK9vb327t2bYErxU6dOWfRx7949LVq0SOvWrdO5c+d09+5dubi4qFSpUmrRooUaNWqU4LiioqI0d+5cLVmyRNevX1fu3LnVsmVL9ezZM8ljAwBIP572Yj87OzuNGTPGmMY7JiZGQ4cO1dKlS418Mc5rr72mFi1aGK9PnjypH374QXv27NHNmzdlb2+vQoUKqUGDBurcuXOCacD/+OMP/f777zp58qSCgoIUFhYmR0dH5cmTR6+++qq6d++e4LEjD0+l3L17d02ePFn79u1TSEiIVqxYoVdeeSXJx1ujRg21bNnSeO3n52f8nXD+/PkE7Z9XTvqkXOLhfCT+MSxbtkzLly/X6dOnFR4erkyZMsnd3V2vvPKKKlWqpA4dOiR5fB7l4f2bTCbNmzdPFy5cUK5cudShQwd17dpVUVFRmjlzppYsWaKbN2+qQIEC6tatm9q0aWPR38Pva8+ePTV58mTt2rVL9+/fV8mSJdWnTx9Vq1bNYrun+QxJSctbH34MjhT7d138v+3S4qNxAAAAACAORWk8F/7+/hZ39o4YMSLRgrQkZc6cWe3bt7dYdv/+fX377bcJ2oaEhGjfvn3at2+f/vzzT82ePVv29vZPjOfs2bPy9/dPsPzmzZu6efOm/vrrL/Xp08coepUoUUL9+/fX2LFjJcXe0eHr66uCBQtq6tSpxokmNzc3jRs3Tvb29mrfvr0mTJggKfZkwwcffGAR2/r1642v45/0eZLDhw/r7NmzxushQ4bok08+UXBwsKTYk0aDBg1Kcn+Pc+7cOXXv3l3//vuvxfKbN2/qjz/+0B9//KHOnTtryJAhFuunTZumadOmyWw2Wyy/ePGiLl68qDp16hhF6U2bNmnp0qUW7SIjI3X58mVdvnxZq1ev1syZMxOcMHoWd+7c0dtvv23c8RonJCREu3fv1u7du7VixQrNmjVLmTNnTrSPr7/+2ihMSrFFwfXr1+vUqVNatWqVMmTIICnx5xNHRUUpIiJCV65c0caNG9W1a1ejfVKtXbtWW7dutRjj9evXa9euXVq0aJGKFCmiV199VZ6ensbn85dffrG4y2n37t1GQdre3l7NmzdPVgxJ9f3332v8+PGKiYkxlj148EBnzpzRmTNntGTJEk2fPt0o/Eqx78Vbb72lI0eOWPR169Yt3bp1S+fPn39iUXrDhg0aMGCA8bOnffv2GjZs2DM/q75s2bIW731AQIBRlP7qq680Y8YMi/aRkZE6ePCgDh48qDVr1mjWrFkJTqLHWbp0qfbu3Wu8zpo16xPjCQgIULdu3XTmzBmL5UFBQdqyZYu2bNmidevWadKkSRYntQcOHKjffvvNeH3lyhV9/fXXOnTo0BP3CQBIf+rWrat///1XTk5Oeumll1S/fn116tRJzs7OT9z24Wm8T58+ralTp+qPP/4wchkXFxdjvSQtWLBAX3zxhaKioiz6OnHihE6cOKHVq1fr+++/t3jcz+rVqy1ybCn29/C5c+d07tw5rVy5UgsWLEj0IkcptlD75ptvJvqooeSKjo7WkSNHdP36dWPZw48mep456dNKrJAaFhamsLAwXbx4UXv27EmRonR8P/74o44dO2a8vnz5ssaOHavQ0FCdOnVKGzduNNadP39en332mUwmk1q3bp1of6dPn1abNm0UHh5uLNu/f7969OihSZMmqWHDhsbyp/kMpUTeCgAAAADpAUVpPBc7d+40vnZ1dVX9+vWTtb2dnZ0KFCigsmXLKleuXHJ1dVVkZKQuXLigdevWKSoqStu3b9f69esTvSPwYfb29nrllVdUunRpubu7K0uWLLpz547279+vXbt2SZK+/fZbvfHGG8b0gV26dNHWrVu1bds23b17V4MHD1b//v01Z84co98xY8YoZ86ckqTWrVtr6tSpunv3rm7evKlNmzYZdzUcPnxY165dkyQ5ODioWbNmSR6LZcuWGV9nz55d1atX1+uvv27cZbJ69WoNGDDAovj0NKKiotS7d2+jIG1vb69mzZopV65c2rhxo1Ho9Pf3V6lSpYyC5tq1azV16lSjH2dnZzVq1Eh58+bVtWvX9Oeff1rsx9nZWZUrV5anp6dcXV2VMWNG3bp1S5s3b9a5c+cUGRmp0aNHG3eSDxw4UJcvX9aiRYuMPt555x25uLhIUpKmOB49erTFyT8fHx+VK1dOBw8e1LZt2yRJ+/bt0+jRo40LER62b98+lSlTRj4+Ptq1a5f2798vKbbwvmHDBjVu3FiSLO7+KVOmjF577TVFR0fr33//1aFDh3Tu3LknxpuYLVu2qFSpUvL19dWZM2eMqSFDQkL0+eefGxdddOjQwXhO48qVK/Xhhx8ad+quW7fO6K9GjRrGZzcl7dmzR+PGjTNOOOfNm1eNGzfWnTt3tGzZMt29e1e3b99W37599fvvv8vV1VVS7Psc/8Re0aJF5evrKycnJx0/flyHDx9+7H43b96sfv36KTIyUpLUrVu3FLtY4+GibdwJ5t9++82iIO3j46MKFSooKChIy5cv1507d7R3716NHTv2kc/K3Lt3r9zc3NS4cWNly5YtQaE5MQMGDLBo9/rrr+vll1/W9u3bdeDAAUmxFyzMmDHDOCG6bt06i4J0oUKF1LBhQ924cUMrV65M4kgAANKTK1euSIot0B05ckRHjhzRypUrNX/+fLm7uz9x+/bt2xsX0EnSzJkzLdYPGTLEyLv379+vUaNGGRe0lStXTjVq1FBERISWL1+uW7du6ezZs/rkk0+MmYek2Iu5fHx89NJLL8nV1VWOjo4KDAzUhg0bdP36dYWHh+vLL7/UrFmzEo0xbvaZZs2aqVChQjp//nyypu6WpE8//TTBBYmSZDKZEtxt/jxz0qcVP5etVq2aKleurLt37+qff/6x2mOXjh07pvLly6tatWpas2aNLly4IEnG1OeVK1eWt7e3fvnlFwUEBEiKfVTUo4rSx44dU86cOdWuXTtFRERoyZIlevDggWJiYjRs2DD5+PgYFwI+zWcoqXlr9erVlSlTJi1cuND4fipdurTF36/ZsmVLoVEEAAAAgNSHojSeixs3bhhfFypUyGLq3HPnziVaSI6bhlmSMmXKpA0bNigoKEgHDx7UjRs3dO/ePZUsWVKnT582CqTbtm1LUlG6Zs2aqlmzpi5cuKATJ04oODhYDg4O8vX11eHDh3X37l1FRUVpx44dRrHVzs5O48aNU9OmTRUcHKw9e/aoe/fuFndhxp/y29XVVX5+flq8eLGk2LtU44rSa9euNdrVqFEjwV0Tj/LgwQOLab4bNGgge3t7NWnSxDhhFBgYqC1btljE8jQ2bdpknACSYqcsj7uD/Z133lGjRo2Mwvq8efOMcYp/giZTpkxatmyZxZTRd+7c0d27d43Xffv2VUxMjI4ePapz584pLCxMOXLkUM2aNY2C7blz5/TPP/8Yz4mOuxs4zhtvvJHkae5u3bpl8Qzghg0bavLkycbrfv36Ge/PypUrNXDgQLm5uSXox8vLSwsWLJCjo6MiIyPl6+uroKAgSdKRI0eME4DxT9QNHTpU5cqVs+jn6tWrSZ52Pr5ixYpp0aJFxonSzz77zPis7dq1S5cuXVKhQoXUtGlTTZw4UWFhYQoMDNRff/2l+vXrKzo62ihkS7HTWlvDvHnzjIJ05syZtWTJEmXPnl2S5Ovra0wXHhISouXLl6tr1646deqUNm/ebPTh6+ur6dOnW4xT3Im8xGzfvl3z5s0zCtLvvPOOPvzww6c+hjVr1ujo0aO6f/++duzYYXE3UokSJYy7pGfPnm0sb968ucaPH2+8rlSpkvr16ycp9sKS/v37J3rSMUuWLFq2bJny5s2bpNhOnDhhcdHPW2+9pY8//lhS7FTjHTp0MArT8+fP13vvvSeTyaRffvnF2CZr1qxavHixEU/hwoX11VdfJWn/AIC0r1ChQvL29lbevHkVGhqqdevW6ebNm5JiZx8aPny4pkyZ8sR+4qbx9vPzS3Ancq1atSxmbJk7d65RkK5cubJ++OEH4++Hhg0b6o033pAk/f333zp58qRKlCghSfriiy8UGRmpQ4cO6eLFiwoPD1fu3Ln16quvGhd27ty5U5GRkY/Mv77++mvVrVs3GSOUNP369dNrr71mvH7eOenTip/LTpgwIcHfLY/LyZ7Wyy+/rPnz58vR0VEVKlSwKOaXKFFC33//vezt7ZUrVy7j4ssLFy4YU58/zNHRUQsXLjT+XqhQoYIGDBggKfau73Xr1hmfqeR+hpKTt1aoUEEVKlTQpk2bjGXFihV76qnxAQAAAOBFQ1Eaz93TTJ177949jRgxQitWrLCYAvhh8Yvfj3P16lUNGDDAKNYktT8PDw+NGzfOKKTFnVArVqxYondhduzY0SgUbtmyRTdu3FCuXLkspoRLTjFww4YNCg0NNV7HFeArVqyo3LlzG3c1L1u27JmL0g+PTfwThRkzZlSDBg2Mu8RPnTplFJqPHz9utGvWrJlFQVqKLVTHn7r477//1tChQy2mNkzMv//+m+BZzU/j8OHDFlPJx39uYdzruBOA0dHROnz4sHx9fRP088YbbxgnmxwdHZU/f37jBGD898jb29t4Zl+3bt1Uvnx5FSpUSC+//LK8vb0fOX3kkzRs2NDizp2mTZsanzUp9o6QQoUKKVOmTGrVqpXmzZsnSVq8eLHq16+vPXv2GFN3u7m5qVatWk8Vx5McPHjQ+LpGjRpGQVqKPWnn7u5uTD0f1zZ+0VeS3n///QQnjuM/w/lh8e9W7tu3r3r37v204UuSxQUQ8WXLls24cObu3bs6ceKEsW7FihUWJ5rji4qK0uHDh1WzZs0E65o3b57kgrSU8Ps0/ufZ3t5efn5+RpuQkBBduHBBRYsW1dGjR412NWrUsCiQN23alKI0AEBS7MWGRYsWtVj2wQcfqHXr1sbFixs2bNDt27eVNWtWnTlzRlu2bEnQT7FixVSzZk3lz59fAwcO1PDhw411rq6uFtN2SzLu9pViHzfyuGc6HzhwwChKr1q1SmPGjNGtW7ce2f7Bgwe6detWojPEeHp6PnNBulGjRipdurSio6N19uxZ/fbbb4qKitKkSZMUGRlpzFryvHPSp+Xt7a1NmzZJkpo0aaKyZcuqUKFCKlasmKpUqaJChQo98z4e1rBhQ+OY8uXLZ7GuXr16xiOR4h4HFCfuOc4Pq1ixosUFrI0aNdKnn35qXMB49OhRoyid3M/Qs+atAAAAAJCeUJTGc5ErVy5dvHhRknTp0iWZzWajOJ09e3bjObdx010/bOLEiRbTVj/KgwcPkhRP7969dfLkyafqz8fHR4ULFzaOR4qdqjux57UVL15clStX1u7duxUdHa1ly5apWrVqxh3G7u7uFndMPEn8MciTJ48qVqwoKbbQ36hRI2P6wk2bNunWrVuJ3k2RVPFPYj1cSJakHDlyGF+bzWaFhYUZX8d50t3LN27cUO/evRN9zx+W1Pf2SR4+ORe/SJrY67jjetjDJ8jiF4jjj8FHH32kK1euaMuWLbpz547+/vtv/f3338b6ypUr67vvvnvkM4YfJTlxd+jQQT/88INiYmL0999/659//rG4W79p06ZPdbd2UsQf7/ifmfjL4orScTE//B4l9S74h8VN+5+SMmXKpPz586tmzZrq2rWrcbdQWFhYgmeoP07cMT/spZdeSlY8T/o8Pzzmce1v376d5G0AAOnXwwVpKXZWj5YtW2rixImSYgumFy5ckJeXl44cOaIJEyYk2KZFixbGxVht27a1KErXrl07QYE4OcXUuN+px44d0yeffPLYC1jjPCqvfPhiyqdRo0YNtWzZ0nhdoEAB45nM8R8P9Lxz0ofF/3vscXn28OHD1a9fPx08eFAhISEWdwVLsQXkSZMmWcyE9azifx4ezlHjpniXZBSn4zzqvX94LO3t7ZUtWzZj6u+4vOhpPkMplbcCAAAAQHpAURrPxauvvmoUcUNCQrRx40bjLoRs2bIZU5bNnDkz0QJl/AKap6enJk2apCJFisjBwUEffPCBxbNxn+T8+fMWBekmTZpo4MCBypkzp+zs7FS1atVHFoyk2Lsw4xekJWnatGmqV69egpNCktSpUyft3r1bkrR06VKFhIQY65JTDLxx44a2b99uvP7nn3+Mu0IeFhkZqdWrV6tz585J6jsxcc/2lWLvCL9z545F4TTuLlsptvgX90xnOzs74wTY1atXH7uPv/76y+L9HjRokFq3bq2sWbPq7NmzzzzdYGLiH5ck406SR72OO66HPfzM7kfNAJAlSxbNmjVL//77rw4ePKiLFy/q7Nmz2rBhg+7evavdu3dr9uzZ6tu3b7KOIzlxFyhQQL6+vvrrr78UExOjxYsXW0zdHf/EaUpzdXU1Yov/mYkTf1lczA+/R1evXk3SsyrjvPTSSzp//rzMZrM+/fRTZcqU6ZnuevL391eVKlUe2ybuOYRxateuLW9v70e2L1WqVKLLnZ2dkxVbYp/n+BejPDzmce2zZs1q/Cx6+LOT2PsEAMDjJGcmpKS0jZ8/VKxY0XgETmLKly8vSVq3bp1RTLSzs9PEiRNVq1YtZcqUSZs3bzZmOnqc5F4kmBReXl7G11FRUTpy5Ihy5cr13HPSh4vG9+7dM/KOh/+2iS9Pnjz6+eefdenSJR0+fFiXLl3S6dOntXHjRkVFRWnt2rWqUaNGij4K5uFjiu/hQnRSPDyW0dHRFn+TxeVxT/MZeta8FQAAAADSk5S7nBl4jI4dO1qcQBg+fLjFVLdPEv+kQZUqVVSsWDE5ODgoODjYKPg+TV9S7HOZc+XKJTs7O+3ateuxBemDBw/qm2++MV7H3dV4+/ZtffzxxxZT8MWpU6eOMR3vlStXjGc/S8mbunvlypWJ9v8oy5cvT3LbxMSd4IsTfyrie/fuWVwIUKJECTk7O8vZ2VklS5Y0lq9cuVKXLl2y6OfevXvGiaGH34uWLVsaJ4XiX4jwsIdPVN27d+/JB/T/vLy8LD6LD49T/Nf29vYWJxKfxunTpxUZGancuXOrQYMGeuedd/Tll1+qdevWRpv4U54n1dq1a40pB6XYqQbje7jo2alTJ+PrOXPmGO9BqVKlHnlxQ0qI/znaunWrxUnBzZs3W3y/xbWNmwEgzjfffKOoqCiLZXGzDSRmyJAhqlq1qqTYk78ffvihxQUd1pApUyaLqUVDQkLUuXNn9ejRw+JfmzZtlDt3bhUrVixF9luhQgWL1/E/v9HR0Vq9erXxOlu2bMYdYKVLlzaWb9261eJ78eHPEgAgffr999+1atWqBL+Dw8PDLWbvcXR0NH6/tGzZUqdOnUrwL+5xF0kVP38IDAzUm2++meB3aocOHZQ9e3bjd+HDRcaGDRsaRebH5ZXWduTIEYvXcfn8885JH76ALu6xKTExMfruu+8eud3JkycVExOjQoUKyc/PT++//76mTJli8RiSp8lln6d9+/ZZXCy7Zs0aizw6Li96ms/Q0+St8f+WScqMUQAAAACQVnCnNJ6LYsWK6YMPPtCkSZMkSQEBAWrVqpVq1qypUqVKycHBQVevXlVERESi2xcpUkSnT5+WJP3yyy8ymUxydnbWypUrH1tETkyhQoVkMpmMq+C/+OILnThxQiEhIY+dIjw8PFwDBgwwTjK88cYbev/99+Xn56ewsDDt27dP3377rfGcuDj29vZq166dMcXh/fv3JcWe/PD09Exy3PFPTGXPnj3ROzevXLlinPg6fvy4Tp48+dQFx9dee01FihQxnhc4evRo486OjRs3Wpxc6dq1q/F1z5491a9fP0mxd1g3b95cjRo1Ut68efXvv//qr7/+0vDhw1W3bt0EUyT26tVLNWrU0KlTpyyeu/2w+NP2SdKIESNUo0YN2dvbq3bt2o+detHNzU0tWrTQkiVLJMWeYLp9+7bKlSungwcPatu2bUbbZs2aPdMU6JI0fvx4HTlyRK+++qry5Mkjd3d33bx50+Kz9vBJwqQ4c+aM3nzzTb322ms6c+aMfv/9d2Nd5cqVEzzfr1q1asYdxHGfQSl5F0Yk5t133030bv/atWvr/fffV9euXbVx40aZzWZFRESodevWatKkie7cuaOlS5ca7bNly2Y8S7F48eLy9fU1pof866+/1KxZM9WsWVMZMmTQ2bNntWfPHu3atSvRmBwdHTVt2jR16tRJx48f14MHD9S7d2/NmTMnQRE3JfXo0UMDBgyQFPsszKZNm6pWrVpydXVVSEiIjh8/rn379ilnzpwpNgtAiRIlVLVqVe3YsUOSNHv2bF25ckXFihXT33//bfHM6U6dOhl3SbVu3dr4rN++fVtt2rRRw4YNdePGDa1cuTJFYgMAvNiuX7+usWPHasKECapZs6YKFCigW7duad26dbpx44bRrmnTpok+x/dZdOvWzcgfLl26pCZNmqhevXrKkSOHbt++rdOnT2vPnj1GrilZTr0dFhamt99+W+XLl9f+/fst8jtr27p1q27duqXo6GidO3dOv/76q7HO3t5eZcuWlfT8c9LSpUtbzGjUp08fVa9eXRcuXNCpU6ceuV2/fv0UHh6uKlWqKGfOnMqWLZsuX75s8ezwp8lln6fIyEi1a9dOzZo1U0REhDHmUmzsDRo0kPR0n6GnyVvj/y2zefNmffnll3Jzc5Obm5tVZzACAAAAAFujKI3nplevXnJ2dtb//vc/PXjwQNHR0frrr7/0119/Jdo+W7ZsxtfvvPOOPvroI0mxd8X+8MMPkiQPDw9Vr17d4hm9T5I9e3a1adNGixYtkhQ7Dfb06dMlSVWrVtX58+ctTrTFGTlypK5cuSIp9tltgwYNUpYsWTR06FDjmdjffvutqlevnuAu4zfeeEPTpk2zKAYm54TDwYMHdf78eeN1p06d9O677yZod/nyZdWrV894vWzZMg0ePDjJ+4nPwcFB06dPV/fu3fXvv/8az8R+WKdOnYyTgVLsc+XOnTunadOmyWw2686dOxYnfuKrXbu2PD09jQsODhw4YBTRWrRo8ci7vfPnz6+SJUsad2Xs3r3buGM+X758T3we4JAhQ3Tp0iXt2bNHkrRt27YEJ5oqVKigoUOHPrafpAoNDX1kkT1DhgwWdzEnVdyzyo8dO2axPFu2bBbPaYxjZ2enjh07auTIkcYyJycnNWnSJNn7ji/uvXtY3AUXlSpV0qBBgzR+/HjFxMTo+vXrmjlzpkXbrFmzasqUKRbTUo4fP149e/Y0LrI4e/aszp49a7HN48RNm96uXTtdvnxZd+7cUa9eveTv729xR3NK8vPz05kzZ4y7jc6fP2/xfWst//vf/9S1a1djfNavX5/g8/b666/rnXfeMV43bNhQ69atM2Y8uHTpkmbMmCHpv88WAABS7MWk8S8ki69SpUoaMmRIiu/T29tbn332mcaMGaOoqCj9888/8vf3f+w2LVu21Lx583Tz5k1JscXhrVu3Snp8XpnS1qxZozVr1iS67r333lPu3LmN188zJ82VK5f8/PyMGVFu375t5AHxi6qJCQgIsCiux5ctWza98cYbzxyfNZUrV04XL17UrFmzLJabTCaNGDHCyCuf9jOU3Ly1Xr16Rl9379414ipWrBhFaQAAAABpGtN347nq3LmzNm7cqD59+qhixYpyd3eXg4ODMmbMqLx586p69erq06ePli9frkGDBhnbNW7cWJMnT1aJEiXk6OiobNmyqVGjRlq8eLFy5syZ7Dg+++wz9e3bV/ny5ZOjo6Py5s2rHj16aMaMGYk+w+y3334z7h60s7PT2LFjjTtCmjVrptdff11S7FTBAwYMUHh4uMX2bm5uFsW/DBkyyM/PL8nxxi8Gm0wm447ShxUsWFCVKlUyXq9evdpiarrkKlq0qFauXKk+ffqoVKlSypQpkxwcHOTh4aF69eppzpw5iZ4ke//997V48WK1aNFCBQoUUIYMGeTs7KwCBQqoWbNmxtTFjo6O+uGHH9SyZUtly5ZNTk5O8vT01KhRoxLccf6wqVOnql69esqWLVuynmMoxU61/P3332v06NGqUqWKsmXLJgcHB7m6uqpy5coaOXKk5s+fr8yZMyer38S89dZb6ty5s8qVK6dcuXLJ0dFRTk5OKlCggFq0aKFffvnlqaZjbNGihWbOnKkKFSrI2dlZWbNmVf369bVo0SIVLVo00W2aN29ucSdT3bp1EzwHzxq6du2qxYsXq1mzZsb3XMaMGVW0aFF17dpVq1evTnDnv5ubmxYuXKjRo0erWrVqxs8KV1dXlSpVSl26dHnifnPkyKE5c+YoR44ckmLveOnevbvOnTtnleOUpI8++kgLFy5U06ZNlT9/fjk5OcnR0VG5cuWSj4+PPvroI33//fcpuk8PDw8tWbJEgwYNUvny5ZU1a1Y5ODjI3d1dNWrU0FdffaUpU6Yk+Nn25Zdf6sMPP1SBAgXk6OiofPny6Z133tHs2bNTND4AwIupZcuWmjBhgho1aqSiRYsa+ZK7u7uqV6+usWPH6ocffkiRfCkxHTp00PLly/Xmm2+qcOHCcnZ2loODg3LkyKHKlSvrvffes5jdI1u2bFqwYIHq16+vLFmyKGPGjCpTpoymTZv2yNzZ2pycnJQvXz69/vrrmj17doL89nnmpFLsDFHdu3c3ctLChQvr448/tng80cP69++vtm3bqlSpUvLw8JCjo6OcnZ310ksvqX379lq6dKny5cuXIvFZS5EiRfTLL7/o9ddfl6urqzJmzKjy5ctr5syZFrPXPO1nKLl5a506dTRs2DAVLVo00RmHAAAAACCtsjPHzd8FwKpmzpxpTOHduHFjYypz4Hlq2LChcffu7NmzVaNGDRtHBAAAYOnQoUOaMGGCjh8/rowZM8rPz08DBgzQr7/+qk8//TRB+8qVK2v+/PmJ9lW8ePEEy1asWKFXXnlFy5YtS9BfiRIljGL3Bx98oCNHjiggIECurq6qXbu2Pv30Uzk7O6fAUcKaOnXqZMz80qJFi2Q/1xwAAAAAkPKYvhuwooCAAJ07d07Xr1/XnDlzjOUdOnSwYVRIb06cOKHg4GBt2rTJKEgXLlxYPj4+No4MAADAUlBQkN566y3FxMRowIAB2rVrl3744QdlyZJFLVq0sLiwc/Hixdq5c+cTZ52pVKmS2rVrZ7x++M7e9957Ty+//LIkWTxOZN++fWrVqpXy588vf39//fzzz8qUKZPFjE4AAAAAACBpKEoDVrR169YEd180aNBAFStWtFFESI/GjBlj8YxgOzs7ffrpp8me9hwAAMDaDhw4oLCwMNWpU0cdOnTQq6++qvXr1+unn35S3759VaBAAUnSnTt3NGLECDk6Oqpz586P7TN//vzy9fW1eIxJfN7e3sYjUeL7888/5eTkJCl2iubevXvrxIkTKXCUAAAAAACkPzxTGngOTCaT8ubNq549e2r8+PG2DgfplLOzs0qXLq1p06bptddes3U4AAAACeTIkUOSdOrUKV28eFFbtmyRJIWEhCg0NNRot3TpUoWGhqpJkybKlSvXY/tcsWKFKlasqHLlymnw4MG6d++exfoePXqoXLlyqlWrlsVzquMK0lJsgVqSqlWr9mwHCAAAAABAOsUzpQEAAAAAqcbIkSP1008/SYq9qC4qKkqRkZHauXOn3NzcFBMTo/r16+vKlStavXq1PD09H9nX+PHj5eXlJZPJpJkzZ+ro0aN655139OGHH2rv3r06cuSIChcurCtXrmjixImKjIzUr7/+qpdeekmSZDabNW7cOH3//feqV6+evv76a9nb2z+XcQAAAAAAIC1h+m4AAAAAQKoxbNgw9ezZU//8848yZcqk5s2bK1++fHJzc5Mk/f7777py5Ypq1Kjx2IK0JH3yySfG19HR0frwww916tQpSbHTdnt7exvrt27dqi1btujs2bN66aWX9ODBAw0cOFBr165V69atNXLkSArSAAAAAAA8JYrSAAAAAIBU46uvvlLevHkVFRWlhQsXymw267333jPWz5s3T1LstNvx7dq1S507d1bZsmW1ePFibdq0SUuXLlWVKlXk6Ogof39/SVLFihUlSZ9//rmcnZ1VrFgxXb9+XTt27FCGDBlUqlQpSVL37t21Z88elSpVStWqVdO6devk7Oys2rVrP49hAAAAAAAgTaEoDQAAAABINa5du6Yff/xR9+/fV+HChTV+/Hg1b95ckrR//34dPHhQpUqVUtWqVS22i3syVdzdzPny5VN4eLimTZumiIgI5c6dW3379jWK2cWLF9fChQv1888/y2QyycvLS3369FG+fPkkSXv27JEkHTt2TB999JHRJ0VpAAAAAACSj2dKW1FAwG1bh/BcmUx2cnfPrODgCMXE8LF6nhh722L8bYext530OvYeHlltHQLw1NJbbppU6fXnWVq0ZMkiTZ78pUaMGKs6depJ4v1N63h/0z7e48cjNwUAAMCLxGTrAJB2mEx2srOzk8lkZ+tQ0h3G3rYYf9th7G2HsQeQVvDzLO04eHC/qlXzMQrSEu9vWsf7m/bxHgMAAABpB9N3AwCQDuzdu1vffz9bp06dkCTlzZtf77/fT5UqVZGPj3eC9vny5dfPP694ZH/+/t/r119X6MaNmzKZ7JQrV241auSn9u07J2j7668rNW7cKElSnTr1NGLEWEnS/fv3NGLEZzp+/KgCAwMkSVOmzFCFCgnjAQDgSUaPnmDrEAAAAAAAwCNQlAYAII3btm2zBg/+WJL06qvV5eHhoStXLuvGjX+MNpkyZVbjxk2N19myZXtsn9evX9XLL78sb+8qun79mnbu3K5vvpmiXLlyq06d+ka7S5cuavLk/8ne3l7R0dEWfURGRunkyeN65ZWS2rp1cwocKQAAAAAAAAAgNaIoDQBAGjdlyiTFxMRo8ODP1aiRX6JtXFxc9MEH/ZPc56BBQ+Xmllm3bkUoKipGnTu/qfPnz+natatGmwcPHujzzwcrf/6CKlSosDZu/N2ijyxZsmjZst90//591alT/ekODnhKe/bs0Zw5c3T06FEFBARo+vTpqlu3rrHebDZrypQp+uWXXxQWFqYKFSpo+PDhKly4sNEmJCREo0aN0l9//SWTyaT69etryJAhypw5s9Hm5MmTGjlypI4cOSJ3d3d17NhRPXv2tIhl7dq1+vrrr3Xt2jUVLlxYAwYMkK+vb7JiAVK7MWNG6K+/NmjJktVydc2WpG3mz5+n339fq3///Uf29g7y8iqrvn37K3/+ApKkwMAATZw4Xnv37pK9vb2qV6+hDz/8RFmyZDH6iIqKVMuWLXXs2DG5u2fXqlXrH7m/yMhIzZnznX7/fa2Cg4Pk5uau9u0764032urYsaMaO3aEbtz4V1WqVNOwYaPk5OSk0NAQdenSTpMmTdVLL70sSQoNDVHr1n6qWbOWPvts5NMPGgAAAAAAaQjPlAYAIA27evWKrl+/JknaunWTGjR4Tc2aNdCkSeN1584do11AwE3Vq1dTjRrVUb9+7+n48aNP7HvLli2aOHGCBgzoq/PnzylPnnyqX7+RsX7atK907dpVjRw5Vk5OTil9aMAzuXPnjooXL67PP/880fWzZs3S/PnzNXz4cC1evFjOzs7q0aOH7t+/b7QZMGCAzp49q3nz5mnGjBnau3evhg0bZqwPDw9Xjx49lDdvXi1btkwDBw7UtGnT9PPPPxtt9u/fr/79+6t169ZasWKF6tSpo969e+v06dPJigVIzS5fvqh1635T/foNEy1It27tpzVrVidYfujQAZUpE1uIrlDBW9u3b9OwYZ8a60eMGKpt2zbrzTc7qGFDP61fv1aTJo236OPbb6frwoULSYpzzJgR+vHH71W48EsaMGCQWrZ8Q2azWZL0zTdfy97eQd269dTmzX/qjz/WSZKmTZushg2bGAVpSXJ1zabXX2+sP/5Yp8uXLyZp3wAAAAAApHUUpQEASMNu3Qo2vj5x4rhq1aons9msZct+0ZQpEyVJ7u7ZVbNmLdWv30Bubm7au3e3Pvywt/79959HdStJOnTokH75ZZF27twuOzs7vfpqNbm6ukqStmzZpGXLftFHHw1UwYKFrHeAwFPy9fXVhx9+qHr16iVYZzab5e/vr3fffVd169ZViRIlNGHCBN28eVMbNmyQJJ07d05bt27V6NGjVbZsWXl7e2vo0KH67bffdOPGDUnSqlWrFBkZqTFjxqhYsWJq3LixOnXqpHnz5hn78vf3V40aNfTWW2+paNGi6tevn0qWLKkff/wxybEAqd2qVSsUExNj8XiHpBgz5ksNHDhEfn7NNXhw7AUk586dkdls1vnz53TgwD4VK1Zcb731jj74oL9y5PDQhg3rFRISIknau3e3Fi36SYMHD37ivq5du6o//linPHnyafz4SapXr4E6deqmNm3aSZLu3IlQ3rx5VanSq3J0dFJERIT27NmlI0cOqWvXHgn6q127rmJiYrR69cpkHTMAAAAAAGkV03cDAJCGubtnN77u0+cj1alTT2vXltUXXwzXli2bNGjQZ1q5cp3s7OwkSffv31ObNs0VFBSonTv/VvPmrR/Zd58+fdSuXRddunRZw4cP1vLlv8je3l79+g3Q2rW/yskpg/76a4P++muDzp49I0k6dOigxo4dqU8/HfbIfgFbu3r1qgICAlStWjVjWdasWVW2bFkdOHBAjRs31oEDB+Ti4qIyZcoYbapVqyaTyaTDhw+rXr16OnjwoLy9vS1mCvDx8dGsWbMUGhoqV1dXHTx4UF27drXYv4+Pj1FwTkosSWUy2clkskvucKR59vYmi/+R8uKm1/by8pKDQ+w4h4ffVlRUlKTYiy/u37+r8PBQSbGPd3BwcJSDQ0ajjx07tkiSvL0rydHRXv/8E/u4iDx58hh95s6dW4GBAfr332tydDTpiy8+V4cOnVS1alWjn7i2Dzt79pQkKTo6Ss2aNVBYWKgKFSqsQYOGqHz5imrd+k2NH/+Ftm7dLA+PnKpZs6b69eutgQOHKHPmTAn68/IqI3t7e+3Zs1MODh8+0/jh0fj+Tft4jwEAAIC0g6I0AABpWK5cuZU1q4tu3w5LsM7Z2VmBgQHKlCmzMmWKf0I9dqrSBw8eJNpndHS0IiPvy80ts+zt7VWwYCEVL15Sp0+f0rlzZ4w+Hjy4r+3bt1lsGxgYoH379qTEoQFWExAQIEnKnj27xfLs2bMrMDBQkhQYGCh3d3eL9Q4ODnJ1dTW2DwwMVP78+S3a5MiRw1jn6uqqwMBAY1li+0lKLEnl7p7ZuAAFCbm4ONs6hDTr2rWrypYtm/Lk+e9z3LfvO9q9e7fxeuLECZo4cYKk2BkEqlSpYqxbs2aNxo4drSJFiujLL/8nN7fMypIltmDt6GgvN7fY57jHFa1cXJz13XfTlCFDBrVt20bXr1+XJJnNMQoLC1SBAgVkMlkWuFxcYn8PBgTc1GeffaaoqCiNGTNGQ4cO0t9//62uXTvq9dfr6MaNG/L09NT06dNVoUIFlShRVH37vqMrV66oUqVK+uKLL/7/QpTMcnV11fXr14z4YD18/6Z9vMcAAADAi4+iNAAAaZiDg4M6dOisGTOmaerUSdq7d7f+/jv2brMmTZpp9+6dmjJlosqX95a7u7sOHtyvoKAgOTtnUs2atSRJa9as1pgxI5Q7dx4tWbJad+7cUatWjVWlShW5ueXQv//+ox07/pYkVa78qiRp7NiJFnF88cVwrV37q+rUqacRI8ZaLI+JiTZe//jjD1q79lc1adJcZcuWs+bQAOlOcHAEd0onwt7eJBcXZ4WF3VV0dIytw0mTzGazzGbp1q0IY9l77/VVx463JUnDhw9Vw4aNVaVK7B3NuXMXNNouWPCjpk79Sq+8UlITJ06Ro2Nm3boVITe3nJKky5evGm2vXbsmk8kkF5fsunDhkq5evapGjRoZ+7x165bq16+vP/7YrMyZMysyMlImk0mOjo5Gf25u7mrUqLkkacqUKQoKCtLly//KxcVFGTO6qFAhFx05clLLli3XTz8t1pdf/k/R0TGaP3+R/PwaqFSpsmrWrMX/79FOMTExFseNlMX3b9rHe/x4XPQCAACAFwlFaQAA0rj27TsrOjpaq1ev0Pr1vyl37jxq166T2rRpp0uXLsjbu4qOHTuikJBbcnFxla9vLXXv3ku5c+eRFFtMkCR7e3tJkpOToypU8NaxY8cUHBysTJkyq0SJkmrc2E/NmrVKVmxr1/5q8Xr37h2SpPLlK1KUhs14eHhIkoKCgpQzZ05jeVBQkEqUKCEp9o7n4OBgi+2ioqIUGhpqbJ8jR44EdzPHvY67OzqxNkFBQcb6pMSSVDExZsXEmJO1TXoSHR2jqCgKHtaQN28+Xbp0URERd5UhQwZJ0ssv//f5dXJyUqFCRVShQiVjWVRUjObM+U7z5s1StmzZ1LRpC+3atVOSVL16TRUsWETlylXQoUMHNGPGN4qIiFBgYKDq1WugLFlc1b372woJuSV7e5Pu34/QiBEjlCVLVn3yyRA5OmbQ3r171bfvOypZsrRmzvxehQsXVdmy5XXo0AHNmvWdoqOjFR4eLk/PEsqUKYvx2YiOjtaYMaPUq1dvZc3qqqioaF25ckXLly/XvXv3FBkZqaioGN2/f0+hoSEqVKgwn6vngO/ftI/3GAAAAHjxUZQGACCNM5lM6tKlh7p06ZFg3UsvvazRo8c/dvszZ2Kfs9m5c3dJUoYMGfXll5Pl5hZ7t1pSThAOGTJcQ4YMT7B827a9STgC4PnKnz+/PDw8tGPHDr3yyiuSpPDwcB06dEjt2rWTJJUvX15hYWE6evSoSpcuLUnauXOnYmJi5OXlJUkqV66cJk+erMjISDk6OkqStm/friJFisjV1dVos3PnTovnSm/fvl3lypVLcixAalep0qs6f/6cTpw4pnLlKiR5uwMH9kmSQkJCNG7caGP5L7+skrOzs4YNG6VJk8Zr0aIfZTLZq169Bvroo08kxV7cJMU+Qzoi4pak2OJ3rVp1H7m/4cO/0KRJ47Vggb8cHZ1Us2Yt9e37kUWbX35ZKGdnZzVu3FSS1LVrD40Y8ZnmzJmhqlWr6/XXY5/zfvz4MUVHR6tSpVeTfLwAAAAAAKRlFKUBAMBj7dq1Q76+tYwT8EBaEBERocuXLxuvr169qhMnTsjV1VV58+ZV586d9e2336pQoULKnz+/vv76a+XMmVN168YWtIoWLaoaNWros88+04gRIxQZGalRo0apcePGypUrlyTJz89P06dP15AhQ9SzZ0+dOXNG/v7++vTTT439du7cWZ06ddLcuXPl6+urNWvW6OjRoxo5cqQkyc7O7omxAKld06Yt9MsvC/Xnn38kWpResmR1ottNmzbzsf3mzJlL48ZNeuL+8+fPr50791tcRFWhgneCC6M8PHImePzEw9q27ai2bTsar1966WX98MPCBO3+/HOD7Ozs5OfX/InxAQAAAACQHtiZ4+bkRIoLCLht6xCeKwcHU7LumkPKYexti/G3HcbedtLr2Ht4ZLV1CEghu3btUufOnRMsb9GihcaNGyez2awpU6Zo8eLFCgsLU8WKFfX555+rSJEiRtuQkBCNGjVKf/75p0wmk+rXr6+hQ4cqc+b/nu948uRJjRw5UkeOHJGbm5s6duyot99+22Kfa9eu1eTJk3Xt2jUVLlxYH3/8sXx9fY31SYklKdJbbppU6fXn2fP2xRfDtWnTn1q6dLVcXFyf235t8f6GhYWqVSs/1azpq88+G/Vc9ple8f2b9vEePx65KQAAAF4kFKWtKL2d+OOPRdth7G2L8bcdxt520uvYc+IPL7L0lpsmVXr9eZZe8P6mbby/aR/v8eORmwIAAOBFYrJ1AAAAAAAAAAAAAACAtIuiNAAAAAAAAAAAAADAahxsHQAAAHi8Bz+esnUICUTa2emBvUnR0TFKbU8CcepY3NYhAECass5+pa1DeGp2spN9mEnRipHZPnX9vkqqBtHNbB0CAAAAAADPjDulAQAAAAAAAAAAAABWQ1EaAAAAAAAAAAAAAGA1FKUBAAAAAAAAAAAAAFZDURoAAAAAAAAAAAAAYDUUpQEAAAAAAAAAAAAAVkNRGgAAAAAAAAAAAABgNRSlAQAAAAAAAAAAAABWQ1EaAAAAAAAAAAAAAGA1FKUBAAAAAAAAAAAAAFZDURoAAAAAAAAAAAAAYDUUpQEAAAAAAAAAAAAAVkNRGgAAAAAAAAAAAABgNRSlAQAAAAAAAAAAAABWQ1EaAAAAAAAAAAAAAGA1FKUBAAAAAAAAAAAAAFZDURoAAAAAAAAAAAAAYDUUpQEAAAAAAAAAAAAAVkNRGgAAAAAAAAAAAABgNRSlAQAAAAAAAAAAAABWQ1EaAAAAAAAAAAAAAGA1FKUBAAAAAAAAAAAAAFaT6orSN27c0IABA1SlShV5eXnJz89PR44cMdabzWZ9/fXX8vHxkZeXl7p27aqLFy9a9BESEqL+/furQoUK8vb21uDBgxUREWHR5uTJk2rfvr3KlCkjX19fzZo1K0Esa9euVYMGDVSmTBn5+flp8+bNVjlmAAAAAAAAAAAAAEirUlVROjQ0VO3atZOjo6NmzZql3377TZ988olcXV2NNrNmzdL8+fM1fPhwLV68WM7OzurRo4fu379vtBkwYIDOnj2refPmacaMGdq7d6+GDRtmrA8PD1ePHj2UN29eLVu2TAMHDtS0adP0888/G23279+v/v37q3Xr1lqxYoXq1Kmj3r176/Tp089nMAAAAAAAAAAAAAAgDUhVRelZs2Ypd+7cGjt2rLy8vFSgQAH5+PioYMGCkmLvkvb399e7776runXrqkSJEpowYYJu3rypDRs2SJLOnTunrVu3avTo0Spbtqy8vb01dOhQ/fbbb7px44YkadWqVYqMjNSYMWNUrFgxNW7cWJ06ddK8efOMWPz9/VWjRg299dZbKlq0qPr166eSJUvqxx9/fP4DAwAAAAAAAAAAAAAvKAdbBxDfn3/+KR8fH/Xt21d79uxRrly51L59e7Vp00aSdPXqVQUEBKhatWrGNlmzZlXZsmV14MABNW7cWAcOHJCLi4vKlCljtKlWrZpMJpMOHz6sevXq6eDBg/L29paTk5PRxsfHR7NmzVJoaKhcXV118OBBde3a1SI+Hx8fo/idFCaTnUwmu6ccjRePvb3J4n88P4y9bTH+tpNexj7SLnX/LrFLZfE5OKTtzwMAAAAAAAAAvGhSVVH6ypUrWrhwobp166Z33nlHR44c0ejRo+Xo6KgWLVooICBAkpQ9e3aL7bJnz67AwEBJUmBgoNzd3S3WOzg4yNXV1dg+MDBQ+fPnt2iTI0cOY52rq6sCAwONZYntJync3TOnuhP1z4OLi7OtQ0i3GHvbYvxtJ62P/YNUXHRPjRcEuLlltnUIAAAAAAAAAIB4UlVR2mw2q3Tp0vroo48kSSVLltSZM2e0aNEitWjRwsbRJV9wcES6u1PaxcVZYWF3FR0dY+tw0hXG3rYYf9tJL2OfWo/N3t6UKmO7dSvCan1T8AYAAAAAAACA5EtVRWkPDw8VLVrUYtlLL72k9evXG+slKSgoSDlz5jTaBAUFqUSJEpJi73gODg626CMqKkqhoaHG9jly5Ehwx3Pc67i7oxNrExQUlODu6ceJiTErJsac5PZpRXR0jKKiUl+RIj1g7G2L8bedtD72ZnPq+10SfyaQ1BZfWv4sAAAAAAAAAMCLKFXNuVmhQgVduHDBYtnFixeVL18+SVL+/Pnl4eGhHTt2GOvDw8N16NAhlS9fXpJUvnx5hYWF6ejRo0abnTt3KiYmRl5eXpKkcuXKae/evYqMjDTabN++XUWKFJGrq6vRZufOnRaxbN++XeXKlUu5AwYAAAAAAAAAAACANC5VFaW7dOmiQ4cOacaMGbp06ZJWr16txYsXq3379pJi78rq3Lmzvv32W23cuFGnTp3SwIEDlTNnTtWtW1eSVLRoUdWoUUOfffaZDh8+rH379mnUqFFq3LixcuXKJUny8/OTo6OjhgwZojNnzmjNmjXy9/dXt27djFg6d+6srVu3au7cuTp37pymTp2qo0ePqmPHjs9/YAAAAAAAAAAAAADgBZWqpu/28vLStGnTNGnSJE2fPl358+fX4MGD1bRpU6NNz549dffuXQ0bNkxhYWGqWLGiZs+erQwZMhhtvvzyS40aNUpdunSRyWRS/fr1NXToUGN91qxZNWfOHI0cOVItW7aUm5ub3nvvPb355ptGmwoVKujLL7/U5MmTNWnSJBUuXFjTp0+Xp6fn8xkMAAAAAAAAAAAAAEgD7Myp7UGQaUhAwG1bh/BcOTiY5OaWWbduRfA8z+eMsbctxt920svYP/jxlK1DSMDOzk729iZFR8ekumdKO3UsbrW+PTyyWq1vwNrSW26aVOnld8mzWGe/0tYhPLXU/PsqqRpEN7N1CKkW379pH+/x45GbAgAA4EWSqqbvBgAAAAAAAAAAAACkLRSlAQAAAAAAAAAAAABWQ1EaAAAAAAAAAAAAAGA1FKUBAAAAAAAAAAAAAFZDURoAAAAAAAAAAAAAYDUUpQEAAAAAAAAAAAAAVkNRGgAAAAAAAAAAAABgNRSlAQAAAAAAAAAAAABWQ1EaAAAAAAAAAAAAAGA1FKUBAAAAAAAAAAAAAFZDURoAAAAAAAAAAAAAYDUUpQEAAAAAAAAAAAAAVkNRGgAAAAAAAAAAAABgNRSlAQAAAAAAAAAAAABW88xF6fv37+vBgwcpEQsAAAAAAAAAAAAAII1xSO4Gu3bt0saNG7V//36dO3dO9+7dkyRlzJhRRYsWVfny5VW3bl1VqVIlxYMFAAAAAAAAAAAAALxYklSUjoyM1M8//6x58+bp2rVrcnV1ValSpeTn5ydXV1eZzWaFhYXp6tWrWrVqlebPn6+8efOqe/fuevPNN+Xo6Gjt4wAAAAAAAAAAAAAApEJJKkrXr19fkZGRat68uRo2bKhSpUo9tv3Ro0e1bt06zZgxQ3PnztWff/6ZIsECAAAAAAAAAAAAAF4sSSpK9+rVSy1btpSTk1OSOi1durRKly6tvn37atmyZc8UIAAAAAAAAAAAAADgxZWkonTbtm2fqnMnJ6en3hYAAAAAAAAAAAAA8OIzJbXh9evXdf/+/SS1DQ4O1p49e546KAAAAAAAAAAAAABA2pDkonTt2rXl5+enI0eOPLHttm3b1Llz52cKDAAAALCV6OhoTZ48WbVr15aXl5fq1q2r6dOny2w2G23MZrO+/vpr+fj4yMvLS127dtXFixct+gkJCVH//v1VoUIFeXt7a/DgwYqIiLBoc/LkSbVv315lypSRr6+vZs2alSCetWvXqkGDBipTpoz8/Py0efNmqxw3AAAAAAAAYA1JLkpL0pUrV9S+fXvNnTvXWvEAAAAANjdr1iwtXLhQw4YN05o1azRgwADNnj1b8+fPt2gzf/58DR8+XIsXL5azs7N69OhhMbvQgAEDdPbsWc2bN08zZszQ3r17NWzYMGN9eHi4evToobx582rZsmUaOHCgpk2bpp9//tlos3//fvXv31+tW7fWihUrVKdOHfXu3VunT59+PoMBAAAAAAAAPKNkFaU/+ugjlS1bVhMmTNDbb7+t4OBga8UFAAAA2MyBAwdUp04dvfbaa8qfP78aNGggHx8fHT58WFLsXdL+/v569913VbduXZUoUUITJkzQzZs3tWHDBknSuXPntHXrVo0ePVply5aVt7e3hg4dqt9++003btyQJK1atUqRkZEaM2aMihUrpsaNG6tTp06aN2+eEYu/v79q1Kiht956S0WLFlW/fv1UsmRJ/fjjj89/YAAAAAAAAICn4JCcxrlz55a/v7+mTp2q7777Ts2bN9eECRP06quvWis+AAAA4LkrX768Fi9erAsXLqhIkSI6efKk9u3bp0GDBkmSrl69qoCAAFWrVs3YJmvWrCpbtqwOHDigxo0b68CBA3JxcVGZMmWMNtWqVZPJZNLhw4dVr149HTx4UN7e3nJycjLa+Pj4aNasWQoNDZWrq6sOHjyorl27WsTn4+NjFL+TymSyk8lk9xSjkbbZ25ss/kdCdkobnxs7uxfzOBwc+Gw+Ct+/aR/vMQAAAJB2JKsoLUkmk0kffPCBKleurI8//lg9evRQz5491bdvX5lM/JEAAACAF9/bb7+t8PBwNWzYUPb29oqOjtaHH36opk2bSpICAgIkSdmzZ7fYLnv27AoMDJQkBQYGyt3d3WK9g4ODXF1dje0DAwOVP39+izY5cuQw1rm6uiowMNBYlth+ksrdPfMLW5R7HlxcnG0dQqplH/bi/533Ihe03Fwy2zqEVI/v37SP9xgAAAB48SW7KB2natWqWrVqlT7++GPNmDFDe/bs0cSJE5U7d+6UjA8AAAB47tauXavVq1dr4sSJevnll3XixAmNHTtWOXPmVIsWLWwd3lMJDo7gTulE2Nub5OLirLCwu4qOjrF1OKlStF7scbG3N73Q7+2tWxG2DiHV4vs37eM9fjw3Ny5aAQAAwIvjqYvSkuTu7q45c+Zo5syZmjJlipo1a6YvvvgipWIDAAAAbGLChAl6++231bhxY0lS8eLFdf36dX333Xdq0aKFPDw8JElBQUHKmTOnsV1QUJBKlCghKfaO5+DgYIt+o6KiFBoaamyfI0eOBHc8x72Ouzs6sTZBQUEJ7p5+kpgYs2JizMnaJj2Jjo5RVBQFj8SY7V/cz0382QHM5hfzOKIoxD0R379pH+8xAAAA8OJLkTnM3n77bc2fP1+ZMmVSnz59NHfu3JToFgAAALCJe/fuJZjq2t7e3ihq5c+fXx4eHtqxY4exPjw8XIcOHVL58uUlxT6XOiwsTEePHjXa7Ny5UzExMfLy8pIklStXTnv37lVkZKTRZvv27SpSpIhcXV2NNjt37rSIZfv27SpXrlzKHTAAAAAAAABgRSn2YK3y5ctr5cqVql27tk6ePJlS3QIAAADPXa1atTRjxgxt2rRJV69e1R9//KF58+apbt26kmLvvuzcubO+/fZbbdy4UadOndLAgQOVM2dOo03RokVVo0YNffbZZzp8+LD27dunUaNGqXHjxsqVK5ckyc/PT46OjhoyZIjOnDmjNWvWyN/fX926dTNi6dy5s7Zu3aq5c+fq3Llzmjp1qo4ePaqOHTs+/4EBAAAAAAAAnoKdOYlzmC1fvlyVKlVS/vz5n9h24cKFOnz4sMaOHfvMAb7IAgJu2zqE58rBwSQ3t8y6dSuCabWeM8bethh/20kvY//gx1O2DiEBOzs74xmdqW06VKeOxa3Wt4dHVqv1jdQlPDxcX3/9tTZs2GBM0d24cWP17t1bTk5OkmKnAp4yZYoWL16ssLAwVaxYUZ9//rmKFCli9BMSEqJRo0bpzz//lMlkUv369TV06FBlzvzfMyBPnjypkSNH6siRI3Jzc1PHjh319ttvW8Szdu1aTZ48WdeuXVPhwoX18ccfy9fXN1nHlN5y06RKL79LnsU6+5W2DuGppebfV0nVILqZrUNItfj+Tft4jx+P3BQAAAAvkiQXpZF86e3EH38s2g5jb1uMv+2kl7GnKJ08FKWBxKW33DSp0svvkmdBUdq2KEo/Gt+/aR/v8eORmwIAAOBFkmLTd8fExOjs2bO6cuVKSnUJAAAAAAAAAAAAAHjBJbsovWnTJvn7+1ss+/fff9WsWTP5+fmpfv36ateunYKDg1MsSAAAAAAAAAAAAADAiynZRemJEyfqxIkTFsvGjRuna9eu6ZNPPtGHH36okydPavLkySkVIwAAAAAAAAAAAADgBeWQnMZms1nnz59Xly5djGX379/Xxo0b1bdvX3Xt2lWSFBkZqSVLlqRooAAAAAAAAAAAAACAF0+SitKffvqppNhic3R0tNasWaN9+/ZJksLCwhQZGak9e/bo/PnzkmKn875586axXd26dVWnTh1rxA8AAAAAAAAAAAAASMWSVJRu0aKFpNii9K+//ipvb295e3tLklasWKEsWbLorbfeMtqfPHlS+/fvN7bLly9fSscNAAAAAAAAAAAAAHgBJOmZ0pUrV1blypVVvXp15c2bVwcPHlSFChVUsmRJHT58WNWqVTPaVK5cWS4uLsqdO7fxOqlF6alTp6p48eIW/xo0aGCsv3//vkaMGKEqVaqofPny6tOnjwIDAy36uH79ut5++22VLVtWVatW1fjx4xUVFWXRZteuXWrRooVKly6tevXqadmyZQli+emnn1S7dm2VKVNGb7zxhg4fPpykYwAAAAAAAAAAAAAA/CdJRen43nvvPW3ZskVVqlRRjRo1dPnyZb333nsWbX7//XfjTurkKlasmLZt22b8W7BggbFuzJgx+uuvvzR58mTNnz9fN2/e1Pvvv2+sj46OVq9evRQZGalFixZp3LhxWr58uaZMmWK0uXLlinr16qUqVapo5cqV6tKli4YOHaqtW7cabdasWaOxY8eqd+/eWr58uUqUKKEePXooKCjoqY4JAAAAAAAAAAAAANKrJE3fHV/r1q1VoEABbd68Wfb29vLz85Onp6exPiwsTNmyZVP79u2fKiB7e3t5eHgkWH779m0tXbpUX375papWrSoptkjdqFEjHTx4UOXKldO2bdt09uxZzZs3Tzly5NArr7yiDz74QF9++aXef/99OTk5adGiRcqfP78GDRokSSpatKj27dun77//XjVq1JAkzZs3T23atFGrVq0kSSNGjNCmTZu0dOlSvf322091XAAAAAAAAAAAAACQHiX7TmlJqlKligYOHKj+/ftbFKQlycXFRWPGjFGpUqWeKqBLly7Jx8dHderUUf/+/XX9+nVJ0tGjRxUZGalq1aoZbYsWLWpMJy5JBw8elKenp3LkyGG08fHxUXh4uM6ePWu0iStqx28T18eDBw907Ngxi/2YTCZVq1ZNBw4ceKpjAgAAAAAAAAAAAID0Ktl3SluTl5eXxo4dqyJFiiggIEDTp09Xhw4dtHr1agUGBsrR0VEuLi4W22TPnl0BAQGSpMDAQIuCtCTj9ZPahIeH6969ewoNDVV0dLSyZ8+eYD/nz59P1vGYTHYymeyStc2LzN7eZPE/nh/G3rYYf9tJL2MfaZe6f5fYpbL4HBzS9ucBAAAAAAAAAF40SSpKf/fdd+rYsaMyZ86crM7Dw8P1008/qVevXklq7+vra3xdokQJlS1bVrVq1dLatWuVMWPGZO07NXB3z5zqTtQ/Dy4uzrYOId1i7G2L8bedtD72D1Jx0T01XhDg5pa8fAUAAAAAAAAAYF1JKkr/+uuvmj17tho3bqyGDRvK29tb9vb2ibaNjIzUnj17tHbtWq1du1Z58uRJclH6YS4uLipcuLAuX76satWqKTIyUmFhYRZ3SwcFBRnPoM6RI4cOHz5s0UdgYKAkWbSJWxa/TZYsWZQxY0aZTCbZ29srKCjIok1QUFCCO6yfJDg4It3dKe3i4qywsLuKjo6xdTjpCmNvW4y/7aSXsU+tx2Zvb0qVsd26FWG1vil4AwAAAAAAAEDyJakovWrVKq1evVpz587VokWL5OTkpGLFiil//vxydXWV2WxWaGiorl69qjNnzigqKkqenp767LPP1LRp06cOLiIiQleuXJGHh4dKly4tR0dH7dixQ6+//rok6fz587p+/brKlSsnSSpXrpxmzJihoKAgY/rt7du3K0uWLHr55ZeNNlu2bLHYz/bt240+nJycVKpUKe3YsUN169aVJMXExGjHjh3q2LFjsuKPiTErJsb8tIf/woqOjlFUVOorUqQHjL1tMf62k9bH3mxOfb9L4s8EktriS8ufBQAAAAAAAAB4ESWpKG1nZ6emTZuqadOmOn78uDZs2KCDBw/q0KFDCgkJkSRly5ZNL730knr27Kk6deqoVKlSyQ5m/PjxqlWrlvLmzaubN29q6tSpMplMatKkibJmzapWrVpp3LhxcnV1VZYsWTR69GiVL1/eKCj7+Pjo5Zdf1sCBA/Xxxx8rICBAkydPVocOHeTk5CRJatu2rX766SdNmDBBrVq10s6dO7V27Vp99913RhzdunXTJ598otKlS8vLy0s//PCD7t69q5YtWyb7mAAAAAAAAAAAAAAgPUtSUTq+kiVLqmTJktaIRf/++68++ugjhYSEyN3dXRUrVtTixYvl7u4uSRo8eLBMJpP69u2rBw8eyMfHR59//rmxvb29vWbMmKHhw4frzTfflLOzs1q0aKG+ffsabQoUKKDvvvtOY8eOlb+/v3Lnzq3Ro0erRo0aRptGjRopODhYU6ZMUUBAgF555RXNnj072dN3AwAAAAAAAAAAAEB6Z2dObXNupiEBAbdtHcJz5eBgkptbZt26FcHUqc8ZY29bjL/tpJexf/DjKVuHkICdnZ3xTOnUlko4dSxutb49PLJarW/A2tJbbppU6eV3ybNYZ7/S1iE8tdT8+yqpGkQ3s3UIqRbfv2kf7/HjkZsCAADgRWKydQAAAAAAAAAAAAAAgLQr2dN3AwAAAAAAAIkxm81auPBHrVq1TP/++4+yZnVRo0Z+evfdPvLx8U7Qft68n1SsWMKZbi5fvqRhwwbp+vVrio6OVq5cudWq1Ztq1aqNRbtjx47qvfd6KDo6Wh06dNG77/aRJO3Y8bdmz56hc+fOKCoqSt269VSPHr2sc9AAAAAAnoiiNAAAAAAAAFLEzJnfaP78eXrllVJq166T7t27q9u3/3uERLlyFdS8eSvjde7ceRPtx87OTtWr11CJEsX0zz8BmjVrhr76aoLKl6+ol14qKkm6cydCI0cOlZNTBt29e8di+3v37srTs7gyZ86s/fv3WuFIAQAAACQHRWkAAAAAAAA8s3v37mnx4gVyds6kSZOmydHRURkzZrRokydPXlWtWl2ZM2d5bF8FChTU22+/K5MpSmfOXNTChT8mKDxPmjRBjo6OatGilRYsmG+xrlatuqpVq66+/XYqRWkAAAAgFaAoDQAAAAAAgGd24cI53b9/X66ururc+U0FBNxUzpy59MEH/eXrW1uStG7db1q79ldlzJhRderU10cfDVSGDBkT7e/ixQvq0CF2um57e3v17dvfuEt6w4b12rjxd82c+b22bNn0XI4PAAAAwNMzPc1Gb731llavXq179+6ldDwAAAAAAAB4AZlM9pKk0NBQNWnSTEOGDFdIyC2NGDFUoaEhatu2o0aMGKvRo8ercOGX9Ntvq/TDD3Mf2V/evPk0d+5cDRo0VC4urvL3n6Nr164qPDxcX345Vs2atZKzcybdvh0mSQoPv62goMDncqwAAAAAkuep7pS+cuWKPv74Y2XKlEn16tVTs2bNVLVqVdnZ2aV0fAAAAAAAAHgB5M2bTyaTSTExMerYsasyZMign39eoLNnT+vGjX/1/vv9jLbR0TH6/PNPde7cmUf25+zsrOrVq6tkyXI6efKkVqxYoi1bNum112orPDxcS5Ys0pIli4z2K1cuU3BwkMaOnWjNwwQAAADwFJ6qKL1+/XodPnxYq1at0rp167Rq1SrlyJFDTZo0UdOmTfXKK6+kdJwAAAAAAABIxbJmzap69Rpo/fo1+vbbKcqdO48uXDinHDk8FBgYqB9++FgVKnjLwcFRv/wSW0z28ionSVqzZrXGjBmhOnXqacSIsfL3n6vw8NsqXfoVXbv2rzZsWC9JevnlYnJzc9eoUeOM/f755wb99dcG1ajxmjp06CxJunLlsg4e3G8UvU+fPqnVq1eoalUf5ciR4zmOCgAAAADpGZ4p7eXlJS8vLw0ePFh///23Vq1apZ9//lnff/+9ihYtqmbNmsnPz0+5c+dOyXgBAAAAAACQSn344UDZ2dlp3brfZDabVaGCt3r37ieTyaSIiAjNmzdLd+7ckYdHTr311jtq166TJMlsNkuS7O1jT1W5u7trzZpVWrLkZzk4OCp//gJq3fpNVapURZJUq1ZdY5/nz5+TJBUsWEilS3tJko4cOaTx40cbbf7+e6v+/nurpkyZQVEaAAAAsAE7c1zWnwLCwsI0bNgwrVu3TpJkMplUuXJlde3aVa+99lpK7eaFERBw29YhPFcODia5uWXWrVsRioqKsXU46Qpjb1uMv+2kl7F/8OMpW4eQgJ2dneztTYqOjlEKphIpwqljcav17eGR1Wp9A9aW3nLTpEovv0uexTr7lbYO4aml5t9XSdUgupmtQ0i1+P5NW6ZO/Uq//LJQ33wzR6VLl5HEe/wk5KYAAAB4kTz1ndLx7d27V6tWrdL69esVGhqqYsWKqXnz5nJwcNDSpUv17rvv6p133tEHH3yQErsDAAAAAABAGnLw4H41b97KKEgDAAAASFueuih99uxZrVq1Sv/H3p2HRVX2fxz/zAygIAqKpim4geKCCmaZiFkuWZqVkiuuj6nlbmnuCy64m5k+amnuS+aSmlhp7oHaIpHmTrlWAiq4A8P8/vDn1DxuiOCAvF/X1QVzzn3u8zn3zMh0vnPu89VXX+nPP/+Uh4eHmjRpojfeeMPmntLt27fXsGHDtGzZMorSAAAAAAAAuMO8eYvtHQEAAABAJkpXUfqNN97Q0aNH5eTkpLp162rEiBGqVauWjEbjXdtXr15dX3zxxSMFBQAAAAAAAAAAAABkP+kqSufLl0+jRo3Sq6++KldX1we2r1u3rr777rv07AoAAAA53PHjx3X8+HFdvHhRBoNB+fPnl7e3t3x8fOwdDQCAHCEsLFTbtm3RqlUb5ObmnqZtDh8+pGnTJunYsSO6efOmXn31NQ0ZMtKmzaZNX2nZskU6c+a0nJ1dVKNGoIYNGy1J+uOP3zVt2kT9+mu0cud2Vv36DdS9ex85Ojred78DBvTV99/vkiR99933ypUrlw4ePKBx40L1999/qXr1QA0fPlpOTk5KSLik9u1baerUj1W69K3PFQkJl/TWW431wgsvadiwUQ83UAAAAADuKV1F6cWLH25KJWdnZxUrViw9uwIAAEAOtHfvXq1du1bbtm1TYmKiLBaLzXqDwaC8efPqpZdeUtOmTVW9enU7JQUA4Ml26tQf+vrrjWrc+M27FqTfequx/vOfLmrYsLHN8ps3b6hYMU/lz19Au3Ztv2O79evXauLEsfLyKq4ePfpKsujUqZOSpJSUFA0c+J7On/9bffr0UVTUr1q16nO5uORRly7d7pl1zZov9PPPP92x/L///Ugmk4M6duysWbM+1ubNNdWo0euaMWOaXn31NWtBWpLc3NzVoEEjrV+/Ru3b/0fFi5dMwygBAAAAeJC7z7f9ACtWrLjv+hs3bmjUKL5NCgAAgIezc+dOBQcHq3379jp48KCaNGmiiRMnasWKFQoPD9fGjRu1fPlyTZw4UU2bNtVvv/2m9u3bq2nTptq1a5e94wMA8MRZv/5Lpaamqm7dlx9quypVAjRs2ChVr/78XdcvXDhPkjRp0kdq1Oh1BQe3UN++H0iS9u3bozNnTiswMEidOnXSoEFDZTKZtHr15/fc3++/x2jmzGnq06ffHeuuXbuqokWL6tlnn5ejo5OuXr2qH37Yq19//UUdOnS6o32dOvWUmpqqDRvWPdQxAwAAALi3dBWlR44cqU6dOunvv/++Y92PP/6oxo0ba+XKlY8cDgAAADlL7969VbVqVW3cuFEbNmzQwIED1bhxY/n7+6t06dLy9vZWQECAGjdurIEDB2rDhg3auHGjnnnmGfXu3dve8QEAeOL88MNemUwmVazoZ1125coVXbp0SZcuXVJqaqquX79mfZySkvLAPi9evKi///5LTk5O6t+/t+rVC1KjRnW1du0qSdKZM6ckSUWKFJF0awY+d3d3Xb16VRcuxN/RX1JSkkJDh6pmzRfUqNHrd6xv2rS5vv9+lzp2bC03NzfVrFlLkyeP0/vvD1SuXLnvaF+hgp9MJpP27duTtkECAAAA8EDpKkpPmjRJBw4c0Guvvaa1a9dKkm7evKmxY8eqXbt2yp07tz7//N7fXgUAAADuZtu2bRoyZIi8vb3TvI23t7eGDBmirVu3ZmIyAAByprNnTytfPjeb4u3Age/ptdfq6bXX6un8+b/14YeTrI+jo6Me2KfJdOt0VFJSkp555jmNGjVeBoNBU6dO0IkTx++6zf/cycPGkiUL9Pfff6l167Y6c+a0dfm5c2eVnJysxo3f1BdfrNfs2fO1bNlqrVu3Rn5+lfT000XVo0cXNW3aSKNHD1NSUpIkKXfu3MqbN5/OnTuThhECAAAAkBbpuqd048aNVb16dQ0bNkyDBw9WeHi4Tp06pTNnzujtt99Wz5495ejomNFZAQAA8IRzd3e3y7YAAODeDAaDzeMePfrq8uVESdLo0cP1yisN9eyzt6bp9vEp+8D+8uVzU758bkpMTFCzZi1VokRJbd68Sbt27dCZM6fl6VlckvTnn39Kkq5fv66EhEvKkyePChTwUGpqqpKTk2U0GuXo6Kg//zyny5cT9fbb7Wz207Ztc82fv1RlyviqcOEiKly4iI4dO6Kvv96ohQtX6KOPJstoNGrRos/VpMmr8vd/Ro0bvylJMhqNstyvEg4AAADgoaSrKC1JTz31lD7++GO1adNGu3btksFg0IABA9ShQ4cMjAcAAICcZsaMGfL391dQUNAD20ZFRenzzz/XuHHjHkMyAABynqJFi+nkyT908+ZN5cqVS5JUrlx563onJyeVLFlazz5b3Wa7uLg4RUbu1q+//iLp1pTcGzZ8KX//qvLyKq6mTZtpwYK5mj//U1WpEqD9+3+Ss7OLKlb0k7t7fhUr5qnIyO81b948/fLLrzKbzWratLkkKSrqZ/Xq9Y4qVPDTJ58sUHBwcwUG/vO5YdiwgZKkESPG6Omni1mXm81mTZgwVl27dlf+/PmVmpqqM2dOa8OGL3Xjxg2ZzbemHr9584YSEi6pRImSGT+gAAAAQA6Vrum7JenQoUMKDg7WwYMHFRISIh8fH02aNEkTJ060TncEAAAAPKwZM2aoc+fOCgsLU3Jy8n3bnjp1Sl9++eXjCQYAQA707LPPy2w269Chgw+13alTf2jChDH65ptNkqRff43WhAljrEXq9u07qVmzVvrxx72aOXOaSpYsrYkTP1TBgoXk4OCgceOmqFKlypo2bZoiIyPUtGkzdezY+a77Kleugl56qZ71v9teeOElubq6Wh9/8cVyOTs7W+873aFDJ+XNm0/z5s1WjRo11aBBI0nSb78dlNlstl79DQAAAODRGSzpmIvo448/1pw5c1SsWDGNGzdOVatWVVJSkqZPn6758+erVKlSGj9+vPz8/DIjc7YRG3vZ3hEeKwcHo/Lnz6OLF68qJSXV3nFyFMbevhh/+8kpY5+05Ii9I9zBYDDIZDLKbE7NctMaOrXxzbS+CxXKm2l94x/lypVT8eLFderUKVWsWFEffvihihcvfte269ev14ABA3To0KHHnDL7yWmfTdMqp/wteRRfm9bZO0K6ZeW/V2n1ivkNe0fIsnj/Ph4nT/6htm2b6803g/XeewMe677t9RxPmTJBX365SosXr1TJkqUe234fFp9NAQAAkJ2k60rp//73v2rRooXWrVunqlWrSro1XVO/fv20bNkypaSkqGXLlhkaFAAAADlHz549NXr0aJ04cUJNmjTR+vXr7R0JAIAcqUSJkmrQoKE2bdqoxMQEe8fJdImJCfr66416+eVXsnRBGgAAAMhu0nVP6fnz5+v55+8+hVGVKlW0fv16TZ069ZGCAQAAIGdr1qyZ/P391adPHw0YMECRkZEaPny4nJ2d7R0NAIAcZciQkRoyZKS9YzwW+fK5afPmnfaOAQAAADxx0nWl9L0K0rc5OTlp4MCB6QoEAAAA3FamTBmtXr1aTZo00dq1axUcHKzDhw/bOxYAAAAAAACAh5CuK6X/7cqVK7py5YpSU++8t0/RokUftXsAAADkcLlz51ZYWJhq1KihkSNHqkWLFvrggw8UEhJi72gAAGRpN9xd7B3h0RikG5JS8uaWsudt4ZX70jV7RwAAAACyhHQXpZctW6YFCxbo9OnT92xz6NCh9HYPAAAA2GjcuLEqVaqkvn37asyYMYqMjFT16tXtHQsAAAAAAADAA6Rr+u7ly5dr1KhRKl68uPr06SOLxaL27durS5cuKliwoMqVK6exY8dmdFYAAADkcCVLltTnn3+u1q1ba8uWLZowYYK9IwEAAAAAAAB4gHQVpZcsWaKgoCDNnTtXzZs3lyTVrl1bffv2VXh4uK5evapLly5lZE4AAABAkuTk5KRhw4bp448/lotLNp+WFAAAAAAAAMgB0jV996lTp9S6dWtJkqOjoyQpOTlZkpQ3b1699dZbWrZsmf7zn/9kUEwAAADkFIcPH05Tu/r168vf31+///57JicCAAAAAAAA8CjSVZTOmzevzGazJMnV1VXOzs7666+/rOvz5MmjuLi4jEkIAAAA3EOhQoVUqFAhe8cAAAAAAAAAcB/pKkqXKVPG5gqWKlWqaPny5apdu7ZSU1P1+eefq2TJkhmVEQAAALDav3+/Nm/erNy5c6tBgwby9fW1dyQAAAAAAAAA95GuovTrr7+uFStWKCkpSU5OTurZs6c6duyoF1988VanDg76+OOPMzInAAAAcphRo0bp9OnT+vTTT63Ltm3bph49eig1NVWSNHfuXM2dO1fPPfecvWICAAAAAAAAeIB0FaWDg4MVHBxsffzMM89o48aN2rp1q0wmk2rWrKlSpUplWEgAAADkPN9++61atGhhs2zq1Kny9fXVvHnzlJKSorffflsff/yxFi9ebKeUAAAAAAAAAB4kXUXpu/Hy8lL79u0zqjsAAADkYElJSYqLi1PZsmWty/7++28dO3ZM06dPV/78+SVJHTt21Lhx4+wVEwAAAAAAAEAaZFhRGgAAAHhUderUkcFgsE7PPXr0aE2YMEGSdO3aNUnS+PHjNX78eBkMBt28eVOJiYmqW7euJKl9+/Zq166dfcIDAAAAAAAAuKs0FaXLlSsng8HwUB0bDAb99ttv6QoFAACAnGnr1q2SJLPZrCpVqqhXr15q3ry5JGns2LHasWOHvv32W2v777//Xu+9956+++47u+QFAAAAAAAA8GBpKkp37979oYvSAAAAQHqZTCYFBATo448/lqurq65du6bVq1erbdu2Nu0OHjyo4sWL2yklAAAAAAAAgLRIU1G6Z8+emZ0DAAAAsDFy5Ei9++67eu+99yRJAQEB6tKli3W92WzW6tWr1aRJk0zZ/99//61JkyZp165dun79ukqUKKGwsDBVqlRJkmSxWDR9+nR98cUXSkxMVNWqVTVy5EiVLFnS2selS5c0evRobdu2TUajUS+//LKGDBmiPHnyWNscPnxYo0aN0q+//qoCBQqoTZs26ty5s02WTZs26aOPPtLZs2dVsmRJ9evXT7Vr186U4wYAAAAAAAAymtHeAe7lk08+ka+vr8aOHWtddvPmTYWGhqp69eoKCAhQz549FRcXZ7PduXPn1KVLF1WpUkU1atTQhAkTlJKSYtNm7969atKkifz8/FS/fn2tWbPmjv0vXbpUderUUaVKldSsWTNFR0dnzoECAADgrry9vbVp0yZ99dVXCg8P17Jly2yKuTdu3NDo0aMVEhKS4ftOSEhQq1at5OjoqE8//VQbN27UgAED5ObmZm3z6aefavHixRo5cqRWrlwpZ2dnderUSTdv3rS26devn44fP6758+dr9uzZ+vHHHzV8+HDr+itXrqhTp04qWrSo1qxZow8++EAzZszQ559/bm3z888/6/3339dbb72lL7/8UnXr1lX37t119OjRDD9uAAAAAAAAIDOk6Urpe/nrr7/022+/6fLly7JYLHesf/PNN9PVb3R0tFasWCFfX1+b5WFhYdqxY4emTZumvHnzavTo0erRo4dWrFgh6dbVMl27dlXBggW1YsUKnT9/XgMGDJCjo6P1CpvTp0+ra9euatmypSZPnqzIyEgNHTpUhQoVUq1atSRJ4eHhGjdunEJDQ1WlShUtXLhQnTp10tdffy0PD490HRMAAAAenslkko+Pz13X5cmTR88991ym7PfTTz9VkSJFNG7cOOsyLy8v6+8Wi0WLFi3Su+++q3r16kmSJk6cqMDAQG3ZskWNGjXSiRMntGvXLq1atcp6dfXQoUPVpUsXffDBBypcuLDWr1+v5ORkhYWFycnJSWXKlNGhQ4c0f/58tWjRQpK0aNEi1apVS2+//bYkqU+fPoqIiNCSJUs0atSoTDl+AAAAAAAAICOlqyh98+ZNDRgwQN9++61SU1NlMBisRel/33s6PUXpq1evqn///hozZoxmzZplXX758mWtXr1akydPVo0aNSTdKlI3bNhQUVFR8vf31+7du61XohQsWFDly5dX7969NXnyZPXo0UNOTk5asWKFPD09NXDgQEm3rsD56aeftGDBAmtRev78+WrevLmCg4MlSaGhodq+fbtWr15tM2UkAAAAnkxbt25VUFCQevXqpR9++EGFCxdW69at1bx5c0nSmTNnFBsbq8DAQOs2efPmVZUqVbR//341atRI+/fvV758+awFaUkKDAyU0WhUdHS06tevr6ioKFWrVk1OTk7WNkFBQfr000+VkJAgNzc3RUVFqUOHDjb5goKCtGXLloc6JqPRIKPR8OCGOYzJZLT5iTsZ9GS8bv79/6rZiYMDr8174f2bBtnzZW91+31rMBhk0Z0XQ2QHvIcBAACAW9JVlJ46dao2b96sPn36KCAgQG3bttX48eP11FNPaeHChTp//rwmTJiQrkCjRo1S7dq1FRgYaFOUPnDggJKTk21O/Hl7e6to0aLWonRUVJTKli2rggULWtsEBQVp5MiROn78uCpUqKCoqChrUfvfbcLCwiRJSUlJOnjwoLp27WpdbzQaFRgYqP379z/UseS0E3+cELAfxt6+GH/7ySljn5zFT6JntZP8nPjL3ho2bKguXbqoYcOGNoXa+0lKStKGDRs0b948hYeHZ0iO06dPa/ny5erYsaPeeecd/frrrxozZowcHR3VpEkTxcbGStIds+h4eHhYby8TFxenAgUK2Kx3cHCQm5ubdfu4uDh5enratLn9WTYuLk5ubm6Ki4uz+Xz7v/tJqwIF8mS592tWki+fs70jZFmmxOz/72p2/qyQP1+eBzfK4Xj/3tsNewfIINn6PZyf9zAAAAAgpbMo/c0336hp06bq0qWLLl68KEkqXLiwatSoocDAQLVr105Lly5VaGjoQ/W7ceNG/fbbb1q1atUd6+Li4uTo6Kh8+fLZLPfw8LA5qfe/J+xuP35QmytXrujGjRtKSEiQ2Wy+6wnGmJiYhzqenHrijxMC9sPY2xfjbz9P+tgnZeGTcFnxBCEn/rK3Jk2aaNy4cRo7dqzq1KmjGjVqqGLFivL09JSz8633+rVr13TmzBkdOHBAERER2rZtmxwdHdWpU6cMy2GxWOTn52e9BUyFChV07NgxrVixQk2aNMmw/TxOFy5czVFfmEwrk8mofPmclZh4XWZzqr3jZElmZe9xMZmM2fq5vXjxqr0jZFm8fx8sJW9ue0d4JAaDwfoevttt47KDi5cz76sBfO4FAABAdpKuonR8fLwqV64sScqd+9b/4Fy/ft26vkGDBpo5c+ZDFaX//PNPjR07Vp999ply5cqVnlhZTk478ccJAfth7O2L8befnDL2WfXYsupJ/sw8ec+Jv8zXuXNntWrVSqtWrdLatWu1bt0665f8TCaTJMlsNku6VTguU6aMevbsqbfeekuurq4ZlqNQoULy9va2WVa6dGl988031vXSrc/FTz31lLVNfHy8ypUrJ+nWFx8vXLhg00dKSooSEhKs2xcsWPCOK55vP779Rcq7tYmPj7/ji5YPkppqUWpq9jyh/ziYzalKScl6/6ZlBRZT9n3d/PtLwtm1oJWSBf/WZjW8f+8je77srW5P2W2xWLLtsfDaBAAAAG5JV1G6YMGC1iuknZ2d5ebmpt9//926/sqVK7p58+ZD9Xnw4EHFx8eradOm1mVms1k//PCDli5dqnnz5ik5OVmJiYk2V0vHx8fbnNSLjo626ff2CbwHnfhzdXVV7ty5ZTQaZTKZFB8fb9OGE39pxwkB+2Hs7Yvxt58nfeyz4kn0rHyS/0l+LeQUrq6u6tChgzp06KAzZ85o//79iomJ0aVLlyRJ7u7uKl26tPz9/eXl5ZUpGapWrWrz+VaS/vjjDxUrVkyS5OnpqUKFCikyMlLly5eXdOsz8C+//KJWrVpJkgICApSYmKgDBw7Iz89PkrRnzx6lpqZav+Dp7++vadOmKTk5WY6OjpKkiIgIlSpVSm5ubtY2e/bssbmvdEREhPz9/TPl2AEAAAAAAICMlq6idOXKlfXzzz9bH7/00kuaN2+eChUqpNTUVC1YsOChT5I9//zz2rBhg82yQYMGqXTp0urcubOefvppOTo6KjIyUg0aNJAkxcTE6Ny5c9Z9+fv7a/bs2YqPj7dOvx0RESFXV1f5+PhY2+zcudNmP/8+qefk5KSKFSsqMjJS9erVkySlpqYqMjJSbdq0eahjAgAAwKPx9PS8457Lj0P79u3VqlUrzZ49W6+++qqio6O1cuVKjRo1StKtL2a0a9dOs2bNUokSJeTp6amPPvpITz31lPUzpLe3t2rVqqVhw4YpNDRUycnJGj16tBo1aqTChQtLkho3bqyZM2dqyJAh6ty5s44dO6ZFixZp0KBB1izt2rVT27Zt9dlnn6l27doKDw/XgQMHrFkAAAAAAACArC5dRem2bdvq66+/VlJSkpycnNS7d2/t379fH3zwgSSpePHiGjJkyEP16erqqrJly9osc3Fxkbu7u3V5cHCwxo8fLzc3N7m6umrMmDEKCAiwFpSDgoLk4+OjDz74QP3791dsbKymTZumkJAQOTk5SZJatmyppUuXauLEiQoODtaePXu0adMmzZkzx7rfjh07asCAAfLz81PlypW1cOFCXb9+3eYqbgAAADy5KleurBkzZmjq1KmaOXOmPD09NXjwYL3++uvWNp07d9b169c1fPhwJSYm6plnntHcuXNtbkUzefJkjR49Wu3bt5fRaNTLL7+soUOHWtfnzZtX8+bN06hRo9S0aVPlz59f3bp1U4sWLaxtqlatqsmTJ2vatGmaOnWqSpYsqZkzZ97x2RkAAAAAAADIqgyWDJpzMzU1VUePHpXRaFTp0qXl4JCuereNtm3bqly5ctYC982bNzV+/Hht3LhRSUlJCgoK0ogRI6xTc0vS2bNnNXLkSO3bt0/Ozs5q0qSJ3n//fZs8e/fu1bhx43T8+HEVKVJE3bp1u6PgvGTJEs2bN0+xsbEqX768hg4dqipVqjxU/tjYy49w9NmPg4NR+fPn0cWLV5k69TFj7O2L8befnDL2SUuO2DvCHQwGg/We0llt+m6nNr6Z1nehQnkzrW8gs+W0z6ZplVP+ljyKr03r7B0h3bLy36u0esX8hr0jZFm8fx/shruLvSM8GoPk4GBSSoo5295TOvela5nWN59NAQAAkJ1kWFEad8ppJ/44IWA/jL19Mf72k1PGnqL0w6EoDdxdTvtsmlY55W/Jo6AobV8Upe+N9++DUZS2P4rSAAAAwC0PdTnz7f+JNxgMkqTk5GRt27btjnYFCxZU1apVMyAeAAAAAAAAAAAAACA7S3NR+vTp02rYsKE6d+6sXr16SZKuXLmiXr16yWAw2Hzr3MnJSRs3bpSXl1fGJwYAAAAAAAAAAAAAZBtpLkqvWLFCbm5ueuedd+5YN2DAAFWoUEHSrXtL9+3bVytWrFD//v0zLikAAAAAAAAAAAAAINtJc1H6+++/V4MGDeTk5HTHOl9fXz333HPWx40bN9b3339PURoAAAAZ4vjx4zp9+rQSEhLuuv7NN998vIEAAAAAAAAApFmai9InT55Uy5YtbZYZjUblzZtXjo6ONstLliypVatWZUxCAAAA5FinTp1S//79FR0dbXO7mH8zGAwUpQEAAAAAAIAsLM1FabPZLJPJZLPMzc1NP/zwwx1tHR0dlZKS8ujpAAAAkKMNHz5cR48e1eDBg1WtWjXly5fP3pEAAAAAAAAAPKQ0F6ULFSqkmJiYNLWNiYlRwYIF0x0KAAAAkKSff/5ZXbt2Vdu2be0dBQAAAAAAAEA6GdPa8LnnntOGDRt0/fr1+7a7du2aNmzYoOrVqz9yOAAAAORs+fPnV968ee0dAwAAAAAAAMAjSHNRukOHDrp48aK6du2q8+fP37XN+fPn9e677+rSpUtq3759hoUEAABAztSyZUutX79eZrPZ3lEAAAAAAAAApFOap+/29fXViBEjFBoaqjp16qh69eoqU6aMXFxcdO3aNR07dkz79u2T2WzWsGHDVK5cuczMDQAAgBygZMmSSk1N1RtvvKHg4GAVKVJEJpPpjnYvv/yyHdIBAAAAAAAASIs0F6UlqXnz5vLx8dHMmTO1d+9eff/99/905OCg5557Tt26dVO1atUyPCgAAABynr59+1p/nzBhwl3bGAwGHTp06HFFAgAAAAAAAPCQHqooLUlVq1bVvHnzdOPGDZ08eVJXrlxRnjx5VKJECTk7O2dGRgAAAORQixYtsncEAAAAAAAAAI/ooYvSt+XOnVu+vr4ZmQUAAACw8dxzz9k7AgAAAAAAAIBHlO6iNAAAAPA4HT9+XGfPnpUkFStWTD4+PnZOBAAAAAAAACAtKEoDAAAgS9uyZYvGjx9vLUjf5unpqYEDB6pu3bp2SgYAAAAAAAAgLShKAwAAIMvasWOHevXqpaJFi6pv377y9vaWJJ04cUIrV65Uz549NXv2bL3wwgt2TgoAAAAAAADgXihKAwAAIMv673//K19fXy1dulQuLi7W5XXr1lWbNm3UunVrzZw5k6I0AAAAAAAAkIUZH3aDGzduaNy4cdq6dWtm5AEAAACsjhw5ojfffNOmIH2bi4uLmjRpoiNHjtghGQAAAAAAAIC0euiidO7cufX5558rPj4+M/IAAAAAVrly5VJCQsI91yckJChXrlyPMREAAAAAAACAh/XQRWlJqlixoo4ePZrRWQAAAAAb1atX16JFi7R///471v3yyy9avHixatSoYYdkAAAAAAAAANIqXfeUHjx4sLp06aKyZcuqSZMmcnDg1tQAAADIeP3791fLli3VunVrVa5cWaVKlZIk/f7774qOjpaHh4f69etn55QAAAAAAAAA7idd1eSBAwfKYDBo+PDhGjNmjAoXLnzHtIkGg0Hr16/PkJAAAADImby8vLR+/XrNmTNHO3fuVHh4uCSpaNGiateunbp06SIPDw87pwQAAAAAAABwP+kqSru7u8vd3d16pQoAAACQWTw8PDR48GANHjzY3lEAAAAAAAAApEO6itKLFy/O6BwAAAAAAAAAAAAAgCcQN4MGAABAljFo0CAZDAaNHj1aJpNJgwYNeuA2BoNBYWFhjyEdAAAAAAAAgPRId1H6ypUrWrZsmfbu3av4+HiNGjVKlStX1qVLl7R27VrVqVNHJUqUyMisAAAAeMLt3btXBoNBqampMplM2rt37wO3MRgMjyEZAAAAAAAAgPRKV1H6r7/+Ups2bfTXX3+pRIkSiomJ0dWrVyXdut/0ihUrdPbsWQ0dOjRDwwIAAODJtnXr1vs+BgAAAAAAAJD9GNOz0cSJE3X16lV9+eWXWrx4sSwWi836evXqKTIyMkMCAgAAIOc6d+6cbty4cc/1N27c0Llz5x5jIgAAAAAAAAAPK11F6e+//15t27aVj4/PXadL9PLy0p9//vnI4QAAAJCz1a1bV5s3b77n+q1bt6pu3bqPMREAAAAAAACAh5WuovSNGzdUoECBe66/PZU3AAAA8Cj+d0ae/5WcnCyjMV0faQEAAAAAAAA8Jum6p7S3t7d++OEHtWzZ8q7rt2zZogoVKjxSMAAAAORMV65cUWJiovXxpUuX7jpFd2JiosLDw1WoUKHHGQ8AAAAAAADAQ0pXUbp9+/YaOHCgfH199eqrr0q6dRXLyZMnNWPGDEVFRenjjz/O0KAAAADIGRYsWKCZM2dKkgwGg8LCwhQWFnbXthaLRX369HmM6QAAAAAAAAA8rHQVpd944w2dO3dOH330kaZNmyZJevvtt2WxWGQ0GtW3b1/Vq1cvI3MCAAAgh6hZs6ZcXFxksVg0adIkNWrUSBUrVrRpYzAY5OzsrIoVK6pSpUp2SgoAAAAAAAAgLdJVlJakd999V2+88Ya+/fZbnTx5UqmpqSpevLhefvlleXl5ZWRGAAAA5CABAQEKCAiQJF2/fl0vv/yyypYta+dUAAAAAAAAANIr3UVpSSpatKg6dOiQQVEAAAAAWz169LB3BAAAAAAAAACP6JGK0kePHtWOHTt09uxZSZKnp6dq1aolX1/fDAkHAAAASNJPP/2k3377TZcvX1ZqaqrNOoPBoO7du9spGQAAAAAAAIAHSVdROikpScOHD9e6deus95GWpNTUVE2ZMkWNGzfWmDFj5OTklKFhAQAAkLNcunRJXbt2VXR0tCwWiwwGgywWiyRZf6coDQAAAAAAAGRtxvRsNGnSJH355Zdq1aqVwsPDFR0drV9//VXh4eFq2bKl1q9fr0mTJmV0VgAAAOQwEydO1JEjRzRlyhRt2bJFFotF8+bN0zfffKOWLVuqfPny2rVrl71jAgAAAAAAALiPdBWl169frzfeeEPDhw9X6dKl5eDgIJPJpNKlS2vEiBFq3Lix1q9fn9FZAQAAkMPs3LlTLVq0UMOGDZUnTx5JktFoVIkSJTRixAgVK1ZMYWFhdk4JAAAAAAAA4H7SVZROSUlRlSpV7rk+ICBAZrP5oftdtmyZGjdurKpVq6pq1apq0aKFduzYYV1/8+ZNhYaGqnr16goICFDPnj0VFxdn08e5c+fUpUsXValSRTVq1NCECROUkpJi02bv3r1q0qSJ/Pz8VL9+fa1Zs+aOLEuXLlWdOnVUqVIlNWvWTNHR0Q99PAAAAHg0iYmJ8vHxkSRrUfrq1avW9TVr1tTu3bvtkg0AAAAAAABA2qSrKB0UFHTfk3+7du1SzZo1H7rfIkWKqF+/flqzZo1Wr16t559/Xt27d9exY8ckSWFhYdq2bZumTZumxYsX6/z58+rRo4d1e7PZrK5duyo5OVkrVqzQ+PHjtXbtWk2fPt3a5vTp0+ratauqV6+udevWqX379ho6dKjNtI/h4eEaN26cunfvrrVr16pcuXLq1KmT4uPjH/qYAAAAkH5PPfWU9UuITk5O8vDw0OHDh63r//77bxkMBnvFAwAAAAAAAJAG6SpK9+7dW2fOnFGPHj0UGRmps2fP6uzZs4qIiFD37t117tw59e7dW5cuXbL570Hq1Kmj2rVrq2TJkipVqpT69u0rFxcXRUVF6fLly1q9erUGDhyoGjVqyM/PT2FhYdq/f7+ioqIkSbt379bx48c1adIklS9fXrVr11bv3r21dOlSJSUlSZJWrFghT09PDRw4UN7e3mrTpo0aNGigBQsWWHPMnz9fzZs3V3BwsHx8fBQaGqrcuXNr9erV6RkuAAAApNOzzz6riIgI6+NXX31V8+bN06xZszRz5kwtXLhQ1atXt2NCAAAAAAAAAA/ikJ6NGjZsKEk6evSovvvuO5t1FotFktSoUaM7tjt06FCa92E2m/X111/r2rVrCggI0IEDB5ScnKzAwEBrG29vbxUtWlRRUVHy9/dXVFSUypYtq4IFC1rbBAUFaeTIkTp+/LgqVKigqKgo1ahRw2ZfQUFB1nsRJiUl6eDBg+ratat1vdFoVGBgoPbv35/m/Le2M8hozDlX7phMRpufeHwYe/ti/O0np4x9cha/CjSrXaXq4PBkvx5ymg4dOigiIkJJSUlycnJSz549dfz4cX300UeSbhWthw4daueUAAAAAAAAAO4nXUXp7t27Z9oJ6CNHjqhly5a6efOmXFxcNHPmTPn4+OjQoUNydHRUvnz5bNp7eHgoNjZWkhQXF2dTkJZkffygNleuXNGNGzeUkJAgs9ksDw+PO/YTExPzUMdSoECeLHei/nHIl8/Z3hFyLMbevhh/+3nSxz4pCxfds+IXAvLnz2PvCMhAvr6+8vX1tT52c3PTggULlJiYKKPRKFdXVzumAwAAAAAAAJAW6SpK9+zZM6NzWJUqVUpffvmlLl++rG+++UYDBgzQkiVLMm1/menChas57krpfPmclZh4XWZzqr3j5CiMvX0x/vaTU8Y+qx6byWTMktkuXryaaX1T8M46/veLigAAAAAAAACyrnQVpTOTk5OTSpQoIUny8/PTr7/+qkWLFunVV19VcnKyEhMTbU5CxsfHq1ChQpJuXfEcHR1t019cXJwk2bS5vezfbVxdXZU7d24ZjUaZTCbFx8fbtImPj7/jCusHSU21KDXV8lDbPAnM5lSlpGS9IkVOwNjbF+NvP0/62N++NUZW8u+ZQLJavif5tZATLVq0SDt27NC8efPuuv7tt99WnTp11Lp168ecDAAAAAAAAEBaZb05N/9HamqqkpKS5OfnJ0dHR0VGRlrXxcTE6Ny5c/L395ck+fv76+jRozYF5YiICLm6usrHx8faZs+ePTb7iIiIsPbh5OSkihUr2uwnNTVVkZGRCggIyKSjBAAAwN2sWrVK3t7e91zv4+OjlStXPsZEAAAAAAAAAB5WlipKT5kyRT/88IPOnDmjI0eOaMqUKdq3b58aN26svHnzKjg4WOPHj9eePXt04MABDR48WAEBAdaCclBQkHx8fPTBBx/o8OHD2rVrl6ZNm6aQkBA5OTlJklq2bKnTp09r4sSJOnHihJYuXapNmzapQ4cO1hwdO3bUypUrtXbtWp04cUIjR47U9evX1bRpUzuMCgAAQM51+vTp+xalS5curVOnTj3GRAAAAAAAAAAeVpaavjs+Pl4DBgzQ+fPnlTdvXvn6+mrevHmqWbOmJGnw4MEyGo3q1auXkpKSFBQUpBEjRli3N5lMmj17tkaOHKkWLVrI2dlZTZo0Ua9evaxtvLy8NGfOHI0bN06LFi1SkSJFNGbMGNWqVcvapmHDhrpw4YKmT5+u2NhYlS9fXnPnzn3o6bsBAADwaBwdHRUbG3vP9efPn5fRmKW+ZwkAAAAAAADgfxgsWe1GkE+Q2NjL9o7wWDk4GJU/fx5dvHiV+3k+Zoy9fTH+9pNTxj5pyRF7R7iDwWCQyWSU2Zya5e4p7dTGN9P6LlQob6b1jbvr3LmzYmJitG7dOrm6utqsu3z5st544w2VKlXqnvecxj9y2mfTtMopf0sexdemdfaOkG5Z+e9VWr1ifsPeEbIs3r8PdsPdxd4RHo1BcnAwKSXFLGXPt7ByX7qWaX3z2RQAAADZSZa6UhoAAAD4tx49eqhNmzZ688031b59e/n4+EiSjh07poULFyo2NlZTpkyxc0oAAAAAAAAA9/NIRenjx4/r9OnTSkhIuOv6N99881G6BwAAQA5XpUoVzZ49W8OHD9fYsWNlMBgkSRaLRZ6enpo1a5YCAgLsnBIAAAAAAADA/aSrKH3q1Cn1799f0dHR95wCzWAwUJQGAADAI6tZs6Y2b96s3377TadOnZIkFS9eXBUrVrQWqQEAAAAAAABkXekqSg8fPlxHjx7V4MGDVa1aNeXLly+jcwEAAABWRqNRfn5+8vPzs3cUAAAAAAAAAA8pXUXpn3/+WV27dlXbtm0zOg8AAABgw2w2a/369dq+fbvOnTsnSSpatKheeuklNW7cWCaTyc4JAQAAAAAAANyPMT0b5c+fX3nz5s3oLAAAAICNy5cvq1WrVho8eLC+//57paSkKCUlRRERERo0aJBat26tK1euZHqOTz75RL6+vho7dqx12c2bNxUaGqrq1asrICBAPXv2VFxcnM12586dU5cuXVSlShXVqFFDEyZMUEpKik2bvXv3qkmTJvLz81P9+vW1Zs2aO/a/dOlS1alTR5UqVVKzZs0UHR2dOQcKAAAAAAAAZIJ0FaVbtmyp9evXy2w2Z3QeAAAAwOrDDz/UwYMHNXToUEVGRmrt2rVau3atIiIiNGzYMB04cEAffvhhpmaIjo7WihUr5Ovra7M8LCxM27Zt07Rp07R48WKdP39ePXr0sK43m83q2rWrkpOTtWLFCo0fP15r167V9OnTrW1Onz6trl27qnr16lq3bp3at2+voUOHateuXdY24eHhGjdunLp37661a9eqXLly6tSpk+Lj4zP1uAEAAAAAAICMkq7pu0uWLKnU1FS98cYbCg4OVpEiRe46beLLL7/8yAEBAACQc23evFmtWrVSSEiIzXJHR0e1bt1aMTEx+vrrrzVs2LBM2f/Vq1fVv39/jRkzRrNmzbIuv3z5slavXq3JkyerRo0akm4VqRs2bKioqCj5+/tr9+7dOn78uObPn6+CBQuqfPny6t27tyZPnqwePXrIyclJK1askKenpwYOHChJ8vb21k8//aQFCxaoVq1akqT58+erefPmCg4OliSFhoZq+/btWr16tbp06ZIpxw0AAAAAAABkpHQVpfv27Wv9fcKECXdtYzAYdOjQofSlAgAAACRdunRJpUqVuuf6UqVKKSEhIdP2P2rUKNWuXVuBgYE2RekDBw4oOTlZgYGB1mXe3t4qWrSotSgdFRWlsmXLqmDBgtY2QUFBGjlypI4fP64KFSooKirKWtT+d5uwsDBJUlJSkg4ePKiuXbta1xuNRgUGBmr//v0PdSxGo0FGo+GhtskJTCajzU/cyaAn43VjMGTP43Bw4LV5L7x/0yB7vuytbr9vDQaDLLLYOU368B4GAAAAbklXUXrRokUZnQMAAAC4Q4kSJbR169Y7rpS+bevWrSpevHim7Hvjxo367bfftGrVqjvWxcXFydHRUfny5bNZ7uHhodjYWGubfxekJVkfP6jNlStXdOPGDSUkJMhsNsvDw+OO/cTExDzU8RQokCfbFuUeh3z5nO0dIcsyJWb/gkp2Llrmz5fH3hGyPN6/93bD3gEySLZ+D+fnPQwAAABI6SxKP/fccxmdAwAAALhDq1atNHr0aHXu3Fnt27dXyZIlJUm///67Fi9ebL23dEb7888/NXbsWH322WfKlStXhvdvDxcuXOVK6bswmYzKl89ZiYnXZTan2jtOlmRW9h4Xk8mYrZ/bixev2jtClsX798FS8ua2d4RHYjAYrO9hiyV7Xil98XLmfTWAgjcAAACyk3QVpf/t+PHjOnv2rCSpWLFi8vHxeeRQAAAAgCSFhITowoUL+uSTT7R7926bdQ4ODurevbtat26d4fs9ePCg4uPj1bRpU+sys9msH374QUuXLtW8efOUnJysxMREm6ul4+PjVahQIUm3rniOjo626TcuLk6SbNrcXvbvNq6ursqdO7eMRqNMJpPi4+Nt2sTHx99xhfWDpKZalJqaPU/oPw5mc6pSUihq3Y3FlH1fN/+eHSC7FrRSKLY+EO/f+8ieL3ur21N2WyyWbHssvDYBAACAW9JdlN6yZYvGjx9vLUjf5unpqYEDB6pu3bqPHA4AAADo2bOnQkJCFBkZafNlyBo1aqhAgQKZss/nn39eGzZssFk2aNAglS5dWp07d9bTTz8tR0dHRUZGqkGDBpKkmJgYnTt3Tv7+/pIkf39/zZ49W/Hx8dbptyMiIuTq6mr9Iqe/v7927txps5+IiAhrH05OTqpYsaIiIyNVr149SVJqaqoiIyPVpk2bTDl2AAAAAAAAIKOlqyi9Y8cO9erVS0WLFlXfvn3l7e0tSTpx4oRWrlypnj17avbs2XrhhRcyNCwAAABypgIFCqhRo0aPbX+urq4qW7aszTIXFxe5u7tblwcHB2v8+PFyc3OTq6urxowZo4CAAGtBOSgoSD4+Pvrggw/Uv39/xcbGatq0aQoJCZGTk5MkqWXLllq6dKkmTpyo4OBg7dmzR5s2bdKcOXOs++3YsaMGDBggPz8/Va5cWQsXLtT169dtruIGAAAAAAAAsrJ0FaX/+9//ytfXV0uXLpWLi4t1ed26ddWmTRu1bt1aM2fOpCgNAACAh3Lu3Ll0bVe0aNEMTvJggwcPltFoVK9evZSUlKSgoCCNGDHCut5kMmn27NkaOXKkWrRoIWdnZzVp0kS9evWytvHy8tKcOXM0btw4LVq0SEWKFNGYMWNUq1Yta5uGDRvqwoULmj59umJjY1W+fHnNnTv3oafvBgAAAAAAAOzFYEnHjbX8/f3Vt29ftW/f/q7rFy5cqA8//FBRUVGPmi9bi429bO8Ij5WDg1H58+fRxYtXuWfSY8bY2xfjbz85ZeyTlhyxd4Q7GAwGmUxGmc2pWe4enU5tfDOt70KF8mZa37ilXLlyNveATatDhw5lQponS077bJpWOeVvyaP42rTO3hHSLSv/vUqrV8xv2DtClsX798FuuLs8uFFWZpAcHExKSTFn23tK5750LdP65rMpAAAAspN0XSmdK1cuJSQk3HN9QkKCcuXKle5QAAAAyJnCwsLSVZQGAAAAAAAAkHWlqyhdvXp1LVq0SLVq1VJAQIDNul9++UWLFy9WzZo1MyQgAAAAcg7ukwwAAAAAAAA8edJVlO7fv79atmyp1q1bq3LlyipVqpQk6ffff1d0dLQ8PDzUr1+/DA0KAAAAAAAAAAAAAMh+0lWU9vLy0vr16zVnzhzt3LlT4eHhkqSiRYuqXbt26tKlizw8PDI0KAAAAJ58M2bMeOhtDAaDunfvnglpAAAAAAAAAGSEdBWlJcnDw0ODBw/W4MGDMzIPAAAAcjCK0gAAAAAAAMCTJ91FaQAAACCjHT582N4RAAAAAAAAAGSwNBWlBw0aJIPBoNGjR8tkMmnQoEEP3MZgMCgsLOyRAwIAAAD3k5CQIDc3N3vHAAAAAAAAAHAPaSpK7927VwaDQampqTKZTNq7d+8DtzEYDI8cDgAAALibpKQkfffdd9qwYYN27dqlX3/91d6RAAAAAAAAANxDmorSW7duve9jAAAAILNZLBZFRkZqw4YN2rx5s65cuaICBQrotddes3c0PGY9e3bVsWNHdePGdeXPX0AvvPCiunfvo3379mjRos90+vQpJScnqWTJ0urSpZuee+75e/a1fv2XWrx4vv766y8VK+apzp27qXbtlyRJ//3vdH3zzUYlJCQoT548qlSpivr0+UBFihSRJE2fPkU7d27XX3/9KUn64ov1evrpopk/AAAAAAAAANlMuu4pfe7cORUoUEC5c+e+6/obN27owoULKlqUEzIAAAB4NAcOHNCGDRu0ceNGxcXFyWAwqGHDhmrTpo38/f2ZoScHKlOmrOrXf0UGg0ErVizR6tUrVbx4SSUmJqhAgQJq0KChzp//W0uXLtSgQe9r1aoNyp+/wB397N//k8LCRqlChQpq1aqtli1brOHDB2rx4s9VvHhJFSxYUG3bdlSePK7aunWzdu/eKQcHR40ZM0GSlJKSonr1Gmjt2i909erVxz0MAAAAAAAA2Ua6itJ169bVxIkT1bhx47uu37p1q95//30dOnTokcIBAAAgZzp9+rTWr1+vDRs26OTJkypcuLAaN26sypUrq2/fvmrQoIECAgLsHRN20qvX+0pMTNDly5e1bdt3OnnyDxkMBoWEtJeTk5O13b59kTp27KhOnTp516L06tUrJUk9e/ZUQEB1WSzSpElhWrNmlfr06afmzVvr2rWrunbtmk6dOqnIyO9tvgTx3nsDJEnh4RsoSgMAAAAAANxHuorSFovlvuuTk5NlNBrTFQgAAAA5W4sWLRQdHa38+fOrQYMGGjNmjKpVqyZJOnXqlJ3TIato1aqpEhISJEkvv/yqGjd+U46Ojtb1p06d1KlTJ+Xu7q4yZcretY8zZ05LknWGpyJFnpYknT79z+ssLCxU27ffun2Rj09Z9er1XsYfDAAAAAAAwBMuzUXpK1euKDEx0fr40qVLOnfu3B3tEhMTFR4erkKFCmVMQgAAAOQov/zyizw9PTVw4EC9+OKLcnBI1/co8YQbO3aS4uPjtWLFYn333bd64YUX9eKLdSVJMTHH1a9fbxmNJo0ZM1EuLnnS1OfdvnzbsWMXvfpqY23Z8o02b/5ay5cvVq9e72fosQAAAAAAADzp0nyGb8GCBZo5c6YkyWAwKCwsTGFhYXdta7FY1KdPnwwJCADI3iZMGKuDB6P1999/KTXVIi+v4mrVqo3q13/F2iYuLlYffzxVe/fuUVJSkipUqKh33+2lihX97tv3V1+t1/Lli3Xq1Cm5u+fXyy+/qs6d35WDg4P+/POcmjV7/a7b+ftX1YwZn0iS5syZqZ07t+nUqZOyWCzq2LGzOnXqmnEDAOChDRs2TF999ZV69OghNzc3NWjQQA0bNlT16tXtHQ1ZiL9/VevvI0YMUnj4V3rxxbr6+ecfNXhwPzk4OGr69FkqX77iPfvw9PTS8eNHdfbsWRUu7KW///5LkuTl5WVt4+3tI29vH1WoUFGbN3+tDRvWUZQGAAAAAAB4SGkuStesWVMuLi6yWCyaNGmSGjVqpIoVbU/wGAwGOTs7q2LFiqpUqVKGhwUAZD8bNqxV2bLl9NJL9XTixDEdOvSbQkOHKm/efHr++UBZLBb1799bx44dVcWKlVSwYEHt2LFNffq8q+XL16pgwYJ37XfHjm0aM2akXFxcVL9+A+3f/7OWLl2olJQU9ezZV3ny5FGzZq1stvnmm3AlJibIy6uEddnBg7/qqacKKzExURcvXsjUsQCQNiEhIQoJCdHp06e1YcMGffXVV1q5cqUKFiyo6tWry2Aw2NzXFznLnj0R2rz5a1WqVEWSRatW3bovtI9PGe3ZE6FBg95XamqqOnZso7Nnz+js2TOqUMFPRYsW07x5czR//qcKCWmvd9/tqaZNm2n79u80Y8YMNW58RsuXL5bJZNKbb76lK1euaMiQD1SzZi25urpq+/bvrPu5LSJit+Lj43Tz5g1J0nfffaunny6qunVffuzjAgAAAAAAkJWluSgdEBCggIAASdL169f18ssvq2zZu9+bDQCA2+bMWWC94jklJUWtWgXrzz/Pas+eCD3/fKC+/36njh07Kg8PD82c+akcHBw0aND72rVrh1asWKIePfrctd+FC+dKkt577z299lpTHTp0SB07hmjt2i/Utm1Hubu7q3fvf65k+/33GK1atUIGg0EtWrS2Lp8+fbYkqUuXDhSlgSzGy8tL3bp1U7du3XTgwAFt2LBB4eHhslgsCg0N1c6dO1WnTh0FBgYqV65c9o6Lx8Td3V0xMce1c+d2mc1mFSpUSG3adNB//tNFCxfOU3JysiRp7tzZ1m0GDx6hokWLWR+bTCZJUtWq1TRw4BAtWbJQU6ZMVLFingoNDVPJkqV048YNmc0pmj//U12/fk3u7vnVoMGreuedntZ+li1bpKion62PZ8+eoSJFnqYoDQAAAAAA8D/SdYO+Hj16ZHQOAMAT6n+n4E5OTpIkFSpUSJJ05MhhSZKPj6/1vrEVKlTSrl07dPTo4bv2mZKSohMnjkuSKleuLEkqU8ZXTk5OSkpK0h9/xNhM6ypJn3++VBaLRTVr1lLJkqUy6OgAPC5+fn7y8/PTgAEDtGfPHq1fv17h4eH64osv5OzsrP3799s7Ih6TcuUqaP78ZXdd16lT1/vegiEm5rhy586txo3ftC57881gdezYThcvXlVKSqp1ee7cua23eriXB60HAAAAAADALekqSt/2008/6bffftPly5eVmppqs85gMKh79+6PFA4A8ORITU3V5MnjFBcXq1KlSqtJk7ckSRcuxEuSnJ2drW1dXG79Hh8fd9e+EhIuyWw2/39bF+tyZ2dnJSUl3bHdhQvx+vbbTZKk1q3bZdARAbAHo9GowMBABQYGKjQ0VN999502bNhg71jIBiwWi375Zb/+85+uevrpovaOAwAAAAAAkKOkqyh96dIlde3aVdHR0bJYLDIYDLJYLJJk/Z2iNADgtuvXrys0dIh2796psmV9NWXKx3JxySNJKlDAw9rmtmvXrkmSPDzufj9pNzd3mUwmmc1ma9t/9/G/261a9bmSkpJUoYKfqlQJyLgDA2BXuXLlUsOGDdWwYUN7R0E2YDAY9NVXW+wdAwAAAAAAIEdKV1F64sSJOnLkiKZMmaLKlSurXr16mjdvnjw9PbVgwQJFRUXp008/zeisAIBsKC4uVh980FdHjx5WzZq1NGLEWJurm8uW9ZUkHTt2RCkpKXJwcNDBg79KujUl9904ODiodGlvHTt2VNHR0Spe3EdHjx5WUlKSnJycVLJkaWvbGzdu6MsvV0uSWrdum1mHCQA5msMXS+0dId0MBumKySiDOVUOFnunSZ+UZiH2jgAAAAAAAHBf6SpK79y5Uy1atFDDhg118eJFSbemUixRooRGjBihHj16KCwsTFOnTs3QsACA7KdLlw46f/5v5cmTR08/XVSffjpLklS+fEW9/PIrqlnzBXl7l9GJE8fUo0cXeXh4aPfuncqdO7datWojSfr55x/Vq9c7kqTdu3+UJLVv30lDhw7Q1KlT9fPPv2j//p8k3bo3qLu7u3X/GzeuV2Jigjw9vfTCCy/dkW/x4gU6deoPnTt3RpK0a9cO/fXXn6pc2d/mnqMAAAAAAAAAACB9jOnZKDExUT4+PpKkPHluTb969epV6/qaNWtq9+7dGRAPAJDdnT//t6RbfydWrfpcX3yxXF98sVw//LBH0q0vNU2aNE0vvVRPv/9+QpGREapc2V/Tpv1XBQsWsunLZDJZf3/xxboaPHi4ihQpom+/3aTk5GS1bt1W777by9omNTVVX3yxXJLUvHlrGY13/tnbuzdCmzZ9pUuXLkmSjh8/qk2bvlJ0dFRGDgMAAAAAAAAAADlWuq6UfuqppxQXFydJcnJykoeHhw4fPqx69epJkv7++28ZDIaH7nfOnDn69ttvFRMTo9y5cysgIED9+vVT6dL/TMN68+ZNjR8/XuHh4UpKSlJQUJBGjBihggX/uX/ouXPnNHLkSO3du1cuLi5688039f7778vB4Z/D3bt3r8aPH69jx47p6aef1rvvvqumTZva5Fm6dKnmzZun2NhYlStXTsOGDVPlypUf+rgAICe7fWXz/Tz1VGGNHj3+nuuPHj0sSWrX7j82y19//U21bx+iixevKiUl9Y7tjEajVqxYe999z5jxyQPzAQAAAAAAAACA9EvXldLPPvusIiIirI9fffVVzZs3T7NmzdLMmTO1cOFCVa9e/aH73bdvn0JCQrRy5UrNnz9fKSkp6tSpk65du2ZtExYWpm3btmnatGlavHixzp8/rx49eljXm81mde3aVcnJyVqxYoXGjx+vtWvXavr06dY2p0+fVteuXVW9enWtW7dO7du319ChQ7Vr1y5rm/DwcI0bN07du3fX2rVrVa5cOXXq1Enx8fEPfVwAgEezb98elS9fUe3bd7J3FAAAAAAAAAAA8JDSdaV0hw4dFBERoaSkJDk5Oalnz546fvy4PvroI0m3itZDhw596H7nzZtn83j8+PGqUaOGDh48qGeffVaXL1/W6tWrNXnyZNWoUUPSrSJ1w4YNFRUVJX9/f+3evVvHjx/X/PnzVbBgQZUvX169e/fW5MmT1aNHDzk5OWnFihXy9PTUwIEDJUne3t766aeftGDBAtWqVUuSNH/+fDVv3lzBwcGSpNDQUG3fvl2rV69Wly5d0jNsAIB0mjp1hr0jAAAAAAAAAACAdEpXUdrX11e+vr7Wx25ublqwYIESExNlNBrl6uqaIeEuX75s7V+SDhw4oOTkZAUGBlrbeHt7q2jRotaidFRUlMqWLWsznXdQUJBGjhyp48ePq0KFCoqKirIWtf/dJiwsTJKUlJSkgwcPqmvXrtb1RqNRgYGB2r9/f5rzG40GGY0PP415dmUyGW1+4vFh7O2L8befnDL2yem4JcbjlJ5bdmQmB4cn+/UAAAAAAAAAANlNuorS95IvX74M6ys1NVVhYWGqWrWqypYtK0mKi4uTo6PjHfvx8PBQbGystc2/C9KSrI8f1ObKlSu6ceOGEhISZDab5eHhccd+YmJi0nwMBQrkyXIn6h+HfPmc7R0hx2Ls7etJH/+odSvtHSFb8X+jeYb1lZSFi+5Z8QsB+fPnsXcEAAAAAAAAAMC/pKsovWjRIu3YseOO6bZve/vtt1WnTh21bt063cFCQ0N17NgxLVu2LN192NuFC1dz3JXS+fI5KzHxuszmVHvHyVEYe/vKKeNvTsl6x2YwSEaTUanmVFks9k5j6+LFqxnWV1Z9XZlMxiyZLSPH/n9R8AYAAAAAAACAh5euovSqVav0/PPP33O9j4+PVq5cme6i9KhRo7R9+3YtWbJERYoUsS4vWLCgkpOTlZiYaHO1dHx8vAoVKmRtEx0dbdNfXFycJNm0ub3s321cXV2VO3duGY1GmUwmxcfH27SJj4+/4wrr+0lNtSg1NYtVSR4DszlVKVmweJUTMPb29aSPf1Yr+v6bxZL18mXka8GS1Q5OtlN2Z7V8T/L7EAAAAAAAAACyo3TNuXn69Gl5e3vfc33p0qV16tSph+7XYrFo1KhR2rx5sxYuXCgvLy+b9X5+fnJ0dFRkZKR1WUxMjM6dOyd/f39Jkr+/v44ePWpTUI6IiJCrq6t8fHysbfbs2WPTd0REhLUPJycnVaxY0WY/qampioyMVEBAwEMfFwAAAAAAAAAAAADkVOkqSjs6Olrvz3w358+fl9H48F2HhoZq/fr1mjJlivLkyaPY2FjFxsbqxo0bkqS8efMqODhY48eP1549e3TgwAENHjxYAQEB1oJyUFCQfHx89MEHH+jw4cPatWuXpk2bppCQEDk5OUmSWrZsqdOnT2vixIk6ceKEli5dqk2bNqlDhw7WLB07dtTKlSu1du1anThxQiNHjtT169fVtGnThz4uAAAAAAAAAAAAAMip0jV9d5UqVbR27Vp16NBBrq6uNusuX76sNWvWqEqVKg/d7/LlyyVJbdu2tVk+btw4azF48ODBMhqN6tWrl5KSkhQUFKQRI0ZY25pMJs2ePVsjR45UixYt5OzsrCZNmqhXr17WNl5eXpozZ47GjRunRYsWqUiRIhozZoxq1aplbdOwYUNduHBB06dPV2xsrMqXL6+5c+c+1PTdAAAAAAAAAAAAAJDTGSzpuBHkL7/8ojZt2qhw4cJq3769dVrsY8eOaeHChTp//rwWLVqU46e6jo29bO8Ij5WDg1H58+fRxYtXuZ/nY8bY21dOGf+TOzbaO8IdDAbJ5GCUOSU1y91TukTtRhnWV9KSIxnWV0YxGAwymYwym1Oz3D2lndr4ZlrfhQrlzbS+gcyWmZ9NHb5Ymml9ZzaDQXIwGZViznp/S9IqpVlIpvb/tWldpvafmbLy36u0esX8hr0jZKjExESFhY3U0aNHdOnSRbm751eDBg3VufO7+vvvv9Ss2et3bLNp0zblzXvn32AHB6O2bAnXrFmzdf783ypWzFOdO3dT7dovSZJ+/fUXzZr1sU6cOCaz2SxPz+Jq3/4/eumlepKkjRvXa/nyJTp37qycnJzk61tePXv2lY9PmcwdhMfohruLvSM8GoPk4GBSSopZyp5vYeW+dC3T+uazKQAAALKTdF8pPXv2bA0fPlxjx46VwWCQdOue0J6enpo1a1aOL0gDAAAAAABbV69e0R9//KHXX28id3d3LV68QIsXz5eHh4dq1nxBkvTii3X04ot1rds4Ozvfta+ff/5JQ4cOVdmy5dS7dxutWLFUw4cP1OLFn6t48ZIaOXKI/v77L7Vt21EuLi769NNZGjlyiJ5/vqYuXIjXuHGj5Ozsop49++rQoYMKD9+gyZPHafbszx7LWAAAAABATpKuorQk1axZU5s3b9Zvv/2mU6dOSZKKFy+uihUrWovUAAAAAAAAtxUq9JSWLv1CJpNJkpSUlKzp06fo2LGj1qJ0qVLeCgwMkotLnvv2tWrV55Kkzp27qkaNWjIYjJo0KUxr1qxSnz79rFfHV61aTa6urpo/f66cnXPLaDTKYrHIYDAoT548qlbtORmNRoWHb1C+fPky8egBAAAAIOdKd1FakoxGo/z8/OTn55dReQAAAAAAwBPKweGf0xCpqamKjNwtSapW7Tnr8gUL5mr+/E/l6uqq119vonfe6Smj0XhHX6dP3/qCfJEiT9v8vL181KjxGjKkn/r27S5Jyps3n8aPn6pcuXLJ09NL/fsP1tSpE9SqVVNJkre3jwYNGpHRhwwAAAAA0CMUpc1ms9avX6/t27fr3LlzkqSiRYvqpZdeUuPGja3fegYAAAAAAPi3pKQkjR07Qj/8sFdvvdVS9eu/oosXL6pDh7dVpoyvbt68oc8++0TLli2Wl1cJNW785gP7/N/7hi9dukDx8fHq1q2X8ucvoEmTxmnkyCFavHilUlKStXjxArm45NF7732gEyeOa/Hi+Zo8OUxjx07KpKMGAAAAgJwrXUXpy5cvq1OnTvr111+VJ08eeXl5SZIiIiL07bffavny5Zo3b55cXV0zNCwAAAAAAMjeLl++rEGD3ldU1M/q2LGzOnXqKknKnz+/3n77HWu72NjzmjXrY504ceyu/Xh5FdexY0f1559/qlQpH/3991//v9xLly5d0q5dO5QnTx61bt1OkrRmzRc6dOigjh07qgsX4vTnn2cVFPSC6tVroFq1amvx4vnavXundWpvAAAAAEDGSVdR+sMPP9TBgwc1dOhQNW/eXI6OjpKk5ORkffHFFxo7dqw+/PBDDRs2LEPDAgAAAACA7OvatWvq1q2Tfv89RtWrB6pEiZLasuUb5c9fQGfOnNavv/4iP7/KSklJ1urVKyVJlSr5S5LmzZuj+fM/VUhIe737bk8FBzfT1q1bNHfuHJ0/f14rViyRyWTSm2++pXz58snd3V2XLl3SrFkfy909v44dOyInJyd5eXnJxcVFBoNBP//8k1av/ly//x4jSSpd2puCNAAAAABkgnQVpTdv3qxWrVopJCTEZrmjo6Nat26tmJgYff311xSlAWQpmzd/rZUrl+n48WNKTk6Wv39VzZjxiXX9W2811l9//Wmzjclk0o4de+/b71dfrdfy5Yt16tQpubvn18svv6rOnd+13i9v7NiR2rTpqzu2mzlzrqpU8VdSUpL69++jmJjjunw5Ua6urvLxKatOnbqqUqUqGXDkAAAAQNaQkHDJWgDeuzdCe/dGSJL8/auqU6eu+uabcO3evVNJSUkqWrSY3n9/oOrWrW/Tx+3bhT3zzLMaNWqUZs+eo2nTJqlYMU+FhoapZMlSkqRx46Zo9uwZ+vLLVUpNTZW3dxl16tRVBQp4qEABDw0cOEwrVizRf/87XU5OufT884Hq2fO9xzgaAAAAAJBzpKsofenSJZUqVeqe60uVKqWEhIR0hwKAzHDixHEZDEZ5eRVXTMyJe7Zr1qyV9Xej0XjfPnfs2KYxY0bKxcVF9es30P79P2vp0oVKSUlRz559bdq++GIdFSpU2Pq4UKFCkiSz2az4+Fg991x1OTu76Mcf9+nHH/fp0KGD2rjxO2txGwAAAMjunn66qHbv/vGe6//737n3XBcTc1y5c+e2ub90ixYt9PLLryklJfWO9pUqVdHMmZ/es79GjV5Xo0avpy04AAAAAOCRpKvSUaJECW3duvWOK6Vv27p1q4oXL/5IwQAgo73zTg9J0qxZH9+3KN279/tp7nPhwlsnzd577z299lpTHTp0SB07hmjt2i/Utm1Hubu7W9s2bdpcVatWu6MPZ2dnLVnyhfXx4cOH9PbbbXX16lVdunRRBQsWSnMeAAAA4ElksVj0yy/79Z//dNXTTxe1dxwAAAAAwENKV1G6VatWGj16tDp37qz27durZMmSkqTff/9dixcvVkREBFN3A8i2Xn21jsxms0qX9laHDm/r+ecD79ouJSVFJ04clyRVrlxZklSmjK+cnJyUlJSkP/6Ikb9/VWv7wYP7KSkpWUWLFtXrrzdVs2Ytbe5XN3/+p4qPj9OPP+6TJL322hsUpAEAAJCp9idcs3eENBu9dL2kfzIbDJIp4brMZrMsFnsmS78ANxd7RwAAAACAxyJdRemQkBBduHBBn3zyiXbv3m3boYODunfvrtatW2dIQAB4XPLly6cyZXzl4eGhw4cP6cCBaA0Y0FezZ3+m8uUr3tE+IeGSzGazJMnF5Z+TSc7OzkpKSlJ8fJwkydHRUc8886yKFfNUXFysIiO/1/TpU2SxpKpFi39mnNi4cb31ntYeHgVVrdpzmXm4AAAAAAAAAAAAj0W6b1Tas2dPhYSEKDIyUmfPnpUkFStWTDVq1FCBAgUyLCAAPC7z5i2xXrmcmpqqt99up6NHD2v79q13LUq7ubnLZDLJbDbr2rV/rjC5fv26pFuFZUnq33+wzRXR06dP0cqVy/Xdd5ttitKrVm3QzZs3tGdPpIYNG6CRI4fIy6uEfH3LZcrxAgAAAAAAAAAAPA7pLkpLUoECBdSoUaOMygIAdpOQcEnSrULzP27NAZiUlHTXbRwcHFS6tLeOHTuq6OhoFS/uo6NHDyspKUlOTk4qWbK0JOn06VMqXrzEP73+/9SCt/u9du2qXFzySJJy5cqt558PVO7czrp27apiYo5TlAYAAAAAAAAAANlamorS586dS1fnRYsWTdd2AJAZdu7crl27tuvIkUOSpFOnTmrs2JFyc3NXYGCQ+vXrrWeeqaanniqsI0cO6+jRIzKZTKpfv4Ek6eeff1SvXu9Iknbv/lGS1L59Jw0dOkBTp07Vzz//ov37f5IkvflmsNzd3SVJISFvyc+vskqWLK34+FvTd0vSK680lCR99dU6rV69UhUrVpKzs7N++WW/rl27KienXKpc2f/xDA4AAAAAAAAAAEAmSVNRuk6dOjZTz6bVoUOHHnobAMgsx44d0aZNX1kfX7gQr02bvlKRIk+refNWeumluoqOjtJPP/0gF5c8eu6559W+/duqUMHPph+TyWT9/cUX62rw4OFasWKJvv12k9zd86t167bq3LmbtU3z5q20b98ebdnyjYxGg8qWLafg4OZq2LCxJKlUKW+5ubkrImK3bt68IXf3/HrxxboKCWmnYsU8M3lUAAAAAAAAAAAAMleaitJhYWHpKkoDQFbSqVNXderU9Z7rhw0bdd/tjx49LElq1+4/Nstff/1NtW8foosXryolJfWO7Xr2fO++/T77bHU9+2z1+7YBAAAAAAAAAADIrtJUlG7atGlm5wCALG/fvj0qX76i2rfvZO8oAAAAAAAAAAAA2UaaitIAAGnq1Bn2jgAAAAAAAAAAAJDtpKkoPWPGwxdiDAaDunfv/tDbAcC9bJww2N4R7s5gkIOD8dbU3RaLvdPYaDQgzN4RAAAAAAAAAABADkdRGgAAAAAAAAAAAACQadJUlD58+HBm5wAAAAAAAAAAAAAAPIGMmdVxQkJCZnUNAAAAAAAAAAAAAMgmMrQonZSUpE2bNqlbt24KCgrKyK4BAACAx2bOnDkKDg5WQECAatSooW7duikmJsamzc2bNxUaGqrq1asrICBAPXv2VFxcnE2bc+fOqUuXLqpSpYpq1KihCRMmKCUlxabN3r171aRJE/n5+al+/fpas2bNHXmWLl2qOnXqqFKlSmrWrJmio6Mz/qABAAAAAACATPLIRWmLxaKIiAgNGjRIgYGB6tu3r6KiovTaa69lRD4AAADgsdu3b59CQkK0cuVKzZ8/XykpKerUqZOuXbtmbRMWFqZt27Zp2rRpWrx4sc6fP68ePXpY15vNZnXt2lXJyclasWKFxo8fr7Vr12r69OnWNqdPn1bXrl1VvXp1rVu3Tu3bt9fQoUO1a9cua5vw8HCNGzdO3bt319q1a1WuXDl16tRJ8fHxj2cwAAAAAAAAgEeUpntK382BAwe0YcMGbdy4UXFxcTIYDGrYsKHatGkjf39/GQyGjMwJAAAAPDbz5s2zeTx+/HjVqFFDBw8e1LPPPqvLly9r9erVmjx5smrUqCHpVpG6YcOGioqKkr+/v3bv3q3jx49r/vz5KliwoMqXL6/evXtr8uTJ6tGjh5ycnLRixQp5enpq4MCBkiRvb2/99NNPWrBggWrVqiVJmj9/vpo3b67g4GBJUmhoqLZv367Vq1erS5cuj3FUAAAAAAAAgPR5qKL06dOntX79em3YsEEnT55U4cKF1bhxY1WuXFl9+/ZVgwYNFBAQkFlZAQAAALu4fPmyJMnNzU3SrS9oJicnKzAw0NrG29tbRYsWtRalo6KiVLZsWRUsWNDaJigoSCNHjtTx48dVoUIFRUVFWYva/24TFhYm6dbtcQ4ePKiuXbta1xuNRgUGBmr//v0PdQxGo0FGY+Z8cTQ7fx/V8O+f2fQ4HBwy9K5MdzBk14H5H9n1i9OZ/vxmz2G55XZ4g0EGWeybJZ0y+/nN7m/f2+9bg8EgC88xAAAAkK2luSjdokULRUdHK3/+/GrQoIHGjBmjatWqSZJOnTqVaQEBAAAAe0pNTVVYWJiqVq2qsmXLSpLi4uLk6OiofPny2bT18PBQbGystc2/C9KSrI8f1ObKlSu6ceOGEhISZDab5eHhccd+/vce1w9SoECeTCvKXTFl/xPupmx8DK7582Rq/6bE7Ds2t2Xn5zd/vkx+fhOuZ2r/j4PJmI2f30x+/97I1N4fn2z9Hs7k5xgAAADILtJclP7ll1+sUwu++OKLcnBI98zfAAAAQLYRGhqqY8eOadmyZfaO8kguXLiaeVdKm1Mzpd/HwaBbxQ6zOTWbXoMnXbx4NVP7Nyv7Pr/SP89vdpXpz6/ZnKn9ZyqDQSajUebUVMmSPd/Bmf38puTNnan9ZzaDwfDPv9HZ9Tm+nHlfDaDgDQAAgOwkzZXlYcOG6auvvlKPHj3k5uamBg0aqGHDhqpevXpm5gMAAADsZtSoUdq+fbuWLFmiIkWKWJcXLFhQycnJSkxMtLlaOj4+XoUKFbK2iY6OtukvLi5Okmza3F727zaurq7KnTu3jEajTCaT4uPjbdrEx8ffcYX1g6SmWpSamjkn9B2yZ53glv+v01uUbWtaSknJ3IKrxZRNB0a2U3Zn14JWSiYX1LPpsEjSP1N2WyzZ9jgy+/2bbb9t8/9uT9ltsViy7bFk+nMMAAAAZBNpnv8oJCREy5cv1+bNm9W+fXv9+OOP6tChg2rVqqWPPvpIBoMh296jCwAAAPg3i8WiUaNGafPmzVq4cKG8vLxs1vv5+cnR0VGRkZHWZTExMTp37pz8/f0lSf7+/jp69KhNQTkiIkKurq7y8fGxttmzZ49N3xEREdY+nJycVLFiRZv9pKamKjIyUgEBARl5yAAAAAAAAECmeeib8nh5ealbt24KDw/XqlWr1KhRI+3bt08Wi0WhoaEaNmyYtm3bpps3b2ZGXgAAACDThYaGav369ZoyZYry5Mmj2NhYxcbG6saNW1Nw5s2bV8HBwRo/frz27NmjAwcOaPDgwQoICLAWlIOCguTj46MPPvhAhw8f1q5duzRt2jSFhITIyclJktSyZUudPn1aEydO1IkTJ7R06VJt2rRJHTp0sGbp2LGjVq5cqbVr1+rEiRMaOXKkrl+/rqZNmz7uYQEAAAAAAADS5ZFuDO3n5yc/Pz8NGDBAe/bs0fr16xUeHq4vvvhCzs7O2r9/f0blBJ4Ymzd/rZUrl+n48WNKTk6Wv39VzZjxiXV9XFysPv54qvbu3aOkpCRVqFBR777bSxUr+t233zVr1mjOnE909uwZubvn18svv6rOnd+13v/9o4+maOfObbp48YIcHR1VrJin3nqrpRo2bGztIyio2h39Fivmqc8//zJjDh4AgGxi+fLlkqS2bdvaLB83bpy1GDx48GAZjUb16tVLSUlJCgoK0ogRI6xtTSaTZs+erZEjR6pFixZydnZWkyZN1KtXL2sbLy8vzZkzR+PGjdOiRYtUpEgRjRkzRrVq1bK2adiwoS5cuKDp06crNjZW5cuX19y5cx96+m4AAAAAAADAXh6pKH2b0WhUYGCgAgMDFRoaqu+++04bNmzIiK6BJ86JE8dlMBjl5VVcMTEnbNZZLBb1799bx44dVcWKlVSwYEHt2LFNffq8q+XL197z5PP27Vs1aNAgubi4qG7dl/XLL/u1dOlCpaSkqGfPvpKkc+fOqHz5inJ3z6+YmOOKjo5SWFioihcvKT+/Sta+XFzyqFGj162P3d3dM34QAADI4o4cOfLANrly5dKIESNsCtH/q1ixYvr000/v20/16tX15Zdf3rdNmzZt1KZNmwdmAgAAAAAAALKiDClK/1uuXLnUsGFDNWzYMKO7Bp4I77zTQ5I0a9bHdxSlv/9+p44dOyoPDw/NnPmpHBwcNGjQ+9q1a4dWrFiiHj363LXPzz6ba+27adPmOnbsiDp2DNHatV+obduOcnd314QJH1rbWywWvfLKi7p69arOnTtrU5TOly+fevd+P4OPGgAAAAAAAAAAADlVhhelAaTfkSOHJUk+Pr7WabcrVKikXbt26OjRw3fdJiUlRSdOHPv/thUlSWXK+MrJyUlJSUn6448Y+ftXlSR9++3XOngwWseOHdXVq1dVtqyvatYMsukvNva86td/QY6Ojipb1lddunRThQr3nzocAAAAAAAAAAAAuBeK0kAWcuFCvCTJ2dnZuszF5dbv8fFxd90mIeGSzGbz/7d1sS53dnZWUlKSzXY//LBHmzZ9JUlydHRUzZovKFeu3Nb1BQp4qEqVAOXLl09RUT/rxx/36dChg1q4cIWKFHk6g44SAAAAAAAAAAAAOQlFaSALKVDAQ5J0/fp167Jr165Jkjw87n4/aTc3d5lMJpnNZmvbf/fx7+2GDBmpAQOGKibmuAYOfF/z538qV1dXtWgRIklat+5rGQwGSdLNmzfUvPmbio+P05493+vNN9/KwCMFAAAAAAAAAABATmG0dwAA/yhb1leSdOzYEaWkpEiSDh78VdKtKbnvxsHBQd7ePpKk3347KEk6evSwkpKS5OTkpJIlS+vmzZtKTk62ti9btpxKlCgpSTpx4rgkKS4u1qYYfotFkpSUlJQxBwgAAAAAAAAAAIAchyulgcds587t2rVru44cOSRJOnXqpMaOHSk3N3d169ZL3t5ldOLEMfXo0UUeHh7avXuncufOrVat2kiSfv75R/Xq9Y4kaffuHyVJHTq8rcGD+2v27Bk6dOg3RUX9LEl6881gubu769ixI+rdu5sCAqoqf34PnTz5u/bv/0mS9Oyz1SVJ+/bt0fTpUxQQUE0FChRQVNTPio+Pl7Ozi1544aXHOEIAAAAAAAAAAAB4kmSpK6V/+OEHvfPOOwoKCpKvr6+2bNlis95iseijjz5SUFCQKleurA4dOuiPP/6waXPp0iW9//77qlq1qqpVq6bBgwfr6tWrNm0OHz6s1q1bq1KlSqpdu7Y+/fTTO7Js2rRJr7zyiipVqqTGjRtrx44dGX68yJmOHTuiTZu+UkzMCUm37iO9adNX2r79OxmNRk2aNE0vvVRPv/9+QpGREapc2V/Tpv1XBQsWsunHZDJZf69Tp67GjBmjQoWe0ubNXys5OVmtW7fVu+/2knRrim9f33KKjv5FX331pX7/PUb+/lUVGhqm+vVfkSSVK1de1apV1+HDvyk8fIOuXLmi2rVf0uzZn3E/aQAAAAAAAAAAAKRblrpS+tq1a/L19VVwcLB69Ohxx/pPP/1Uixcv1vjx4+Xp6amPPvpInTp1Unh4uHLlyiVJ6tevn2JjYzV//nwlJydr8ODBGj58uKZMmSJJunLlijp16qQaNWooNDRUR48e1eDBg5UvXz61aNFCkvTzzz/r/fff13vvvaeXXnpJGzZsUPfu3bVmzRqVLVv28Q0InkidOnVVp05d77n+qacKa/To8fdcf/ToYUlSu3b/sVnerFkz1avXUCkpqXft88MPZ943V+nSPhozZsJ92wAAAAAAAAAAAAAPK0tdKV27dm317dtX9evXv2OdxWLRokWL9O6776pevXoqV66cJk6cqPPnz1uvqD5x4oR27dqlMWPGqEqVKqpWrZqGDh2qjRs36u+//5YkrV+/XsnJyQoLC1OZMmXUqFEjtW3bVvPnz7fua9GiRapVq5befvtteXt7q0+fPqpQoYKWLFnyeAYCuI99+/aofPmKat++k72jAAAAAAAAAAAAAA+Upa6Uvp8zZ84oNjZWgYGB1mV58+ZVlSpVtH//fjVq1Ej79+9Xvnz5VKlSJWubwMBAGY1GRUdHq379+oqKilK1atXk5ORkbRMUFKRPP/1UCQkJcnNzU1RUlDp06GCz/6CgoDumE38Qo9Ego9GQvgPOhkwmo81PZI7p0/97x7IcM/aGrPl+uh3LYJAsyloZHRwy7jWRFYf/32Of1WTk2CdnxQP8F0MWy5eRYw8AAAAAAAAAeHTZpigdGxsrSfLw8LBZ7uHhobi4OElSXFycChQoYLPewcFBbm5u1u3j4uLk6elp06ZgwYLWdW5uboqLi7Muu9t+0qpAgTxZ7kT945Avn7O9I2SqX7bH2DtCtlLlxdIZ1ldWLzRlxS8F5M+fJ8P6MmXh8Tc+4WOflAWP77Yn/XUPAAAAAAAAAHh02aYonR1duHA1x10pnS+fsxITr8tsvvO+xk+KLHlsBslkNMqcmipZ7B3G1sWLVzOsr7vdLzsrMBhuvf7N5lRZnuDxN2fB8TcYbhWkU5/0sc+K/+7on9d9VpORY/+/KHgDAAAAAAAAwMPLNkXpQoUKSZLi4+P11FNPWZfHx8erXLlykm5d8XzhwgWb7VJSUpSQkGDdvmDBgndc8Xz78e2ro+/WJj4+/o6rpx8kNdWi1NQsViV5DMzm1CxbPMwIlqxW+ZJkuD1ltCXr5cvQ10IWO7bbbk/ZbbEoy2XMyPHPYodmw2LJevkyduyz2MHJdsrurJbvSf4bBAAAAAAAAADZUdabc/MePD09VahQIUVGRlqXXblyRb/88osCAgIkSQEBAUpMTNSBAwesbfbs2aPU1FRVrlxZkuTv768ff/xRycnJ1jYREREqVaqU3NzcrG327Nljs/+IiAj5+/tn1uEBAAAAAAAAAAAAwBMpSxWlr169qkOHDunQoUOSpDNnzujQoUM6d+6cDAaD2rVrp1mzZum7777TkSNH9MEHH+ipp55SvXr1JEne3t6qVauWhg0bpujoaP30008aPXq0GjVqpMKFC0uSGjduLEdHRw0ZMkTHjh1TeHi4Fi1apI4dO1pztGvXTrt27dJnn32mEydO6OOPP9aBAwfUpk2bxz8oAAAAAAAAAAAAAJCNZanpuw8cOKB27dpZH48bN06S1KRJE40fP16dO3fW9evXNXz4cCUmJuqZZ57R3LlzlStXLus2kydP1ujRo9W+fXsZjUa9/PLLGjp0qHV93rx5NW/ePI0aNUpNmzZV/vz51a1bN7Vo0cLapmrVqpo8ebKmTZumqVOnqmTJkpo5c6bKli37GEYBAAAAAAAAAAAAAJ4cWaooXb16dR05cuSe6w0Gg3r37q3evXvfs427u7umTJly3/2UK1dOy5Ytu2+bV199Va+++ur9AwMAAAAAAAAAAAAA7itLTd8NAAAAAAAAAAAAAHiyUJQGAAAAAAAAAAAAAGQaitIAAAAAAAAAAAAAgExDURoAAAAAAAAAAAAAkGkoSgMAAAAAAAAAAAAAMg1FaQAAAAAAAAAAAABApnGwdwDY39ixI7Vp01d3LJ85c66qVPG/53YHDvyqWbOm69Ch3+Tk5KQaNQI1fPhQOTrmkSQdO3ZUM2ZM0+HDB3X16lVJ0u7dP9r0cfDgAc2bN1tHjx7WtWvXlD9/AQUFvaB33+2l3LlzZ9xBAgAAAAAAAAAAALALitKwevHFOipUqLD1caFChe7ZNjb2vPr0eVc3btzQiy/WUWxsrDZv/kbnzp3R3LmLJEl///2X4uPjVKaMr6Kifr6jj5SUFL3/fk9duXJZZcuWk69vOW3Z8q1Wr14pk8mkXr3ez/iDBAAAAAAAAAAAAPBYUZSGVdOmzVW1arU0tV2xYolu3Lih2rVf0pgxE5WcnKymTRvq4MGD+v77XXr++SAFBb2goKAXtGdPxF2L0pcuXdSVK5clSUOGjJS3t49MJgd9+eUq/fnnuQw9NgAAAAAAAAAAAAD2wT2lYTV4cD/VqVNTbdo008qVy2WxWO7Z9siRw5Kk8uUrSpIcHR3l61vOZt2DFCxYSA0aNJR0awrxCRPG6JtvwuXunl8hIR0e4UgAAAAAAAAAAAAAZBVcKQ05OjrqmWeeVbFinoqLi1Vk5PeaPn2KLJZUtWgRctdtLlyIlyQ5O7tYl93+PS4uLs37fuWVRtq//ycdPXpYR4/eKmYHBb2g4sWLp/dwAAAAAAAAAAAAAGQhFKWh/v0Hy2AwWB9Pnz5FK1cu13ffbb5nUbpAAQ+dOnVS169fsy67du2qJKlgwYJp2u/Fixc1YMB7Skq6qTFjJqh69UCFhYVq8+avZTabNWrUuEc4KgAAAAAAAAAAAABZAdN3Q6dPn7J5fHvW7qSkpHtuU7asryTp0KGDkqTk5GQdPXrEZt2D/P33n0pKuilJ8vOrImdnZ+u2f/wRk/YDAAAAAAAAAAAAAJBlcaU0FBLylvz8KqtkydKKj781fbckvfJKQ2uboKBqkqTp02eratVqatmyjdatW6MdO7Zp6NAPFBsbq4sXL6pChQoKCnpBZrNFJ0/+oSVLFig29ry1n7FjR0qSunfvo5IlS8vd3V2XLl1S//69VK5cBW3btkWS5O9f9TEdPQAAAAAAAAAAAIDMRFEaat68lfbt26MtW76R0WhQ2bLlFBzcXA0bNpYkWW5fOi3JZLr1knnqqcL68MOZmj17hiIivpeTk6Pq1q2vESOG/f9U4BbFx8dp06avbPZ1+/F//tNF7u7umjp1hubOna3ffjuokyfD5eFRUI0avaEuXd59PAcPAAAAAAAAAAAAIFNRlIZ69nzvvutvT8sdEPCMKlWqbF1eubK//vvfudbHDg5G5c+fRxcv3rq3dNWq1bR794/37bts2XKaOHFaOpMDAAAAAAAAAAAAyOq4pzQeaN++SLm65tXQoaEyGnnJAAAAAAAAAAAAAEg7Kox4oLZtO+rrr7epcOEi9o4CAAAAAAAAAAAAIJth+u5savOsg/aOcAeDwSCTySizOdXmPtRZQf13K9o7AgAAAAAAAAAAAJAjcaU0AAAAAAAAAAAAACDTUJQGAAAAAAAAAAAAAGQaitIAAAAAAAAAAAAAgExDURoAAAAAAAAAAAAAkGkoSgMAAAAAAAAAAAAAMg1FaQAAAAAAAAAAAABApqEoDQAAAAAAAAAAAADINBSlAQAAAAAAAAAAAACZhqI0AAAAAAAAAAAAACDTUJQGAAAAAAAAAAAAAGQaitIAAAAAAAAAAAAAgExDURoAAAAAAAAAAAAAkGkoSgMAAAAAAAAAAAAAMg1FaQAAAAAAAAAAAABApqEoDQAAAAAAAAAAAADINBSlAQAAAAAAAAAAAACZhqI0AAAAAAAAAAAAACDTUJQGAAAAAAAAAAAAAGQaitIAAAAAAAAAAAAAgExDURoAAAAAAAAAAAAAkGkoSj/A0qVLVadOHVWqVEnNmjVTdHS0vSMBAAAgB+JzKQAAAAAAALIritL3ER4ernHjxql79+5au3atypUrp06dOik+Pt7e0QAAAJCD8LkUAAAAAAAA2RlF6fuYP3++mjdvruDgYPn4+Cg0NFS5c+fW6tWr7R0NAAAAOQifSwEAAAAAAJCdOdg7QFaVlJSkgwcPqmvXrtZlRqNRgYGB2r9/f5r6MBoNMhoNmZLPYMicfjNKVsvn4JBx37/IascmSTL889OgrJUvI8deWXHs9U8sg0GyPMHjnxWH/99jn9Vk5NgnZ8UD/Jes9u9ihv67A2QBGfG59NY2mfnZNFO6fSwM//6ZTY8js//dy2qfL9Mrq/29SqtMf36z57Dc8q8PgwZZ7JslnTL9c0t2fn71z/vWYDDIwnMMAAAAZGsUpe/h4sWLMpvN8vDwsFnu4eGhmJiYNPXh4eGaGdEkSa2GVc+0vnF/+ev62DtCjtVh0nR7R8jRngluae8IOVb+Ps/YOwIAO8qIz6W32mfeZ1O9+07m9Q27a6MQe0dAJqqfP4+9IyAT5bd3gIxiysaFXd5jAAAAgCSm7wYAAAAAAAAAAAAAZCKK0veQP39+mUwmxcfH2yyPj49XwYIF7ZQKAAAAOQ2fSwEAAAAAAJDdUZS+BycnJ1WsWFGRkZHWZampqYqMjFRAQIAdkwEAACAn4XMpAAAAAAAAsjvuKX0fHTt21IABA+Tn56fKlStr4cKFun79upo2bWrvaAAAAMhB+FwKAAAAAACA7Iyi9H00bNhQFy5c0PTp0xUbG6vy5ctr7ty5TJMIAACAx4rPpQAAAAAAAMjODBaLxWLvEAAAAAAAAAAAAACAJxP3lAYAAAAAAAAAAAAAZBqK0gAAAAAAAAAAAACATENRGgAAAAAAAAAAAACQaShKAwAAAACAbGHNmjWqVq2avWMgk/D8AgAAAE8uitJ4ZD/88IPeeecdBQUFydfXV1u2bLF3pBxjzpw5Cg4OVkBAgGrUqKFu3bopJibG3rFyhGXLlqlx48aqWrWqqlatqhYtWmjHjh32jpUjffLJJ/L19dXYsWPtHSVH+Pjjj+Xr62vz3yuvvGLvWABgdeHCBY0YMUIvvvii/Pz8VLNmTXXq1Ek//fSTJPF59QnAc5x9xcbGasyYMapfv74qVaqkwMBAtWzZUsuWLdP169ftHQ+PiOcXAAAAwP042DsAsr9r167J19dXwcHB6tGjh73j5Cj79u1TSEiIKlWqJLPZrKlTp6pTp07auHGjXFxc7B3viVakSBH169dPJUqUkMVi0Zdffqnu3btr7dq1KlOmjL3j5RjR0dFasWKFfH197R0lRylTpozmz59vfWwymeyYBgBs9ezZU8nJyRo/fry8vLwUHx+vyMhIXbp0KUP3k5SUJCcnpwztE2nDc5w9nT59Wq1atVLevHnVt29f+fr6ysnJSUeOHNHKlStVuHBh1a1b194xkU48vwAAAAAehKI0Hlnt2rVVu3Zte8fIkebNm2fzePz48apRo4YOHjyoZ5991k6pcoY6derYPO7bt6+WL1+uqKgoitKPydWrV9W/f3+NGTNGs2bNsnecHMVkMqlQoUL2jgEAd0hMTNSPP/6oxYsX67nnnpMkFStWTJUrV5b0z9/v7t27W9dt3bpVp06d0rhx4/TLL7/o+vXrKl26tN5//30FBgZa+65Tp46Cg4N18uRJbdmyRS+//LLGjx//mI8QPMfZ18iRI2UymbR69WqbL9B6eXmpXr16slgskqT58+drzZo1On36tNzc3PTSSy+pf//+ypMnz137fdBze+LECTVt2lRjxoxR48aNJUnh4eEaOHCg1qxZo4sXL6pDhw7avn27zeebsWPH6uDBg1q2bFlmDckThecXAAAAwIMwfTfwBLl8+bIkyc3Nzc5Jchaz2ayNGzfq2rVrCggIsHecHGPUqFGqXbu2zclkPB4nT55UUFCQ6tatq/fff1/nzp2zdyQAkCS5uLjIxcVFW7ZsUVJS0h3rV61aJUkaN26cdu/ebX187do11a5dWwsWLNDatWtVq1YtvfPOO3f8+/bZZ5+pXLly+vLLL9WtW7fMPyDcgec4e7p48aK+//57hYSE3HNGJ4PBYP05ZMgQffXVVxo/frz27NmjSZMm3bPvBz233t7e+uCDDxQaGqpz587pr7/+0siRI9WvXz/5+Pjo2Weflaenp9atW2ftMzk5WRs2bFBwcHAGjsKTi+cXAAAAQFpwpTTwhEhNTVVYWJiqVq2qsmXL2jtOjnDkyBG1bNlSN2/elIuLi2bOnCkfHx97x8oRNm7cqN9++816ohmPT+XKlTVu3DiVKlVKsbGxmjlzpkJCQrRhwwa5urraOx6AHM7BwUHjx4/XsGHDtGLFClWoUEHPPfecGjZsqHLlyqlAgQKSpHz58tlcMVeuXDmVK1fO+rhPnz7asmWLtm7dqjZt2liXP//88/rPf/7z+A4Id+A5zp5OnToli8WiUqVK2SyvXr269csFrVu3Vv/+/dWhQwfrek9PT/Xp00cjRozQyJEj79p3Wp7bkJAQ7dy5U/3795ejo6MqVaqktm3bWrd56623tGbNGr399tuSpG3btunmzZt69dVXM+Lwn3g8vwAAAADSgqI08IQIDQ3VsWPHmH7sMSpVqpS+/PJLXb58Wd98840GDBigJUuWUJjOZH/++afGjh2rzz77TLly5bJ3nBzn37drKFeunKpUqaKXXnpJmzZtUrNmzeyYDABuadCggV588UX9+OOPioqK0q5duzR37lyNGTNGTZs2ves2V69e1YwZM7R9+3bFxsbKbDbrxo0bd1xF6+fn9zgOAQ/Ac/zkWLVqlVJTU9WvXz9r8TIiIkJz5sxRTEyMrly5IrPZrJs3b+r69etydna+o4+0PrdhYWFq0KCBjEajvvrqK+uVu5LUtGlTffTRR4qKipK/v7/WrFmjV1999Z5X/SJteH4BAAAA/BtFaeAJMGrUKG3fvl1LlixRkSJF7B0nx3ByclKJEiUk3TqB+euvv2rRokUaNWqUnZM92Q4ePKj4+Hibk85ms1k//PCDli5dql9//VUmk8mOCXOWfPnyqWTJkjp16pS9owCAVa5cuVSzZk3VrFlT3bt315AhQ/Txxx/fs2A5YcIERUREaMCAASpevLhy586tXr16KTk52abd3QomsA+e4+ylePHiMhgM+v33322We3l5SZJy584tSTpz5oy6du2qVq1aqW/fvnJzc9NPP/2kIUOGKDk5+a7PT1qf28OHD+v69esyGAyKjY3VU089ZV3n4eGhl156SWvWrJGnp6d27dqlRYsWZfQwPLF4fgEAAACkBUVpIBuzWCwaPXq0Nm/erMWLF1v/px/2kZqaetd7GyJjPf/889qwYYPNskGDBql06dLq3LkzBenH7OrVqzp9+rTNFKkAkNX4+Phoy5YtkiRHR0eZzWab9fv371eTJk1Uv359Sbf+bTt79uxjz4n04znO2vLnz6+aNWtqyZIlatOmzT2vUD148KAsFosGDhwoo9EoSdq0adN9+07Lc3vp0iUNHDhQ77zzjmJjY9WvXz+tXbvWWiyVbk3x/P7776tw4cLy8vLSM8888yiHnKPw/AIAAABIC6O9AyD7u3r1qg4dOqRDhw5JuvXt50OHDt0xnRYyXmhoqNavX68pU6YoT548io2NVWxsrG7cuGHvaE+8KVOm6IcfftCZM2d05MgRTZkyRfv27VPjxo3tHe2J5+rqqrJly9r85+LiInd3d+6n/hhMmDBB+/bt05kzZ/Tzzz+rR48eMhqNeu211+wdDQB08eJFtWvXTuvWrdPhw4d1+vRpbdq0SXPnzlXdunUl6f/au/u4nu/9j+MPFRs1m6ZCVi5vxVKEE4pSLpqLSUOtJCuNzMVcjGZuY81Z4RC3XMUWxmpy5kvMzsZ2c3Ew53awszbLXKwxw1hLiqnU749+fY/vCoVO2PN+u7nd+r7f78/74vPx1tf39X2/39jb23PgwAEuXrzI5cuXAXB0dGTHjh189913ZGZmMmXKFIqLi2tyKHILesYPr1mzZnHjxg1eeOEFtm/fzsmTJzl16hRbtmzh1KlTmJub4+joSGFhIevWrePMmTNs3ryZDz/88Lb1VubZzpo1i8aNGxMdHU1MTAzFxcXMnTvXpEz37t2xsrJi+fLlt1xxL7em5ysiIiIiIneildJyz7755htGjBhhfB0XFwfA4MGDiY+Pr6lu/SmkpqYCEBYWZpIeFxen/2hXs19//ZXp06fzyy+/8MQTT+Dk5MR7772Hp6dnTXdNpFqdP3+eyZMnk5OTg7W1NR07diQtLQ1ra+ua7pqICJaWlri5ubF27VpOnz5NUVERjRo1YujQoYwZMwaA6dOnEx8fz8aNG7Gzs+OLL74gJiaGGTNmEBwcTIMGDYiKiiI/P7+GRyMV0TN+eDk4OGAwGEhKSmLBggVcuHCB2rVr06pVKyIiIggJCaFu3bq8/vrrrFq1ioULF9KpUycmT57M9OnTb1nvnZ7t5s2b2bNnDwaDAQsLCywsLJg/fz4hISH4+Pjg7e0NgJmZGYMHDyYpKYmAgIDqvh2PHD1fERERERG5k1olJSUlNd0JEREREREREZGaNGPGDLKzs1mxYkVNd0WqgZ6viIiIiEjN0kppEREREREREfnTunLlCseOHWPbtm0sX768prsj95mer4iIiIjIg0FBaRERERERERH50xo7dixff/01wcHBOo7nEaTnKyIiIiLyYND23SIiIiIiIiIiIiIiIiIiUm3MaroDIiIiIiIiIiIiIiIiIiLy6FJQWkREREREREREREREREREqo2C0iIiIiIi8lCLiYnBycnJ+MfDw4PIyEgyMzNrumvy/xITE02ekZOTE/7+/gBkZ2fj6enJihUryl03ceJEhg0bxo0bN8rl/fTTTyb1ubi40Lt3b5YtW4ZOqXq4aA4/2DR/RURERETkfrCo6Q6IiIiIiIjcq+7duxMXFwfApUuXWLRoEWPGjGHXrl012zExat26NatXrza+Njc3B8Da2prY2FgmTpxIz549cXJyAuCTTz5h165dGAwGY9mKrFmzhlatWlFQUMChQ4eYOXMmNjY2DB06tHoHJPeV5vCDTfNXRERERETulVZKi0iNOnjwIE5OTvzjH/+o6a7cVtnqgPvJ19eXmJiYSpU9d+4c7dq149ChQ/e1D/9Lw4YNY968eTXdDREReUTVqVMHGxsbbGxsaNOmDVFRUZw7d47s7GwA5s+fT9++fXFzc8PPz49FixZRWFhovD4zM5OwsDA6dOiAu7s7gYGBZGRkGPP//e9/ExISgqurK97e3syZM4erV6/+z8f5MDM3Nzc+IxsbG6ytrY15fn5+DBw4kJiYGAoLC8nOziY2NpYpU6bQokWL29b71FNPYWNjg729Pc8//zzu7u4cPXrUmF9cXMySJUvo0aMHLi4uDBo0iD179hjzy1ZsfvbZZ4SFheHm5sbzzz/PkSNHjGUSExMZNGiQSbtr1qzB19fX+PrgwYMMGTKE9u3b06lTJ4KDgzl79uxd368/G83hB5vmr4iIiIiI3CsFpUXExKZNm3BycjL5AOdB9cct39q0aYOPjw+vvPIK3333XU13775aunQpbm5udOzYkdzcXLy8vAgODq5wa7uvvvoKZ2dn5s6dWwM9vbWoqChSUlK4ePFiTXdFREQecfn5+aSnp+Po6MhTTz0FgKWlJXFxcXz88ce88cYbbNy4kTVr1hivmTp1Ko0aNeLvf/87mzZtIioqitq1awNw+vRpoqKi6NOnD+np6SQkJHDo0CHefvvtGhjdw+vHH3/Ey8sLPz8/pkyZws8//2yS/8Ybb5CTk8OyZcuYPXs2rVu3JiwsrEptZGRk8O233+Lm5mZMe//991m9ejXTp08nPT0dLy8vxo4dS1ZWlsm1CQkJREZGsnnzZpo1a8aUKVMoKiqqVLtFRUW88sordO7cmfT0dDZs2EBQUBBaBp6MAAASHElEQVS1atWqUv+llObwg0fzV0RERERE7pW27xaRh96AAQPo0aMHxcXFnDx5ktTUVPbs2UNaWhpt2rS5L21ER0fz8ssv35e6qio7O5vNmzcTHx8PQP369ZkxYwaTJk0iLS2NoKAgY9mioiJmzZpFkyZNmDBhQo3091b8/PywsrIiJSWFiRMn1nR3RETkEbNr1y46dOgAwNWrV7GxsSEpKQkzs9Lv4Y4dO9ZYtmnTpvzwww98/PHHREVFAfDzzz8TGRlJy5YtAWjWrJmxfFJSEgMHDmTkyJHGvDfeeIOwsDBmz57NY4899j8Y4cPN1dWVuLg4mjdvzsWLF1m6dCmhoaFs3boVKysrAKysrHjnnXeIjIykbt26pKenVyooFBwcjJmZGYWFhRQWFhIUFERAQIAx/7333iMqKor+/fsD8Nprr3Hw4EHWrl3LrFmzjOUiIiLw8fEBYMKECfTv358ff/zR+HfidvLy8rhy5Qo9e/bEwcEBoFLXyX9pDj+4NH9FREREROR+UFBaRB56bdu2NdmOzd3dnejoaFJTU4mNjb2nuq9evUq9evWwsLDAwqJm/slMT0/H3Nycnj17GtP69euHwWBgwYIF+Pn50bBhQ6B0JUFmZiYrV66kbt261d63svtTGWZmZvTt25ctW7YwYcIErTwQEZH7ysPDg9mzZwNw+fJlUlNTiYqKYuPGjdjb27N9+3bef/99zpw5w9WrVykqKjIGUwBeeuklZs6cyZYtW+jWrRv+/v7G4ERmZibHjh1j69atxvIlJSUUFxfz008/KXhRCd7e3safnZ2dcXNzo2fPnnzyyScmZ8d27doVNzc32rRpg729faXqTkhIoGXLlhQVFfH9998zZ84c6tevz9SpU8nLy+OXX37B3d3d5Bp3d3cyMzNN0m4+qsXGxgYo/XJgZZ7vU089RWBgIJGRkXh6etK1a1eee+45bG1tKzUG0Rx+kGn+ioiIiIjI/aDtu0Xkrhw9epRRo0bh7u5Ohw4dCA8P56uvvipXLjc3l3feeQdfX19cXFzo0aMH06ZNM54NV5GCggJGjx5Nx44dOXz4cJX71qVLF6B0e+8y//nPf4iMjKRjx464ubkxfPjwcuczl50bfeLECaZMmULnzp0JCQkxybtZUVERS5cupVevXri4uODr68vChQspKCgwKVdSUsKyZcvo0aMHbm5uhIWFcfz48UqPZ+fOnbi6umJpaWmSPmvWLAoKCoiLiwNKz51OTEykX79+xg+Odu/eTUhICO3bt6dDhw68/PLL5drOzMwkJiYGPz8/2rVrh6enJ6+//jq//fZbpe/PxYsXef31141nvXl5eREdHW3yDAC6devG2bNnH7nt1UVEpObVrVsXR0dHHB0dcXV1Zc6cOVy7do20tDSOHDnC1KlT8fb2ZsWKFRgMBsaMGWNyHu348ePZtm0bPj4+fPnll/Tr148dO3YApV/CCg4OZvPmzcY/W7Zs4bPPPuOZZ56pqSE/1OrXr0+zZs04ffp0uTwLCwvMzc0rXVfjxo1xdHSkZcuWPPfcc4SHh7N69WquX79epT6VbfUMGL88V1xcbHz9x2NT/rg1cFxcHBs2bKBDhw588skn9O3bt8L3x1IxzeGHh+aviIiIiIjcDa2UFpEqO378OKGhoVhaWjJq1CgsLCzYsGEDYWFhrF+/3ngGWH5+PqGhoZw8eZIXXniBtm3b8ttvv/HFF19w4cIFrK2ty9X9+++/M3bsWL755htWr16Nq6trlftX9uFI2flzBw4cICoqChcXF8aNG0etWrXYtGkT4eHhpKSklGtj4sSJODo6MmnSpArPbC4zc+ZMDAYDffv25aWXXuLrr78mKSmJkydPsnTpUmO5xYsXs3z5cry9vfH29ubbb78lIiLC5EO0WyksLCQjI4MXX3yxXF7Tpk0ZP3488+bNIzAwkJSUFCwsLJgxYwYAmzdvJiYmBi8vL6ZOncq1a9dITU0lJCQEg8FA06ZNAdi/fz9nzpwhMDAQGxsbjh8/TlpaGidOnCAtLa3ciuaK7s/48eM5ceIEw4cPx97enuzsbPbt28e5c+eM7QC4uLgAcPjwYdq2bXvH8YuIiNytWrVqUatWLa5fv86RI0do0qQJ0dHRxvw/nocK0Lx5c5o3b87IkSOZPHkyH330Eb1796Zt27acOHECR0fH/+UQHmn5+fmcOXPGuKLxfjIzM6OoqIjCwkKsrKywtbXl8OHD/OUvfzGWOXz4cJXeZ1pbW3Pp0iVKSkqM740q+pJd27Ztadu2LaNHjyYoKIht27bRvn37ex7Tn5Hm8INL81dERERERO6GgtIiUmWLFi2isLCQ1NRU48qCgIAA/P39mT9/PuvXrwdKz//6/vvvWbJkCb179zZeP3bs2AqDvfn5+YwZM4bjx4+zdu3aSp8Hfe3aNbKzsykuLubUqVPGlcP+/v6UlJQwe/ZsPDw8ePfdd40fQgQHB9O/f38WLVpEcnKySX3Ozs4sWLDgtm1mZmZiMBgYOnQoc+bMASA0NBRra2uSk5P58ssv6dKlC9nZ2bz77rv4+PiwYsUKY/sJCQmsWLHijmM7d+4cv//+u0lg92bh4eFs3bqVyZMnk5OTQ2xsLDY2NuTn5/PXv/6VoUOH8vbbbxvLDx48GH9/f5KSkozpISEhREREmNTbvn17Jk+ezKFDh+jUqdNt709ubi5Hjhxh2rRpREZGGtNHjx5drr92dnbUrl2bEydO3HHsIiIiVVFQUMDFixeB0t9N69ev5+rVq/Ts2ZO8vDzOnTvHxx9/TLt27di1axc7d+40Xvv7778zb948+vbtS9OmTTl//jwZGRn06dMHgKioKIKCgoiNjWXo0KHUrVuXEydOsH//ft58880aGe/DZu7cufTs2ZMmTZrwyy+/kJiYiJmZGQMGDLjnunNycrh48SI3btzg2LFjvP/++3h4eBi3do6MjCQxMREHBwecnZ3ZtGkTmZmZ/O1vf6t0Gx4eHsTGxrJq1Sr8/f3Zu3cve/fuNbZx5swZ0tLS8PX1xdbWlh9++IGsrCyTI2bk9jSHH1yavyIiIiIicj8oKC0iVXLjxg327dtHr169TLa6s7W1ZcCAAWzcuJG8vDysrKz47LPPcHZ2NglIl/nj6tsrV64QGRnJmTNnWLduHa1bt650nxITE0lMTDS+trKyYurUqfTp04ejR4+SlZVFdHR0ue2ou3btypYtWyguLsbM7L+nGQQHB9+xzd27dwOlZ9fdLCIiguTkZHbv3k2XLl3Yv38/hYWFDB8+3GTM4eHhlQpK5+TkAKVb5FXEwsLC+OFa+/btGTZsGFC6+jk3N5f+/fubbJVuZmaGm5sbBw8eNKY9/vjjxp+vX79Ofn6+cbX7t99+Wy4o/cf78/jjj1O7dm3+9a9/MWTIEJ588snbjunJJ58s9yxERETu1d69e/Hy8gLA0tKSFi1asHjxYjw8PIDS372xsbEUFBTg4+NDdHQ0S5YsAUp/P+bk5DB9+nQuXbpEgwYN6NOnDxMmTABKv5C1bt06Fi1aZDy64plnnqFfv341MNKH0/nz541forO2tqZjx46kpaVVuHNOVY0cORIAc3NzbGxs8Pb2ZtKkScb8ESNGkJeXR3x8vPGM2WXLltGsWbNKt9GyZUtmzZpFUlISy5cvp0+fPkRERJCWlgaUbj196tQpDAYDOTk52NraEhoaWqn3lVJKc/jBpfkrIiIiIiL3g4LSIlIl2dnZXLt2jebNm5fLa9myJcXFxZw7d47WrVtz+vRp4+qEO3nnnXcoKCjAYDBUKSANEBQUhL+/P7Vq1aJ+/fq0bt2aOnXqAJCVlQXA9OnTb3n9lStXTAKpt1qVfLOzZ89iZmaGg4ODSbqNjQ3169fn7NmzwH+3FfzjhybW1tZ3DN7e7HbbiJdtXffss88aA99l4w4PD6/wmrJVAVAa+F6yZAnbt2/n119/NSl35cqVctf+8f7UqVOHqVOnMnfuXDw9PXFzc8PHx4eAgIAKt/S7eds8ERGR+yE+Pp74+Pjblpk2bRrTpk0zSSsLhtSpU4eFCxfe9npXV9dyu6tI5SUkJFS67Lp16ypVrmnTphw7duyO5czMzBg3bhzjxo2rdD3169cvl/biiy+WO1JlzJgxADRs2NDk+BapGs3hB5vmr4iIiIiI3A8KSovIA8HPz4/t27ezcuVK5s2bZ7Jy+U4cHR3p1q1bhXllwdxp06bdcjvwevXqmbx+7LHHKt12dQdXy87Fzs3NrdJ1ZeOeN29ehYFhc3Nz48+vvvoqR44cITIykjZt2lCvXj2Ki4sZNWpUhcHwiu7PyJEj8fX1ZefOnfzzn/9k8eLFrFy5krVr15Y7Ozo3N5cGDRpUaTwiIiIiIiIiIiIiIvLwUlBaRKrE2tqaunXr8sMPP5TLO3XqFGZmZjRu3BgABwcHjh8/Xql6e/XqhZeXFzExMVhaWvLWW2/dl/6WbTFuZWV1y8D13bC3t6e4uJgff/yRli1bGtMvXbpEbm4u9vb2ADRp0gQoXbl883bn2dnZXL58+Y7tNG7cmMcff5yffvqpSv0ra+vpp5++7bgvX77MgQMHGD9+vMnqg7KV1lXh4OBAREQEERERZGVlERAQQHJyssl5bxcuXKCwsNDknomIiIiIiIiIiIiIyKOt8ksRRUQoXWHr6enJ559/bhIovXTpEtu2baNjx47GraH79OlDZmYmO3bsKFdPRStwAwICmDlzJh9++CHz58+/L/11cXHBwcGB5ORk8vPzy+XffN5yVXh7ewOwdu1ak/TVq1eb5Hfr1o3atWuzfv16kzH/8bpbqV27Ni4uLnzzzTdV6l/37t2xsrIiKSmJwsLCcvll4755xfTNKts/gGvXrnH9+nWTNAcHBywtLSkoKDBJLxtHhw4dKl2/iIiIiIiIiIiIiIg83LRSWkQq9NFHH7F3795y6SNGjODVV19l//79hISEEBISgrm5ORs2bKCgoIDXXnvNWDYyMpJPP/2UiRMn8sILL/Dss89y+fJlvvjiC9566y2cnZ3L1T98+HDy8vJISEjgiSeeMJ7zdbfMzMyYM2cOUVFRDBgwgMDAQOzs7Lhw4QIHDx7EysqKFStWVLleZ2dnBg8ezIYNG8jNzaVz585kZGRgMBjo1asXXbp0AUpXlkdERJCUlMTo0aPx9vbm6NGj7Nmzp9JbWPv5+ZGQkEBeXp7JWdC3Y2VlxezZs5k2bRqBgYH069cPa2trfv75Z3bv3o27uztvvvkmVlZWdO7cmXfffZfCwkLs7OzYt29flVZmZ2VlMXLkSPz9/WnVqhXm5ubs3LmTS5cu0b9/f5Oy+/fvp0mTJuW29BYRERERERERERERkUeXgtIiUqHU1NQK0wMDA2ndujUffPABCxYsICkpiZKSElxdXZk/fz5ubm7GspaWlnzwwQckJiayY8cODAYDTz/9NF27dsXOzu6WbY8ZM4YrV64YA9OhoaH3NBYPDw82bNjAsmXLWL9+PVevXsXGxgZXV1eCgoLuut45c+bQtGlTDAYDO3fupGHDhowePdpkG2woPbO5Tp06fPjhhxw8eBBXV1eSk5MZPXp0pdoZNGgQCxYs4PPPP2fQoEGV7t/AgQOxtbVl5cqVvPfeexQUFGBnZ0enTp0IDAw0lluwYAFvv/02KSkplJSU4OnpyapVq+jevXul2mnUqBH9+/fnwIEDpKenY25uTosWLVi0aBF9+/Y1lisuLubTTz9lyJAh1X4Wt4iIiIiIiIiIiIiIPDhqlVS0h66IiDxQZsyYQVZWFikpKTXdlbu2c+dOpkyZwo4dO7C1ta3p7oiIiIiIiIiIiIiIyP+IzpQWEXkIjBs3joyMDA4dOlTTXblrq1atIjQ0VAFpEREREREREREREZE/Ga2UFhERERERERERERERERGRaqOV0iIiIiIiIiIiIiIiIiIiUm0UlBYRERERERERERERERERkWqjoLSIiIiIiIiIiIiIiIiIiFQbBaVFRERERERERERERERERKTaKCgtIiIiIiIiIiIiIiIiIiLVRkFpERERERERERERERERERGpNgpKi4iIiIiIiIiIiIiIiIhItVFQWkREREREREREREREREREqo2C0iIiIiIiIiIiIiIiIiIiUm0UlBYRERERERERERERERERkWqjoLSIiIiIiIiIiIiIiIiIiFSb/wN5DKhWLBXQuAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 2000x1000 with 6 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Create comprehensive visualization for dynamic lockdrop simulation\n",
"\n",
"fig = plt.figure(figsize=(20, 10))\n",
"gs = fig.add_gridspec(2, 3, hspace=0.35, wspace=0.35) # 2x3 grid\n",
"\n",
"fig.suptitle('Lockdrop Simulation Analysis', fontsize=18, fontweight='bold', y=0.98)\n",
"\n",
"# 1. Star Participation Distribution by Lock Period\n",
"ax1 = fig.add_subplot(gs[0, 0])\n",
"star_years = [1, 2, 3, 4, 5]\n",
"star_counts = [stars_1_years, stars_2_years, stars_3_years, stars_4_years, stars_5_years]\n",
"\n",
"bars1 = ax1.bar(range(len(star_years)), star_counts,\n",
" color=['#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728'],\n",
" alpha=0.8)\n",
"ax1.set_xlabel('Lock Period (Years)')\n",
"ax1.set_ylabel('Number of Stars')\n",
"ax1.set_title('Star Participation by Lock Period', fontweight='bold')\n",
"ax1.set_xticks(range(len(star_years)))\n",
"ax1.set_xticklabels(star_years)\n",
"\n",
"# Add value labels\n",
"for i, count in enumerate(star_counts):\n",
" height = bars1[i].get_height()\n",
" ax1.text(bars1[i].get_x() + bars1[i].get_width()/2., height + height*0.01,\n",
" f'{count:,}', ha='center', va='bottom', fontweight='bold', fontsize=9)\n",
"\n",
"# 2. Galaxy Participation Distribution by Lock Period\n",
"ax2 = fig.add_subplot(gs[0, 1])\n",
"galaxy_years = [1, 2, 3, 4, 5]\n",
"galaxy_counts = [galaxies_1_years, galaxies_2_years, galaxies_3_years, galaxies_4_years, galaxies_5_years]\n",
"\n",
"bars2 = ax2.bar(range(len(galaxy_years)), galaxy_counts,\n",
" color=['#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2'],\n",
" alpha=0.8)\n",
"ax2.set_xlabel('Lock Period (Years)')\n",
"ax2.set_ylabel('Number of Galaxies')\n",
"ax2.set_title('Galaxy Participation by Lock Period', fontweight='bold')\n",
"ax2.set_xticks(range(len(galaxy_years)))\n",
"ax2.set_xticklabels(galaxy_years)\n",
"\n",
"# Add value labels\n",
"for i, count in enumerate(galaxy_counts):\n",
" height = bars2[i].get_height()\n",
" ax2.text(bars2[i].get_x() + bars2[i].get_width()/2., height + height*0.01,\n",
" f'{count:,}', ha='center', va='bottom', fontweight='bold', fontsize=9)\n",
"\n",
"# 3. Star Allocations by Lock Period\n",
"ax3 = fig.add_subplot(gs[0, 2])\n",
"star_allocations = [\n",
" float(allocation_per_star_1_years),\n",
" float(allocation_per_star_2_years),\n",
" float(allocation_per_star_3_years),\n",
" float(allocation_per_star_4_years),\n",
" float(allocation_per_star_5_years)\n",
"]\n",
"\n",
"bars3 = ax3.bar(range(len(star_years)), star_allocations,\n",
" color=['#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728'],\n",
" alpha=0.8)\n",
"ax3.set_xlabel('Lock Period (Years)')\n",
"ax3.set_ylabel('Allocation per Star ($Z)')\n",
"ax3.set_title('Star Allocations by Lock Period', fontweight='bold')\n",
"ax3.set_xticks(range(len(star_years)))\n",
"ax3.set_xticklabels(star_years)\n",
"\n",
"# Add value labels\n",
"for i, allocation in enumerate(star_allocations):\n",
" height = bars3[i].get_height()\n",
" ax3.text(bars3[i].get_x() + bars3[i].get_width()/2., height + height*0.01,\n",
" f'{allocation:,.0f}', ha='center', va='bottom', fontweight='bold', fontsize=9)\n",
"\n",
"# 4. Galaxy Allocations by Lock Period\n",
"ax4 = fig.add_subplot(gs[1, 0])\n",
"galaxy_allocations = [\n",
" float(allocation_per_galaxy_1_years),\n",
" float(allocation_per_galaxy_2_years),\n",
" float(allocation_per_galaxy_3_years),\n",
" float(allocation_per_galaxy_4_years),\n",
" float(allocation_per_galaxy_5_years)\n",
"]\n",
"\n",
"bars4 = ax4.bar(range(len(galaxy_years)), galaxy_allocations,\n",
" color=['#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2'],\n",
" alpha=0.8)\n",
"ax4.set_xlabel('Lock Period (Years)')\n",
"ax4.set_ylabel('Allocation per Galaxy ($Z)')\n",
"ax4.set_title('Galaxy Allocations by Lock Period', fontweight='bold')\n",
"ax4.set_xticks(range(len(galaxy_years)))\n",
"ax4.set_xticklabels(galaxy_years)\n",
"\n",
"# Add value labels\n",
"for i, allocation in enumerate(galaxy_allocations):\n",
" height = bars4[i].get_height()\n",
" ax4.text(bars4[i].get_x() + bars4[i].get_width()/2., height + height*0.01,\n",
" f'{allocation:,.0f}', ha='center', va='bottom', fontweight='bold', fontsize=9)\n",
"\n",
"# 5. 5-Year Bonus Impact (Stars and Galaxies)\n",
"ax5 = fig.add_subplot(gs[1, 1])\n",
"categories = ['Star\\nBase', 'Star\\n5Y Bonus', 'Galaxy\\nBase', 'Galaxy\\n5Y Bonus']\n",
"star_5y_base = float(adjusted_max_allocation_per_star)\n",
"star_5y_final = float(allocation_per_star_5_years)\n",
"galaxy_5y_base = float(adjusted_max_allocation_per_galaxy)\n",
"galaxy_5y_final = float(allocation_per_galaxy_5_years)\n",
"\n",
"star_efficiency_gain = (star_5y_final / star_5y_base - 1) * 100\n",
"galaxy_efficiency_gain = (galaxy_5y_final / galaxy_5y_base - 1) * 100\n",
"\n",
"bonus_values = [star_5y_base, star_5y_final, galaxy_5y_base, galaxy_5y_final]\n",
"colors_bonus = ['lightcoral', 'lightgreen', 'lightblue', 'lightcyan']\n",
"\n",
"bars5 = ax5.bar(range(len(categories)), bonus_values, color=colors_bonus, alpha=0.8)\n",
"ax5.set_ylabel('Allocation ($Z)')\n",
"ax5.set_title('5-Year Bonus Impact', fontweight='bold')\n",
"ax5.set_xticks(range(len(categories)))\n",
"ax5.set_xticklabels(categories)\n",
"\n",
"# Add value labels\n",
"labels = [\n",
" f'{star_5y_base:,.0f}',\n",
" f'{star_5y_final:,.0f}\\n(+{star_efficiency_gain:.1f}%)',\n",
" f'{galaxy_5y_base:,.0f}',\n",
" f'{galaxy_5y_final:,.0f}\\n(+{galaxy_efficiency_gain:.1f}%)'\n",
"]\n",
"\n",
"for i, (bar, label) in enumerate(zip(bars5, labels)):\n",
" height = bar.get_height()\n",
" ax5.text(bar.get_x() + bar.get_width()/2., height + height*0.01,\n",
" label, ha='center', va='bottom', fontweight='bold', fontsize=8)\n",
"\n",
"# Hide the 6th subplot area (bottom right)\n",
"ax6 = fig.add_subplot(gs[1, 2])\n",
"ax6.axis('off')\n",
"\n",
"# Manual layout adjustment with more space at top for title\n",
"plt.subplots_adjust(bottom=0.08, top=0.88, left=0.05, right=0.98)\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}