cosmos-sdk/types/decimal.go
Miguel Dingli 018915b1a8
Fix ApproxRoot Infinite Looping (#7140)
Added a maximum number of iterations (100) to ApproxRoot
(and ApproxSqrt) to serve as a hard limit on the number of
iterations that the algorithm performs. If the answer converges
before the maximum iterations, it returns immediately. Otherwise,
if the answer never converges enough to satisfy the primary loop
condition, the looping stops after a hundred iterations.

Closes: #7038

Co-authored-by: Alessio Treglia <quadrispro@ubuntu.com>
2020-08-29 11:13:36 +01:00

800 lines
20 KiB
Go

package types
import (
"encoding/json"
"errors"
"fmt"
"math/big"
"strconv"
"strings"
"testing"
)
var _ CustomProtobufType = (*Dec)(nil)
// NOTE: never use new(Dec) or else we will panic unmarshalling into the
// nil embedded big.Int
type Dec struct {
i *big.Int
}
const (
// number of decimal places
Precision = 18
// bytes required to represent the above precision
// Ceiling[Log2[999 999 999 999 999 999]]
DecimalPrecisionBits = 60
// max number of iterations in ApproxRoot function
maxApproxRootIterations = 100
)
var (
precisionReuse = new(big.Int).Exp(big.NewInt(10), big.NewInt(Precision), nil)
fivePrecision = new(big.Int).Quo(precisionReuse, big.NewInt(2))
precisionMultipliers []*big.Int
zeroInt = big.NewInt(0)
oneInt = big.NewInt(1)
tenInt = big.NewInt(10)
)
// Decimal errors
var (
ErrEmptyDecimalStr = errors.New("decimal string cannot be empty")
ErrInvalidDecimalLength = errors.New("invalid decimal length")
ErrInvalidDecimalStr = errors.New("invalid decimal string")
)
// Set precision multipliers
func init() {
precisionMultipliers = make([]*big.Int, Precision+1)
for i := 0; i <= Precision; i++ {
precisionMultipliers[i] = calcPrecisionMultiplier(int64(i))
}
}
func precisionInt() *big.Int {
return new(big.Int).Set(precisionReuse)
}
func ZeroDec() Dec { return Dec{new(big.Int).Set(zeroInt)} }
func OneDec() Dec { return Dec{precisionInt()} }
func SmallestDec() Dec { return Dec{new(big.Int).Set(oneInt)} }
// calculate the precision multiplier
func calcPrecisionMultiplier(prec int64) *big.Int {
if prec > Precision {
panic(fmt.Sprintf("too much precision, maximum %v, provided %v", Precision, prec))
}
zerosToAdd := Precision - prec
multiplier := new(big.Int).Exp(tenInt, big.NewInt(zerosToAdd), nil)
return multiplier
}
// get the precision multiplier, do not mutate result
func precisionMultiplier(prec int64) *big.Int {
if prec > Precision {
panic(fmt.Sprintf("too much precision, maximum %v, provided %v", Precision, prec))
}
return precisionMultipliers[prec]
}
//______________________________________________________________________________________________
// create a new Dec from integer assuming whole number
func NewDec(i int64) Dec {
return NewDecWithPrec(i, 0)
}
// create a new Dec from integer with decimal place at prec
// CONTRACT: prec <= Precision
func NewDecWithPrec(i, prec int64) Dec {
return Dec{
new(big.Int).Mul(big.NewInt(i), precisionMultiplier(prec)),
}
}
// create a new Dec from big integer assuming whole numbers
// CONTRACT: prec <= Precision
func NewDecFromBigInt(i *big.Int) Dec {
return NewDecFromBigIntWithPrec(i, 0)
}
// create a new Dec from big integer assuming whole numbers
// CONTRACT: prec <= Precision
func NewDecFromBigIntWithPrec(i *big.Int, prec int64) Dec {
return Dec{
new(big.Int).Mul(i, precisionMultiplier(prec)),
}
}
// create a new Dec from big integer assuming whole numbers
// CONTRACT: prec <= Precision
func NewDecFromInt(i Int) Dec {
return NewDecFromIntWithPrec(i, 0)
}
// create a new Dec from big integer with decimal place at prec
// CONTRACT: prec <= Precision
func NewDecFromIntWithPrec(i Int, prec int64) Dec {
return Dec{
new(big.Int).Mul(i.BigInt(), precisionMultiplier(prec)),
}
}
// create a decimal from an input decimal string.
// valid must come in the form:
// (-) whole integers (.) decimal integers
// examples of acceptable input include:
// -123.456
// 456.7890
// 345
// -456789
//
// NOTE - An error will return if more decimal places
// are provided in the string than the constant Precision.
//
// CONTRACT - This function does not mutate the input str.
func NewDecFromStr(str string) (Dec, error) {
if len(str) == 0 {
return Dec{}, ErrEmptyDecimalStr
}
// first extract any negative symbol
neg := false
if str[0] == '-' {
neg = true
str = str[1:]
}
if len(str) == 0 {
return Dec{}, ErrEmptyDecimalStr
}
strs := strings.Split(str, ".")
lenDecs := 0
combinedStr := strs[0]
if len(strs) == 2 { // has a decimal place
lenDecs = len(strs[1])
if lenDecs == 0 || len(combinedStr) == 0 {
return Dec{}, ErrInvalidDecimalLength
}
combinedStr += strs[1]
} else if len(strs) > 2 {
return Dec{}, ErrInvalidDecimalStr
}
if lenDecs > Precision {
return Dec{}, fmt.Errorf("invalid precision; max: %d, got: %d", Precision, lenDecs)
}
// add some extra zero's to correct to the Precision factor
zerosToAdd := Precision - lenDecs
zeros := fmt.Sprintf(`%0`+strconv.Itoa(zerosToAdd)+`s`, "")
combinedStr += zeros
combined, ok := new(big.Int).SetString(combinedStr, 10) // base 10
if !ok {
return Dec{}, fmt.Errorf("failed to set decimal string: %s", combinedStr)
}
if neg {
combined = new(big.Int).Neg(combined)
}
return Dec{combined}, nil
}
// Decimal from string, panic on error
func MustNewDecFromStr(s string) Dec {
dec, err := NewDecFromStr(s)
if err != nil {
panic(err)
}
return dec
}
//______________________________________________________________________________________________
//nolint
func (d Dec) IsNil() bool { return d.i == nil } // is decimal nil
func (d Dec) IsZero() bool { return (d.i).Sign() == 0 } // is equal to zero
func (d Dec) IsNegative() bool { return (d.i).Sign() == -1 } // is negative
func (d Dec) IsPositive() bool { return (d.i).Sign() == 1 } // is positive
func (d Dec) Equal(d2 Dec) bool { return (d.i).Cmp(d2.i) == 0 } // equal decimals
func (d Dec) GT(d2 Dec) bool { return (d.i).Cmp(d2.i) > 0 } // greater than
func (d Dec) GTE(d2 Dec) bool { return (d.i).Cmp(d2.i) >= 0 } // greater than or equal
func (d Dec) LT(d2 Dec) bool { return (d.i).Cmp(d2.i) < 0 } // less than
func (d Dec) LTE(d2 Dec) bool { return (d.i).Cmp(d2.i) <= 0 } // less than or equal
func (d Dec) Neg() Dec { return Dec{new(big.Int).Neg(d.i)} } // reverse the decimal sign
func (d Dec) Abs() Dec { return Dec{new(big.Int).Abs(d.i)} } // absolute value
// BigInt returns a copy of the underlying big.Int.
func (d Dec) BigInt() *big.Int {
if d.IsNil() {
return nil
}
copy := new(big.Int)
return copy.Set(d.i)
}
// addition
func (d Dec) Add(d2 Dec) Dec {
res := new(big.Int).Add(d.i, d2.i)
if res.BitLen() > 255+DecimalPrecisionBits {
panic("Int overflow")
}
return Dec{res}
}
// subtraction
func (d Dec) Sub(d2 Dec) Dec {
res := new(big.Int).Sub(d.i, d2.i)
if res.BitLen() > 255+DecimalPrecisionBits {
panic("Int overflow")
}
return Dec{res}
}
// multiplication
func (d Dec) Mul(d2 Dec) Dec {
mul := new(big.Int).Mul(d.i, d2.i)
chopped := chopPrecisionAndRound(mul)
if chopped.BitLen() > 255+DecimalPrecisionBits {
panic("Int overflow")
}
return Dec{chopped}
}
// multiplication truncate
func (d Dec) MulTruncate(d2 Dec) Dec {
mul := new(big.Int).Mul(d.i, d2.i)
chopped := chopPrecisionAndTruncate(mul)
if chopped.BitLen() > 255+DecimalPrecisionBits {
panic("Int overflow")
}
return Dec{chopped}
}
// multiplication
func (d Dec) MulInt(i Int) Dec {
mul := new(big.Int).Mul(d.i, i.i)
if mul.BitLen() > 255+DecimalPrecisionBits {
panic("Int overflow")
}
return Dec{mul}
}
// MulInt64 - multiplication with int64
func (d Dec) MulInt64(i int64) Dec {
mul := new(big.Int).Mul(d.i, big.NewInt(i))
if mul.BitLen() > 255+DecimalPrecisionBits {
panic("Int overflow")
}
return Dec{mul}
}
// quotient
func (d Dec) Quo(d2 Dec) Dec {
// multiply precision twice
mul := new(big.Int).Mul(d.i, precisionReuse)
mul.Mul(mul, precisionReuse)
quo := new(big.Int).Quo(mul, d2.i)
chopped := chopPrecisionAndRound(quo)
if chopped.BitLen() > 255+DecimalPrecisionBits {
panic("Int overflow")
}
return Dec{chopped}
}
// quotient truncate
func (d Dec) QuoTruncate(d2 Dec) Dec {
// multiply precision twice
mul := new(big.Int).Mul(d.i, precisionReuse)
mul.Mul(mul, precisionReuse)
quo := new(big.Int).Quo(mul, d2.i)
chopped := chopPrecisionAndTruncate(quo)
if chopped.BitLen() > 255+DecimalPrecisionBits {
panic("Int overflow")
}
return Dec{chopped}
}
// quotient, round up
func (d Dec) QuoRoundUp(d2 Dec) Dec {
// multiply precision twice
mul := new(big.Int).Mul(d.i, precisionReuse)
mul.Mul(mul, precisionReuse)
quo := new(big.Int).Quo(mul, d2.i)
chopped := chopPrecisionAndRoundUp(quo)
if chopped.BitLen() > 255+DecimalPrecisionBits {
panic("Int overflow")
}
return Dec{chopped}
}
// quotient
func (d Dec) QuoInt(i Int) Dec {
mul := new(big.Int).Quo(d.i, i.i)
return Dec{mul}
}
// QuoInt64 - quotient with int64
func (d Dec) QuoInt64(i int64) Dec {
mul := new(big.Int).Quo(d.i, big.NewInt(i))
return Dec{mul}
}
// ApproxRoot returns an approximate estimation of a Dec's positive real nth root
// using Newton's method (where n is positive). The algorithm starts with some guess and
// computes the sequence of improved guesses until an answer converges to an
// approximate answer. It returns `|d|.ApproxRoot() * -1` if input is negative.
// A maximum number of 100 iterations is used a backup boundary condition for
// cases where the answer never converges enough to satisfy the main condition.
func (d Dec) ApproxRoot(root uint64) (guess Dec, err error) {
defer func() {
if r := recover(); r != nil {
var ok bool
err, ok = r.(error)
if !ok {
err = errors.New("out of bounds")
}
}
}()
if d.IsNegative() {
absRoot, err := d.MulInt64(-1).ApproxRoot(root)
return absRoot.MulInt64(-1), err
}
if root == 1 || d.IsZero() || d.Equal(OneDec()) {
return d, nil
}
if root == 0 {
return OneDec(), nil
}
rootInt := NewIntFromUint64(root)
guess, delta := OneDec(), OneDec()
for iter := 0; delta.Abs().GT(SmallestDec()) && iter < maxApproxRootIterations; iter++ {
prev := guess.Power(root - 1)
if prev.IsZero() {
prev = SmallestDec()
}
delta = d.Quo(prev)
delta = delta.Sub(guess)
delta = delta.QuoInt(rootInt)
guess = guess.Add(delta)
}
return guess, nil
}
// Power returns a the result of raising to a positive integer power
func (d Dec) Power(power uint64) Dec {
if power == 0 {
return OneDec()
}
tmp := OneDec()
for i := power; i > 1; {
if i%2 == 0 {
i /= 2
} else {
tmp = tmp.Mul(d)
i = (i - 1) / 2
}
d = d.Mul(d)
}
return d.Mul(tmp)
}
// ApproxSqrt is a wrapper around ApproxRoot for the common special case
// of finding the square root of a number. It returns -(sqrt(abs(d)) if input is negative.
func (d Dec) ApproxSqrt() (Dec, error) {
return d.ApproxRoot(2)
}
// is integer, e.g. decimals are zero
func (d Dec) IsInteger() bool {
return new(big.Int).Rem(d.i, precisionReuse).Sign() == 0
}
// format decimal state
func (d Dec) Format(s fmt.State, verb rune) {
_, err := s.Write([]byte(d.String()))
if err != nil {
panic(err)
}
}
func (d Dec) String() string {
if d.i == nil {
return d.i.String()
}
isNeg := d.IsNegative()
if isNeg {
d = d.Neg()
}
bzInt, err := d.i.MarshalText()
if err != nil {
return ""
}
inputSize := len(bzInt)
var bzStr []byte
// TODO: Remove trailing zeros
// case 1, purely decimal
if inputSize <= Precision {
bzStr = make([]byte, Precision+2)
// 0. prefix
bzStr[0] = byte('0')
bzStr[1] = byte('.')
// set relevant digits to 0
for i := 0; i < Precision-inputSize; i++ {
bzStr[i+2] = byte('0')
}
// set final digits
copy(bzStr[2+(Precision-inputSize):], bzInt)
} else {
// inputSize + 1 to account for the decimal point that is being added
bzStr = make([]byte, inputSize+1)
decPointPlace := inputSize - Precision
copy(bzStr, bzInt[:decPointPlace]) // pre-decimal digits
bzStr[decPointPlace] = byte('.') // decimal point
copy(bzStr[decPointPlace+1:], bzInt[decPointPlace:]) // post-decimal digits
}
if isNeg {
return "-" + string(bzStr)
}
return string(bzStr)
}
// ____
// __| |__ "chop 'em
// ` \ round!"
// ___|| ~ _ -bankers
// | | __
// | | | __|__|__
// |_____: / | $$$ |
// |________|
// Remove a Precision amount of rightmost digits and perform bankers rounding
// on the remainder (gaussian rounding) on the digits which have been removed.
//
// Mutates the input. Use the non-mutative version if that is undesired
func chopPrecisionAndRound(d *big.Int) *big.Int {
// remove the negative and add it back when returning
if d.Sign() == -1 {
// make d positive, compute chopped value, and then un-mutate d
d = d.Neg(d)
d = chopPrecisionAndRound(d)
d = d.Neg(d)
return d
}
// get the truncated quotient and remainder
quo, rem := d, big.NewInt(0)
quo, rem = quo.QuoRem(d, precisionReuse, rem)
if rem.Sign() == 0 { // remainder is zero
return quo
}
switch rem.Cmp(fivePrecision) {
case -1:
return quo
case 1:
return quo.Add(quo, oneInt)
default: // bankers rounding must take place
// always round to an even number
if quo.Bit(0) == 0 {
return quo
}
return quo.Add(quo, oneInt)
}
}
func chopPrecisionAndRoundUp(d *big.Int) *big.Int {
// remove the negative and add it back when returning
if d.Sign() == -1 {
// make d positive, compute chopped value, and then un-mutate d
d = d.Neg(d)
// truncate since d is negative...
d = chopPrecisionAndTruncate(d)
d = d.Neg(d)
return d
}
// get the truncated quotient and remainder
quo, rem := d, big.NewInt(0)
quo, rem = quo.QuoRem(d, precisionReuse, rem)
if rem.Sign() == 0 { // remainder is zero
return quo
}
return quo.Add(quo, oneInt)
}
func chopPrecisionAndRoundNonMutative(d *big.Int) *big.Int {
tmp := new(big.Int).Set(d)
return chopPrecisionAndRound(tmp)
}
// RoundInt64 rounds the decimal using bankers rounding
func (d Dec) RoundInt64() int64 {
chopped := chopPrecisionAndRoundNonMutative(d.i)
if !chopped.IsInt64() {
panic("Int64() out of bound")
}
return chopped.Int64()
}
// RoundInt round the decimal using bankers rounding
func (d Dec) RoundInt() Int {
return NewIntFromBigInt(chopPrecisionAndRoundNonMutative(d.i))
}
//___________________________________________________________________________________
// similar to chopPrecisionAndRound, but always rounds down
func chopPrecisionAndTruncate(d *big.Int) *big.Int {
return d.Quo(d, precisionReuse)
}
func chopPrecisionAndTruncateNonMutative(d *big.Int) *big.Int {
tmp := new(big.Int).Set(d)
return chopPrecisionAndTruncate(tmp)
}
// TruncateInt64 truncates the decimals from the number and returns an int64
func (d Dec) TruncateInt64() int64 {
chopped := chopPrecisionAndTruncateNonMutative(d.i)
if !chopped.IsInt64() {
panic("Int64() out of bound")
}
return chopped.Int64()
}
// TruncateInt truncates the decimals from the number and returns an Int
func (d Dec) TruncateInt() Int {
return NewIntFromBigInt(chopPrecisionAndTruncateNonMutative(d.i))
}
// TruncateDec truncates the decimals from the number and returns a Dec
func (d Dec) TruncateDec() Dec {
return NewDecFromBigInt(chopPrecisionAndTruncateNonMutative(d.i))
}
// Ceil returns the smallest interger value (as a decimal) that is greater than
// or equal to the given decimal.
func (d Dec) Ceil() Dec {
tmp := new(big.Int).Set(d.i)
quo, rem := tmp, big.NewInt(0)
quo, rem = quo.QuoRem(tmp, precisionReuse, rem)
// no need to round with a zero remainder regardless of sign
if rem.Cmp(zeroInt) == 0 {
return NewDecFromBigInt(quo)
}
if rem.Sign() == -1 {
return NewDecFromBigInt(quo)
}
return NewDecFromBigInt(quo.Add(quo, oneInt))
}
//___________________________________________________________________________________
// MaxSortableDec is the largest Dec that can be passed into SortableDecBytes()
// Its negative form is the least Dec that can be passed in.
var MaxSortableDec = OneDec().Quo(SmallestDec())
// ValidSortableDec ensures that a Dec is within the sortable bounds,
// a Dec can't have a precision of less than 10^-18.
// Max sortable decimal was set to the reciprocal of SmallestDec.
func ValidSortableDec(dec Dec) bool {
return dec.Abs().LTE(MaxSortableDec)
}
// SortableDecBytes returns a byte slice representation of a Dec that can be sorted.
// Left and right pads with 0s so there are 18 digits to left and right of the decimal point.
// For this reason, there is a maximum and minimum value for this, enforced by ValidSortableDec.
func SortableDecBytes(dec Dec) []byte {
if !ValidSortableDec(dec) {
panic("dec must be within bounds")
}
// Instead of adding an extra byte to all sortable decs in order to handle max sortable, we just
// makes its bytes be "max" which comes after all numbers in ASCIIbetical order
if dec.Equal(MaxSortableDec) {
return []byte("max")
}
// For the same reason, we make the bytes of minimum sortable dec be --, which comes before all numbers.
if dec.Equal(MaxSortableDec.Neg()) {
return []byte("--")
}
// We move the negative sign to the front of all the left padded 0s, to make negative numbers come before positive numbers
if dec.IsNegative() {
return append([]byte("-"), []byte(fmt.Sprintf(fmt.Sprintf("%%0%ds", Precision*2+1), dec.Abs().String()))...)
}
return []byte(fmt.Sprintf(fmt.Sprintf("%%0%ds", Precision*2+1), dec.String()))
}
//___________________________________________________________________________________
// reuse nil values
var nilJSON []byte
func init() {
empty := new(big.Int)
bz, _ := empty.MarshalText()
nilJSON, _ = json.Marshal(string(bz))
}
// MarshalJSON marshals the decimal
func (d Dec) MarshalJSON() ([]byte, error) {
if d.i == nil {
return nilJSON, nil
}
return json.Marshal(d.String())
}
// UnmarshalJSON defines custom decoding scheme
func (d *Dec) UnmarshalJSON(bz []byte) error {
if d.i == nil {
d.i = new(big.Int)
}
var text string
err := json.Unmarshal(bz, &text)
if err != nil {
return err
}
// TODO: Reuse dec allocation
newDec, err := NewDecFromStr(text)
if err != nil {
return err
}
d.i = newDec.i
return nil
}
// MarshalYAML returns the YAML representation.
func (d Dec) MarshalYAML() (interface{}, error) {
return d.String(), nil
}
// Marshal implements the gogo proto custom type interface.
func (d Dec) Marshal() ([]byte, error) {
if d.i == nil {
d.i = new(big.Int)
}
return d.i.MarshalText()
}
// MarshalTo implements the gogo proto custom type interface.
func (d *Dec) MarshalTo(data []byte) (n int, err error) {
if d.i == nil {
d.i = new(big.Int)
}
if d.i.Cmp(zeroInt) == 0 {
copy(data, []byte{0x30})
return 1, nil
}
bz, err := d.Marshal()
if err != nil {
return 0, err
}
copy(data, bz)
return len(bz), nil
}
// Unmarshal implements the gogo proto custom type interface.
func (d *Dec) Unmarshal(data []byte) error {
if len(data) == 0 {
d = nil
return nil
}
if d.i == nil {
d.i = new(big.Int)
}
if err := d.i.UnmarshalText(data); err != nil {
return err
}
if d.i.BitLen() > maxBitLen {
return fmt.Errorf("decimal out of range; got: %d, max: %d", d.i.BitLen(), maxBitLen)
}
return nil
}
// Size implements the gogo proto custom type interface.
func (d *Dec) Size() int {
bz, _ := d.Marshal()
return len(bz)
}
// Override Amino binary serialization by proxying to protobuf.
func (d Dec) MarshalAmino() ([]byte, error) { return d.Marshal() }
func (d *Dec) UnmarshalAmino(bz []byte) error { return d.Unmarshal(bz) }
func (dp DecProto) String() string {
return dp.Dec.String()
}
//___________________________________________________________________________________
// helpers
// test if two decimal arrays are equal
func DecsEqual(d1s, d2s []Dec) bool {
if len(d1s) != len(d2s) {
return false
}
for i, d1 := range d1s {
if !d1.Equal(d2s[i]) {
return false
}
}
return true
}
// minimum decimal between two
func MinDec(d1, d2 Dec) Dec {
if d1.LT(d2) {
return d1
}
return d2
}
// maximum decimal between two
func MaxDec(d1, d2 Dec) Dec {
if d1.LT(d2) {
return d2
}
return d1
}
// intended to be used with require/assert: require.True(DecEq(...))
func DecEq(t *testing.T, exp, got Dec) (*testing.T, bool, string, string, string) {
return t, exp.Equal(got), "expected:\t%v\ngot:\t\t%v", exp.String(), got.String()
}